參考文獻 |
[1] IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, Eds. Cambridge, UK: Cambridge University Press, 2007, 976 pp.
[2] L. Cheng, J. Abraham, Z. Hausfather, and K. E. Trenberth, “How fast are the oceans warming?,” Science, vol. 363, no. 6423, pp. 128–129, Jan. 2019. doi:10.1126/science.aav7619
[3] A. J. Hobday et al., “A hierarchical approach to defining marine heatwaves,” Progress in Oceanography, vol. 141, pp. 227–238, Feb. 2016. doi:10.1016/j.pocean.2015.12.014
[4] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R.K. Pachauri, and L.A. Meyer, Eds. Geneva, Switzerland: IPCC, 2014, 151 pp
[5] N. J. Holbrook et al., “A global assessment of marine heatwaves and their drivers,” Nature Communications, vol. 10, no. 1, Jun. 2019. doi:10.1038/s41467-019-10206-z
[6] T. P. Hughes et al., “Global warming and recurrent mass bleaching of corals,” Nature, vol. 543, no. 7645, pp. 373–377, Mar. 2017. doi:10.1038/nature21707
[7] T. L. Frölicher, E. M. Fischer, and N. Gruber, “Marine heatwaves under Global Warming,” Nature, vol. 560, no. 7718, pp. 360–364, Aug. 2018. doi:10.1038/s41586-018-0383-9
[8] E. C. Oliver et al., “Longer and more frequent marine heatwaves over the past century,” Nature Communications, vol. 9, no. 1, Apr. 2018. doi:10.1038/s41467-018-03732-9
[9] C. Hauri et al., “Modulation of ocean acidification by decadal climate variability in the Gulf of Alaska,” Communications Earth & Environment, vol. 2, no. 1, Sep. 2021. doi:10.1038/s43247-021-00254-z
[10] M. Ishizu, Y. Miyazawa, and X. Guo, “Long-term variations in ocean acidification indices in the northwest Pacific from 1993 to 2018,” Climatic Change, vol. 168, no. 3–4, Oct. 2021. doi:10.1007/s10584-021-03239-1
[11] K. R. Anthony, D. I. Kline, G. Diaz-Pulido, S. Dove, and O. Hoegh-Guldberg, “Ocean acidification causes bleaching and productivity loss in coral reef builders,” Proceedings of the National Academy of Sciences, vol. 105, no. 45, pp. 17442–17446, Nov. 2008. doi:10.1073/pnas.0804478105
[12] O. Hoegh-Guldberg, E. S. Poloczanska, W. Skirving, and S. Dove, “Coral reef ecosystems under climate change and ocean acidification,” Frontiers in Marine Science, vol. 4, May 2017. doi:10.3389/fmars.2017.00158
[13] O. Hoegh-Guldberg, “Climate change, coral bleaching and the future of the world’s coral reefs,” Marine and Freshwater Research, 1999. doi:10.1071/mf99078
[14] J. Erez, S. Reynaud, J. Silverman, K. Schneider, and D. Allemand, “Coral calcification under ocean acidification and Global Change,” Coral Reefs: An Ecosystem in Transition, pp. 151–176, Nov. 2010. doi:10.1007/978-94-007-0114-4_10
[15] W. Skirving, et al., “Extreme events and perturbations of coastal ecosystems,” Remote Sensing and Digital Image Processing, pp. 11–25, 2006. doi:10.1007/1-4020-3968-9_2
[16] E. D. Gomez, P. M. Aliño, H. T. Yap, and W. Y. Licuanan, “A review of the status of Philippine reefs,” Marine Pollution Bulletin, vol. 29, no. 1–3, pp. 62–68, Jan. 1994. doi:10.1016/0025-326x(94)90427-8
[17] C. L. Nañola, P. M. Aliño, and K. E. Carpenter, “Exploitation-related reef fish species richness depletion in the epicenter of Marine Biodiversity,” Environmental Biology of Fishes, vol. 90, no. 4, pp. 405–420, Dec. 2010. doi:10.1007/s10641-010-9750-6
[18] W. Y. Licuanan, R. Robles, and M. Reyes, “Status and recent trends in coral reefs of the Philippines,” Marine Pollution Bulletin, vol. 142, pp. 544–550, May 2019. doi:10.1016/j.marpolbul.2019.04.013
