博碩士論文 111522047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.144.249.63
姓名 于志宇(Chih-Yu Yu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於多維度的臺灣天氣類型機器學習 臨近預報與分類系統
(Multi-Dimensional based Weather Condition Machine Learning Nowcasting and Classification System In Taiwan)
相關論文
★ 在有干擾的虛擬教室環境下 大人小孩的行為表現與腦神經反應的異同★ 使用映射模型和跨資料集遷移式學習的輕量化居家衰弱症訓練系統
★ 心率生理回饋放鬆訓練對於海洛因使用疾患(HUD)生理資訊之影響分析★ 基於深度學習模型的3D心理旋轉對認知障礙的診斷與評估
★ 評估注意力偵測之穿戴式腦電電極放置有效性★ 建立數位地球:基於Omniverse平台的東南亞衛星雲圖與雷達圖可視化
★ 整合檢索增強生成與大型語言模型應用於精準運動科學平台:架構與實現★ 透過生理數據分析的VR戰車訓練系統,評估壓力對認知專注力與穩定性的影響及通過多次訓練表現驗證系統有效性
★ 基於機器學習分析ADHD亞型利用VR認知測驗同步的神經生理數據★ FrAIlti:利用人工智慧和3D攝影技術提升老年照護的自動化衰弱評估系統
★ 自閉症譜系障礙虛擬實境訓練系統的開發與驗證★ 智慧醫療物聯網平台之裝置管理與應用
★ 智慧醫療物聯網平台之多租戶應用★ XRCURE:基於實證醫學的AIOT、XR和可穿戴感測器在AWS上的數位療法
★ 重複性經顱磁刺激同步虛擬實境與生理監測用於失語症創新治療與評估★ 將網路威脅情報與多視角分析和雙聚類結合:一種多維視覺化方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這篇研究論文中,提出了一個一小時的天氣類別預測系統。主要的貢獻在於提出了一個以臺灣地區多維度原始資料,能夠短期的預測與分辨地區天氣狀態的系統。並提出對於氣象測站、環流場資料以及日本向日葵八號衛星的紅外線通道這三種不同之多維度原始資料做前處理、以及訓練之方式。且由於考慮到每個地區不同的氣候,提出對每個區域以測站為基礎分別建模的方式訓練模型。多維度的資料可以提供同一個目標的不同面向給模型,使其在學習時,較能以更為立體、不同面向的視角來看同一個天氣事件。
並在與現存研究中提出的天氣分類預測方法比較中都獲得更好的表現。並且在一小時是否降雨的預測下,與區域數值天氣預測模型WRF以及目前最好的降雨預測方法之一的ExAMP比較下皆獲得較好的表現。此系統可以在未來可能可以做為智慧城市的元件作使用,讓使用的民眾能預防即將到來的天氣。
摘要(英) In this research paper, a one-hour weather classification prediction system is proposed. The primary contribution lies in the development of a system capable of short-term prediction and classification of local weather conditions using multi-dimensional raw data from Taiwan. The system involves preprocessing and training with three different types of multi-dimensional raw data: meteorological station data, circulation field data, and infrared channel data from Japan′s Himawari-8 satellite. Considering the diverse climates in different regions, the approach involves training models separately for each area based on station-specific data. The use of multi-dimensional data provides various perspectives on the same target, enabling the model to learn and interpret weather events in a more comprehensive and multi-faceted manner.
The proposed system demonstrates superior performance compared to existing weather classification prediction methods. Additionally, in one-hour precipitation prediction, the system outperforms both the regional numerical weather prediction model WRF and ExAMP, one of the best current precipitation prediction methods. This system has the potential to serve as a component of smart cities in the future, allowing residents to anticipate and prepare for imminent weather conditions.
關鍵字(中) ★ 天氣類型分類
★ 天氣臨近預測
★ 智慧城市
★ 數位孿生
★ 機器學習(ML)
關鍵字(英) ★ weather condition classification
★ weather nowcasting
★ smart cities
★ digital twins
★ machine learning (ML)
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
List of Tables vii
Explanation of Symbols ix
I. Introduction 1
II. Related Works 8
III. Method 14
IV. Results 35
V. Conclusion 55
VI. Future Works 57
Acknowledgments 58
Reference 59
參考文獻 [1] K. Riaz, M. McAfee, and S. S. Gharbia, “Management of climate resilience: Exploring the potential of digital twin technology, 3d city modelling, and early warning systems,” Sensors, vol. 23, no. 5, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/5/2659
[2] K. I. Dale, E. C. D. Pope, A. R. Hopkinson, T. McCaie, and J. A. Lowe, “Environment-aware digital twins: Incorporating weather and climate information to support risk-based decision-making,” Artificial Intelligence for the Earth Systems, vol. 2, no. 4, p. e230023, 2023. [Online]. Available: https://journals.ametsoc.org/view/journals/aies/2/4/ AIES-D-23-0023.1.xml
[3] M. Datcu, D. Faur, E. Mamut, I. Nedelcu, C. Ionescu, and L. Miron, “Digital twin earth for climate change adapation: An ai based federated system,” in IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, pp. 1392–1395.
