博碩士論文 111522078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.188.173.252
姓名 黃雅琪(Ya-Chi Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 增強接受化療的乳癌患者的放鬆:基於 VR 的正念呼吸訓練干預
(Enhancing Relaxation in Breast Cancer Patients Undergoing Chemotherapy: A VR-Based Mindfulness Breathing Training Intervention)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-29以後開放)
摘要(中) 乳癌是女性常見的癌症類型,也是癌症相關死亡的主要原因。化療雖然是主要的治療方式,但常常會引起患者不良的心理反應。這項研究引入了一種創新系統,旨在化療前誘導乳癌患者處於放鬆狀態。該系統將虛擬實境 (VR) 與透過語音指令引導的正念呼吸練習相結合,並利用生物識別數據提供生物回饋,為患者護理提供整體方法。透過調查和生理數據分析,針對傳統方法和無幹預的對照組評估了該系統的有效性。結果表明,與聲音組和對照組相比,參與者在幹預後達到了明顯更高的放鬆狀態。這項研究展示了結合虛擬實境和正念練習來減輕乳癌患者化療心理負擔的潛力。
摘要(英) Breast cancer is a prevalent type of cancer among women and a leading cause of cancer-related deaths. Chemotherapy, a primary treatment method, often induces adverse psychological reactions in patients. This study introduces a novel system aimed at achieving a state of relaxation in breast cancer patients prior to undergoing chemotherapy. The system integrates virtual reality (VR) with mindfulness breathing training, using voice guidance. It collects physiological data to generate biofeedback, providing a holistic approach to patient care. The effectiveness of this system was evaluated against traditional methods and a control group with no intervention, through surveys and physiological data analysis. Results indicated that participants achieved a significantly higher state of relaxation post-intervention, as compared to the control and voice groups. This study demonstrates the potential of combining VR and mindfulness practices in reducing the psychological burden of chemotherapy in breast cancer patients.
關鍵字(中) ★ 虛擬實境
★ 機器學習
★ 心率變異性
★ 皮膚電反應
★ 呼吸率變異性
★ 腦電圖
★ 靜息狀態
關鍵字(英) ★ Virtual Reality (VR)
★ Machine Learning (ML)
★ Heart Rate Variability (HRV)
★ Galvanic Skin Response (GSR)
★ Respiratory Rate Variability (RRV)
★ Electroencephalogram (EEG)
★ resting-state
論文目次 摘 要 i
Abstract ii
致 謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
2. Related Works 5
3. Method 8
3-1 System Architecture 8
3-2 Experiments 10
3-2-1 Subject 10
3-2-2 Procedure 11
3-2-3 Measurement 12
3-3 Analysis Method 12
3-3-1 Feature Extraction 12
3-3-2 Statistical Analysis 16
3-3-3 Machine Learning Method 17
4. Results 19
4-1 Subject 19
4-2 Feature Performance and Statistical Analysis 19
4-2-1 EEG 19
4-2-2 HRV 21
4-2-3 RES 23
4-2-4 GSR 24
4-2-5 Effect Size 25
4-3 Relaxation Level 27
4-4 Machine Learning Analysis 30
5. Discussion 33
5-1 Significant Features 33
5-2 Short-term Effect 34
5-3 Fusion 34
6. Conclusion 36
Reference 37
參考文獻 [1] R. Wang, J. Li, Y. Zhao, Y. Li, and L. Yin, “Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on rna sequencing and bioinformatics analysis,” Breast Cancer, vol. 25, no. 2, pp. 206–212, Mar 2018. [Online]. Available: https://doi.org/10.1007/s12282-017-0816-6
[2] C. Mattiuzzi and G. Lippi, “Current cancer epidemiology,” Journal of Epidemiology and Global Health, vol. 9, no. 4, pp. 217–222, Oct 2019. [Online]. Available: https://doi.org/10.2991/jegh.k.191008.001
[3] L. A. Korde, M. R. Somerfield, L. A. Carey, J. R. Crews, N. Denduluri, E. S. Hwang, S. A. Khan, S. Loibl, E. A. Morris, A. Perez, M. M. Regan, P. A. Spears, P. K. Sudheendra, W. F. Symmans, R. L. Yung, B. E. Harvey, and D. L. Hershman, “Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: Asco guideline,” Journal of Clinical Oncology, vol. 39, no. 13, pp. 1485–1505, 2021, pMID: 33507815. [Online]. Available: https://doi.org/10.1200/JCO.20.03399
[4] G. H. Lyman, H. Greenlee, K. Bohlke, T. Bao, A. M. DeMichele, G. E. Deng, J. M. Fouladbakhsh, B. Gil, D. L. Hershman, S. Mansfield, D. M. Mussallem, K. M. Mustian, E. Price, S. Rafte, and L. Cohen, “Integrative therapies during and after breast cancer treatment: Asco endorsement of the sio clinical practice guideline,” Journal of Clinical Oncology, vol. 36, no. 25, pp. 2647–2655, 2018, pMID: 29889605. [Online]. Available: https://doi.org/10.1200/JCO.2018.79.2721
[5] C. C. Lim, K. M. Devi, and E. Ang, “Anxiety in women with breast cancer undergoing treatment: a systematic review,” JBI Evidence Implementation, vol. 9, no. 3, 2011. [Online]. Available: https://journals.lww.com/ijebh/fulltext/2011/09000/anxiety in women with breast cancer undergoing.3.aspx
[6] J. Zhang, Y. Zhou, Z. Feng, Y. Xu, and G. Zeng, “Longitudinal trends in anxiety, depression, and quality of life during different intermittent periods of adjuvant breast cancer chemotherapy,” Cancer Nursing, vol. 41, no. 1, 2018. [Online]. Available: https://journals.lww.com/cancernursingonline/fulltext/2018/ 01000/longitudinal_trends_in_anxiety,_depression,_and.8.aspx
[7] T. E. Lacourt and C. J. Heijnen, “Mechanisms of neurotoxic symptoms as a result of breast cancer and its treatment: Considerations on the contribution of stress, inflammation, and cellular bioenergetics,” Current Breast Cancer Reports, vol. 9, no. 2, pp. 70–81, Jun 2017. [Online]. Available: https://doi.org/10.1007/s12609-017-0245-8
[8] S.-Y. Cheng, X. Wu, and S. Liou, “Health training app design: A comprehensive model of mindfulness feedback system,” in 2016 International Conference on Orange Technologies (ICOT), 2016, pp. 88–91
[9] L. Chittaro and A. Vianello, “Mobile mindfulness and user’s worry: A qualitative study of using a smartphone app for distancing from negative thoughts,” Interacting with Computers, vol. 28, no. 6, pp. 695–717, 2016.