[19] J. P. Da-Anoy, P. C. Cabaitan, and C. Conaco, “Species variability in the response to elevated temperature of select corals in north-western Philippines,” Journal of the Marine Biological Association of the United Kingdom, vol. 99, no. 06, pp. 1273–1279, Mar. 2019. doi:10.1017/s0025315419000158
[20] R. R. Isah, I. C. Enochs, and M. L. San Diego-McGlone, “Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and Fish Mariculture-induced forcing,” Frontiers in Marine Science, vol. 9, Nov. 2022. doi:10.3389/fmars.2022.858853
[21] R. C. Babcock et al., “Recurrent coral bleaching in north-Western Australia and associated declines in coral cover,” Marine and Freshwater Research, vol. 72, no. 5, p. 620, 2021. doi:10.1071/mf19378
[22] Y. Chen, F. Zhai, P. Li, Y. Gu, and K. Wu, “Extreme 2020 summer ssts in the northern South China Sea: Implications for the Beibu Gulf Coral bleaching,” Journal of Climate, vol. 35, no. 13, pp. 4177–4190, Jul. 2022. doi:10.1175/jcli-d-21-0649.1
[23] B. Edullantes et al., “Marine heatwaves and their impacts: Research perspectives in the Philippines,” Philippine Journal of Science, vol. 151, no. 5, Aug. 2022. doi:10.56899/151.05.28
[24] B. Edullantes et al., “Characteristics of marine heatwaves in the Philippines,” Regional Studies in Marine Science, vol. 62, p. 102934, Sep. 2023. doi:10.1016/j.rsma.2023.102934
[25] Y. Yao and C. Wang, “Variations in summer marine heatwaves in the South China Sea,” Journal of Geophysical Research: Oceans, vol. 126, no. 10, Oct. 2021. doi:10.1029/2021jc017792
[26] H.-J. Tan, R.-S. Cai, and R.-G. Wu, “Summer marine heatwaves in the South China Sea: Trend, variability and possible causes,” Advances in Climate Change Research, vol. 13, no. 3, pp. 323–332, Jun. 2022. doi:10.1016/j.accre.2022.04.003
[27] Q. Song, Y. Yao, and C. Wang, “Response of future Summer marine heatwaves in the South China Sea to enhanced Western Pacific Subtropical high,” Geophysical Research Letters, vol. 50, no. 14, Jul. 2023. doi:10.1029/2023gl103667
[28] M. Reyes, R. Pavia, and R. van Hooidonk, “Ocean acidification in the Philippines and the potential role of water pollution management in mitigating an unaddressed threat,” Regional Environmental Change, vol. 23, no. 3, Aug. 2023. doi:10.1007/s10113-023-02102-6
[29] S. A. Foo and G. P. Asner, “Scaling up coral reef restoration using Remote Sensing Technology,” Frontiers in Marine Science, vol. 6, Mar. 2019. doi:10.3389/fmars.2019.00079
[30] A. Licuanan, M.Z. Reyes, K. Luzon, M.A.A. Chan, and W. Licuanan, "Initial Findings of the Nationwide Assessment of Philippine Coral Reefs," Philippine Journal of Science, vol. 146, no. 2, pp. 177-185, 2017.
[31] P. Hsu et al., “Tide‐induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, Southern Taiwan,” Journal of Geophysical Research: Oceans, vol. 125, no. 4, Apr. 2020. doi:10.1029/2019jc015226
[32] W. Skirving et al., “Coral temp and the coral reef watch Coral Bleaching Heat Stress Product Suite version 3.1,” Remote Sensing, vol. 12, no. 23, p. 3856, Nov. 2020. doi:10.3390/rs12233856
[33] P. W. Glynn and L. D’Croz, “Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality,” Coral Reefs, vol. 8, no. 4, pp. 181–191, Apr. 1990. doi:10.1007/bf00265009
[34] G. Liu, A. E. Strong, and W. Skirving, “Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching,” Eos, Transactions American Geophysical Union, vol. 84, no. 15, pp. 137–141, Apr. 2003. doi:10.1029/2003eo150001
[35] M.-H. Rio, S. Mulet, and N. Picot, "Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents," Geophysical Research Letters, vol. 41, 2014, doi: 10.1002/2014GL061773.