[4] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges and enablers from a modeling perspective,” IEEE Access, vol. 8, pp. 21980–22012, 2020.
[5] X. Wu, G. Lu, and Z. Wu, “Remote sensing technology in the construction of digital twin basins: Applications and prospects,” Water, vol. 15, no. 11, 2023. [Online]. Available: https://www.mdpi.com/ 2073-4441/15/11/2040
[6] K. E. Skouby and P. Lynggaard, “Smart home and smart city solutions enabled by 5g, iot, aai and cot services,” in 2014 International Conference on Contemporary Computing and Informatics (IC3I), 2014, pp. 874–878.
[7] S. Bresciani, A. Ferraris, and M. Del Giudice, “The management of organizational ambidexterity through alliances in a new context of analysis: Internet of things (iot) smart city projects,” Technological Forecasting and Social Change, vol. 136, pp. 331–338, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0040162517302950
[8] J. Stubinger and L. Schneider, “Understanding smart city—a data-¨ driven literature review,” Sustainability, vol. 12, no. 20, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/20/8460
[9] F. Dembski, U. Wossner, M. Letzgus, M. Ruddat, and C. Yamu,¨ “Urban digital twins for smart cities and citizens: The case study of herrenberg, germany,” Sustainability, vol. 12, no. 6, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/6/2307
[10] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F. Tasgetiren, “Future trends and current state of smart city concepts: A survey,” IEEE Access, vol. 8, pp. 86448–86467, 2020.
[11] D. Petrova-Antonova and S. Ilieva, “Digital twin modeling of smart cities,” in Human Interaction, Emerging Technologies and Future Applications III, T. Ahram, R. Taiar, K. Langlois, and A. Choplin, Eds. Cham: Springer International Publishing, 2021, pp. 384–390.
[12] N. Wedi, P. Bauer, I. Sandu, J. Hoffmann, S. Sheridan, R. Cereceda, T. Quintino, D. Thiemert, and T. Geenen, “Destination earth: Highperformance computing for weather and climate,” Computing in Science Engineering, vol. 24, no. 6, pp. 29–37, 2022.
[13] A.G. Pendergrass, “What precipitation is extreme?” Science, vol. 360, no. 6393, pp. 1072–1073, 2018. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aat1871
[14] S. Roy, “Worst-case photovoltaic generation and power change distribution under dense cloud cover,” IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1021–1028, 2017.
[15] A. K. Whitcraft, E. F. Vermote, I. Becker-Reshef, and C. O. Justice, “Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations,” Remote Sensing of Environment, vol. 156, pp. 438–447, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425714004179
[16] Central Weather Administration, “Weather forecast center,” cwa.gov. tw. https://www.cwa.gov.tw/V8/C/A/organ/WFC.html (accessed Jun. 4, 2024).
[17] European Centre for Medium-Range Weather Forecasts, “Global numerical modelling at the heart of ecmwf’s forecasts,” https://www.ecmwf.int https://www.ecmwf.int/en/about/media-centre/ focus/2022/global-numerical-modelling-heart-ecmwfs-forecasts (accessed Jun. 4, 2024).
[18] J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A. Grell, J. Michalakes, S. Trahan, S. G. Benjamin, C. R. Alexander, G. J. Dimego, W. Wang, C. S. Schwartz, G. S. Romine, Z. Liu, C. Snyder, F. Chen, M. J. Barlage, W. Yu, and M. G. Duda, “The weather research and forecasting model: Overview, system efforts, and future directions,” Bulletin of the American Meteorological Society, vol. 98, no. 8, pp. 1717 – 1737, 2017. [Online]. Available: https: //journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00308.1.xml
[19] M. Rzeszutek, A. Kłosowska, and R. Oleniacz, “Accuracy assessment of wrf model in the context of air quality modeling in complex terrain,” Sustainability, vol. 15, no. 16, 2023. [Online]. Available: https://www.mdpi.com/2071-1050/15/16/12576
[20] H.-H. H. B. J.-D. J. Chun-Chieh Wu, Hung-Chi Kuo, “Weather and climate research in taiwan: Potential application of gps/met data,” Terrestrial, Atmospheric and Oceanic Sciences Journal, vol. 11, no. 1, March. 2000.