[10] J. D. Creswell, “Mindfulness interventions,” Annual Review of Psychology, vol. 68, no. 1, pp. 491–516, 2017, pMID: 27687118. [Online]. Available: https://doi.org/10.1146/annurev-psych-042716-051139
[11] C. Yildirim and T. O’Grady, “The efficacy of a virtual reality-based mindfulness intervention,” in 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 2020, pp. 158–165.
[12] D. Al-Mfarej, J. M. Vojtech, S. H. Roy, E. Townsend, J. J. Keysor, N. Kuntz, V. Rao, J. C. Kline, and B. Shiwani, “A virtual reality exergame: Clinician-guided breathing and relaxation for children with muscular dystrophy,” in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2023, pp. 270–276.
[13] S. F. Maria Pizzoli, S. Triberti, D. Monzani, K. Mazzocco, E. Kufel, M. Porebiak, and G. Pravettoni, “Comparison of relaxation techniques in virtual reality for breast cancer patients,” in 2019 5th Experiment International Conference (exp.at’19), 2019, pp. 348–351.
[14] U. Lee, G. Jung, S. Park, E.-Y. Ma, H. Kim, Y. Lee, and Y. Noh, “Data-driven digital therapeutics analytics,” in 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), 2023, pp. 386–388.
[15] P. M. Lehrer and R. Gevirtz, “Heart rate variability biofeedback: how and why does it work?” Frontiers in Psychology, vol. 5, 2014. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fpsyg. 2014.00756
[16] S.-Y. Wang, H.-S. Bang, Y. Liu, M. Kim, and J. Raiti, “Gaia vr: A virtual reality-based neuro and biofeedback meditation application,” in 2022 IEEE Global Humanitarian Technology Conference (GHTC), 2022, pp. 349–352.
[17] T. Y. Li, W.-C. Tsai, and S.-F. Lin, “Non-invasive recording of parasympathetic nervous system activity on auricular vagal nerve branch,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine I& Biology Society (EMBC), 2020, pp. 4337–4340.
[18] N. Widanti, B. Sumanto, P. Rosa, and M. Fathur Miftahudin, “Stress level detection using heart rate, blood pressure, and gsr and stress therapy by utilizing infrared,” in 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, pp. 275–279.
[19] T. Ogi, Y. Kubota, T. Toma, and T. Chikakiyo, “Evaluation of high presence sensation based on biological information,” in 2013 16th International Conference on Network-Based Information Systems, 2013, pp. 327–331.
[20] Q. Meteier, M. Capallera, E. De Salis, M. Widmer, L. Angelini, O. Abou Khaled, E. Mugellini, and A. Sonderegger, “Carrying a passenger and relaxation before driving: Classification of young drivers’ physiological activation,” Physiol. Rep., vol. 10, no. 10, p. e15229, May 2022.
[21] B. Stinson and D. Arthur, “A novel eeg for alpha brain state training, neurobiofeedback and behavior change,” Complementary Therapies in Clinical Practice, vol. 19, no. 3, pp. 114–118, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1744388113000339
[22] P. Samal and R. Singla, “Eeg based stress level detection during gameplay,” in 2021 2nd Global Conference for Advancement in Technology (GCAT), 2021, pp. 1–4.
[23] D. Kaminska, K. Sm ´ ołka, G. Zwoli ´ nski, S. Wiak, D. Merecz-Kot, and ´ G. Anbarjafari, “Stress reduction using bilateral stimulation in virtual reality,” IEEE Access, vol. 8, pp. 200 351–200 366, 2020.
[24] A. Parnandi and R. Gutierrez-Osuna, “Physiological modalities for relaxation skill transfer in biofeedback games,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 2, pp. 361–371, 2017.
指導教授 吳曉光 葉士青 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明