[36] Global Ocean Biogeochemistry Hindcast, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). DOI: 10.48670/moi-00019 (accessed Dec. 1, 2023).
[37] Global Ocean Biogeochemistry Analysis and Forecast, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). DOI: 10.48670/moi-00015 (accessed Dec. 1, 2023).
[38] N. C. P. Center, “NOAA’s Climate Prediction Center,” Climate Prediction Center, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed Jan. 21, 2024).
[39] N. J. Mantua, S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, “A Pacific Interdecadal climate oscillation with impacts on salmon production,” Bulletin of the American Meteorological Society, vol. 78, no. 6, pp. 1069–1079, Jun. 1997. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
[40] M. Newman et al., “The Pacific Decadal Oscillation, revisited,” Journal of Climate, vol. 29, no. 12, pp. 4399–4427, Jun. 2016. doi:10.1175/jcli-d-15-0508.1
[41] J. Matsumoto, L. M. Olaguera, D. Nguyen‐Le, H. Kubota, and M. Q. Villafuerte, “Climatological seasonal changes of wind and rainfall in the Philippines,” International Journal of Climatology, vol. 40, no. 11, pp. 4843–4857, Jan. 2020. doi:10.1002/joc.6492
[42] G. R. Bigg, T. D. Jickells, P. S. Liss, and T. J. Osborn, “The role of the oceans in climate,” International Journal of Climatology, vol. 23, no. 10, pp. 1127–1159, Aug. 2003. doi:10.1002/joc.926
[43] J. Röhrs et al., “Surface currents in operational oceanography: Key applications, mechanisms, and methods,” Journal of Operational Oceanography, vol. 16, no. 1, pp. 60–88, Mar. 2021. doi:10.1080/1755876x.2021.1903221
[44] T. Mitsuguchi, P. X. Dang, H. Kitagawa, M. Yoneda, and Y. Shibata, “Tropical south china sea surface 14C record in an annually-banded coral,” Radiocarbon, vol. 49, no. 2, pp. 905–914, 2007. doi:10.1017/s0033822200042776
[45] J. Hu, H. Kawamura, H. Hong, and Y. Qi, “A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion,” Journal of Oceanography, vol. 56, no. 6, pp. 607–624, 2000. doi:10.1023/a:1011117531252
[46] C. Yang, X. Chen, X. Cheng, and B. Qiu, “Annual versus semi-annual eddy kinetic energy variability in the Celebes Sea,” Journal of Oceanography, vol. 76, no. 6, pp. 401–418, Jun. 2020. doi:10.1007/s10872-020-00553-7
[47] T. Qu and R. Lukas, “The bifurcation of the North Equatorial Current in the Pacific,” Journal of Physical Oceanography, vol. 33, no. 1, pp. 5–18, Jan. 2003. doi:10.1175/1520-0485(2003)033<0005:TBOTNE>2.0.co;2
[48] T. M. DeCarlo et al., “Mass coral mortality under local amplification of 2 °C ocean warming,” Scientific Reports, vol. 7, no. 1, Mar. 2017. doi:10.1038/srep44586
[49] H. O. Arceo, M. C. Quibilan, P. M. Aliño, G. Lim, and W. Y. Licuanan, “Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies,” Bulletin of Marine Science, vol. 69, no. 2, pp. 579–593, Sep. 2001.
[50] D. C. Claar, L. Szostek, J. M. McDevitt-Irwin, J. J. Schanze, and J. K. Baum, "Global patterns and impacts of El Niño events on coral reefs: A meta-analysis," PloS One, vol. 13, no. 2, p. e0190957, 2018. Available: https://doi.org/10.1371/journal.pone.0190957
[51] H. Zhao and C. Wang, “Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific,” Climate Dynamics, vol. 47, no. 1–2, pp. 315–328, Oct. 2015. doi:10.1007/s00382-015-2837-1
[52] W. Chen, J. Park, B. Dong, R. Lu, and W. Jung, “The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D12, Jun. 2012. doi:10.1029/2011jd017385 |