[21] B.-F. Jeng, H.-J. Chen, S.-C. Lin, T.-M. Leou, M. S. Peng, S. W. Chang, W.-R. Hsu, and C.-P. Chang, “The limitedarea forecast systems at the central weather bureau in taiwan,” Weather and Forecasting, vol. 6, no. 1, pp. 155 – 180, 1991. [Online]. Available: https://journals.ametsoc.org/view/journals/wefo/6/1/1520-0434 1991 006 0155 tlafsa 2 0 co 2.xml
[22] X. Ren, X. Li, K. Ren, J. Song, Z. Xu, K. Deng, and X. Wang, “Deep learning-based weather prediction: A survey,” Big Data Research, vol. 23, p. 100178, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214579620300460
[23] N. Singh, S. Chaturvedi, and S. Akhter, “Weather forecasting using machine learning algorithm,” in 2019 International Conference on Signal Processing and Communication (ICSC), 2019, pp. 171–174.
[24] M. Hossain, B. Rekabdar, S. J. Louis, and S. Dascalu, “Forecasting the weather of nevada: A deep learning approach,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–6.
[25] M. A. R. Suleman and S. Shridevi, “Short-term weather forecasting using spatial feature attention based lstm model,” IEEE Access, vol. 10, pp. 82456–82468, 2022.
[26] M. Safia, R. Abbas, and M. Aslani, “Classification of weather conditions based on supervised learning for swedish cities,” Atmosphere, vol. 14, no. 7, 2023. [Online]. Available: https://www.mdpi.com/2073-4433/14/ 7/1174
[27] M. Elhoseiny, S. Huang, and A. Elgammal, “Weather classification with deep convolutional neural networks,” in 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 3349–3353.
[28] S. Wadhwa and R. G. Tiwari, “Machine learning-based weather prediction: A comparative study of regression and classification algorithms,” in 2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT), 2023, pp. 487–492.
[29] E. Dritsas, M. Trigka, and P. Mylonas, “A multi-class classification approach for weather forecasting with machine learning techniques,” in 2022 17th International Workshop on Semantic and Social Media Adaptation Personalization (SMAP), 2022, pp. 1–5.
[30] F. Zhang, X. Wang, and J. Guan, “A novel multi-input multioutput recurrent neural network based on multimodal fusion and spatiotemporal prediction for 0–4 hour precipitation nowcasting,” Atmosphere, vol. 12, no. 12, 2021. [Online]. Available: https: //www.mdpi.com/2073-4433/12/12/1596
[31] D. So and D.-B. Shin, “Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 133–144, 2018. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3288
[32] S. A. Ackerman, W. L. Smith, H. E. Revercomb, and J. D. Spinhirne, “The 27–28 october 1986 fire ifo cirrus case study: Spectral properties of cirrus clouds in the 8–12 µm window,” Monthly Weather Review, vol. 118, no. 11, pp. 2377 – 2388, 1990. [Online]. Available: https://journals.ametsoc.org/view/journals/ mwre/118/11/1520-0493 1990 118 2377 toficc 2 0 co 2.xml
[33] M. N. . K. T. Barnes, A.P., “Forecasting seasonal to sub-seasonal rainfall in great britain using convolutional-neural networks,” Theor Appl Climatol, vol. 151, p. 421–432, 2023.
[34] N. Otero and P. Horton, “Intercomparison of deep learning architectures for the prediction of precipitation fields with a focus on extremes,” Water Resources Research, vol. 59, no. 11, p. e2023WR035088, 2023, e2023WR035088 2023WR035088. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023WR035088
[35] M. M. Hassan, M. A. T. Rony, M. A. R. Khan, M. M. Hassan, F. Yasmin, A. Nag, T. H. Zarin, A. K. Bairagi, S. Alshathri, and W. ElShafai, “Machine learning-based rainfall prediction: Unveiling insights and forecasting for improved preparedness,” IEEE Access, vol. 11, pp. 132196–132222, 2023.
[36] I. Lopez-Gomez, A. McGovern, S. Agrawal, and J. Hickey, “Global extreme heat forecasting using neural weather models,” Artificial Intelligence for the Earth Systems, vol. 2, no. 1, p. e220035, 2023. [Online]. Available: https://journals.ametsoc.org/view/journals/aies/2/1/ AIES-D-22-0035.1.xml
[37] A. K. Mishra, R. Gairola, A. Varma, and V. K. Agarwal, “Improved rainfall estimation over the indian region using satellite infrared technique,” Advances in Space Research, vol. 48, no. 1, pp. 49– 55, 2011. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S027311771100144X
[38] D. So and D.-B. Shin, “Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 133–144, 2018. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3288
[39] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[40] C. Wang, J. Xu, G. Tang, Y. Yang, and Y. Hong, “Infrared precipitation estimation using convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8612–8625, 2020.
[41] L. Harris, A. T. T. McRae, M. Chantry, P. D. Dueben, and T. N. Palmer, “A generative deep learning approach to stochastic downscaling of precipitation forecasts,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 10, p. e2022MS003120, 2022, e2022MS003120 2022MS003120. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003120
[42] D. P. W. P. e. a. Adewoyin, R.A., “Tru-net: a deep learning approach to high resolution prediction of rainfall,” Mach Learn, vol. 110, p. 2035–2062, 2021.
[43] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[44] S. Banara, T. Singh, and A. Chauhan, “Iot based weather monitoring system for smart cities: A comprehensive review,” in 2022 International Conference for Advancement in Technology (ICONAT), 2022, pp. 1–6.
[45] W. F. K. S. e. a. Wang, E.K., “Intelligent monitor for typhoon in iot system of smart city,” The Journal of Supercomputing, vol. 77, p. 3024–3043, 2021.
[46] A.-u. Rahman, S. Abbas, M. Gollapalli, R. Ahmed, S. Aftab, M. Ahmad, M. A. Khan, and A. Mosavi, “Rainfall prediction system using machine learning fusion for smart cities,” Sensors, vol. 22, no. 9, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/9/3504
[47] K. Maaloul and L. Brahim, “Weather forecasting and prediction in smart cities using machine learning algorithm,” 02 2023.
[48] M. A. Zaytar and C. El Amrani, “Sequence to sequence weather forecasting with long short-term memory recurrent neural networks,” International Journal of Computer Applications, vol. 143, pp. 7–11, 06 2016.
[49] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. EatonRosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia, “Learning skillful medium-range global weather forecasting,” Science, vol. 382, no. 6677, pp. 1416–1421, 2023. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.adi2336
[50] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, pp. 533–538, 2023. [Online]. Available: https://doi.org/10.1038/s41586-023-06185-3
[51] Q. Zhao, Y. Liu, W. Yao, and Y. Yao, “Hourly rainfall forecast model using supervised learning algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–9, 2022.
[52] P. Hess and N. Boers, “Deep learning for improving numerical weather prediction of heavy rainfall,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 3, p. e2021MS002765, 2022, e2021MS002765 2021MS002765. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002765
[53] M. N. . K. T. Barnes, A.P., “Forecasting seasonal to sub-seasonal rainfall in great britain using convolutional-neural networks,” Theoretical and Applied Climatology, vol. 151, p. 421–432, 2021.
[54] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[55] M. W. Berry, A. Mohamed, and B. W. Yap, Supervised and unsupervised learning for data science. Springer, 2019.
[56] World Meteorological Organization, “The sun’s impact on the earth,” wmo.int https://wmo.int/suns-impact-earth (accessed Jun. 13, 2024).
[57] W.-T. Li, M.-C. Ho, and C. Yang, “Study on design strategy for sustainable development of chinese solar term culture,” Sustainability, vol. 10, no. 12, 2018. [Online]. Available: https://www.mdpi.com/ 2071-1050/10/12/4355
[58] K.-S. Chung, H.-J. Chiu, C.-Y. Liu, and M.-Y. Lin, “Satellite observation for evaluating cloud properties of the microphysical schemes in weather research and forecasting simulation: A case study of the mei-yu front precipitation system,” Remote Sensing, vol. 12, no. 18, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/18/3060
[59] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[60] I. Gad and D. Hosahalli, “A comparative study of prediction and classification models on ncdc weather data,” International Journal of Computers and Applications, vol. 44, no. 5, pp. 414–425, 2022. [Online]. Available: https://doi.org/10.1080/1206212X.2020.1766769
[61] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.
[62] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001. [Online]. Available: http://www.jstor.org/stable/2699986
[63] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
[64] H.-H. Lin, C.-C. Tsai, J.-C. Liou, Y.-C. Chen, C.-Y. Lin, L.-Y. Lin, and K.-S. Chung, “Multi-weather evaluation of nowcasting methods including a new empirical blending scheme,” Atmosphere, vol. 11, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2073-4433/ 11/11/1166
[65] C.-C. Tsai, J.-C. Liou, H.-H. Liao, Y.-C. Yu, Y.-C. Chen, C.-Y. Lin, K.-S. Chung, and B. J.-D. Jou, “Strategy analysis of the extrapolation adjusted by model prediction (examp) blending scheme for rainfall nowcasting,” Terrestrial, Atmospheric and Oceanic Sciences, vol. 34, no. 1, p. 16, 2023. [Online]. Available: https://doi.org/10.1007/s44195-023-00047-1
指導教授 葉士青 吳曉光 審核日期 2024-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明