博碩士論文 111022001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.143.214.86
姓名 林嘉祐(Jia-You Lin)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 臺灣鄰近海域的海洋熱浪及海洋寒潮事件
相關論文
★ 評估菲律賓珊瑚礁區域的海洋熱浪與海洋酸化現象★ 2015年至2022年西北太平洋颱風對浮游植物和海表溫度的動態反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 海洋熱浪(Marine heatwave, MHW)是一種海水溫度突然顯著增溫的現象,而海洋寒潮(Marine cold-spells, MCS)則是一種海水溫度突然顯著降溫的現象,近幾年MHW和MCS的分析方法和相關延伸議題開始受到關注。在本研究中MHW事件以該海域位置在該日的海溫超過以1985-2014共30年為氣候基期的第90百分位值海溫數值且持續五天以上時稱之;MCS的定義則是使用相同氣候基期的第10百分位海溫數值做為閾值,並同樣需要低於該閾值持續五天以上。聖嬰現象及太平洋十年震盪(PDO)是在分析MHW和MCS時考量的重要氣候條件,PDO在正相位的時候,東太平洋偏暖而西太平洋偏冷,而負相位則反之,而在聖嬰現象時,也會讓西太平洋偏冷,反聖嬰現象則反之。本研究使用1985-2022間共38年的每日海水表面溫度資料並計算MHW和MCS的頻率、持續時間、升溫率、降溫率以及最大強度、累積強度、平均強度等指標作為事件特性分類的參考值,並分析不同分類的事件在臺灣附近海域的百分比空間分布,以及各指標在不同氣候條件下所呈現的空間分布,能夠了解在台灣周遭海域的不同海洋動力條件下對MHW和MCS事件的影響。1985年到2022年間,在事件的年度天數則是MHW(50.5 days)比MCS(31.2days)要來的高。但從趨勢來說,不管是最大強度還是事件年度天數,都是MHW(0.015 ℃, 2.4 days/year)大於MCS(0.0036 ℃, -0.96 days/year)。受到全球暖化的影響,全球海水溫度上升,造成MHW強度(0.002 ℃/year)、頻率(0.118 times/year)、持續時間(0.24 days/year)不斷上升,而MCS強度(-0.004 ℃/year)、頻率(-0.10 times/year)、持續時間(-0.003 days/year)在這三個指標的趨勢則是下降。並且我們分析海洋熱浪與海洋寒潮在淺水區及深水區各項指標的差異,發現在除了月平均天數及持續天數,其他指標皆是淺水區高於深水區,因此推測海洋熱浪與寒潮事件會受到海水深度的影響。
摘要(英) Marine Heatwaves (MHW) are phenomena characterized by a sudden and significant increase in sea surface temperature, while Marine Cold-Spells (MCS) involve a sudden and significant decrease in sea surface temperature. In recent years, the analysis methods and related issues of MHW and MCS have begun to receive attention. In this study, an MHW event is defined when the sea surface temperature (SST) at a specific location exceeds the 90th percentile of the daily SST for the same location during the 30-year climate base period from 1985 to 2014 and persists for five days or more. The definition of MCS uses the 10th percentile of the same climate base period′s SST as the threshold, and it also requires persistence below this threshold for five days or more. This research utilizes daily SST data from 1985 to 2022, spanning 38 years, to calculate the frequency, duration, warming rate, cooling rate, maximum intensity, cumulative intensity, average intensity, and other indicators as reference values for event characteristics classification. The study analyzes the spatial distribution of different event classifications in the seas surrounding Taiwan and the spatial distribution of various indicators under different climatic conditions. This helps understand the impact of different physical conditions in the seas around Taiwan on MHW and MCS events. Between 1985 and 2022, the average annual duration of events indicates that MHW (50.5 days) is higher than MCS (31.2 days). However, in terms of trends, both maximum intensity and annual duration show that MHW (0.015 ℃, 2.4 days/year) is greater than MCS (0.0036 ℃, -0.96 days/year). Influenced by global warming, the rising global sea temperatures lead to continuous increases in MHW average intensity (0.002 ℃/year), frequency (0.118 times/year), and duration (0.24 days/year). In contrast, MCS shows a slight increase only in average intensity (-0.004 ℃/year), while frequency (-0.10 times/year) and duration (-0.003 days/year) exhibit decreasing trends in these three indicators. Furthermore, we analyzed the differences in various indicators between MHW and MCS in shallow water areas and deep water areas and found that except for the average number of days and duration per month, other indicators were higher in shallow water areas than in deep water areas. Therefore, it is speculated that MHW and MCS events will be affected by the Effect of seawater depth.
關鍵字(中) ★ 海洋熱浪
★ 海洋寒潮
★ 全球暖化
★ 極端氣候
★ 氣候變遷
關鍵字(英) ★ Marine Heatwave
★ Marine Cold-Spell
★ Global Warming
★ Extreme Climate
★ Climate Change
論文目次 目錄
摘要……………………………………………………………………………………………i
Abstract………………………………………………………………………………………ii
致謝…………………………………………………………………………………………...iii
目錄………………………………………………………………………………………….iv
圖目錄…………………………………………………………………………………………v
表目錄……………………………………………………………………………………….viii
符號說明………………………………………………………………………………….…ix
一、 緒論………………………………………………………………………………...1
1-1 文獻回顧與研究區域……………………………………………………………..1
1-2 研究目的……………………………………………………………………………6
二、 資料研究與方法………………………………………………………………….…8
2-1 研究資料………………………………………………………………………….8
2-2事件定義……………………………………………………………………………9
2-3 事件指標…………………………………………………………………….......11
2-4 事件分級…………………………………………………………………………12
2-5 事件分類……………………………………………………..……………………13
三、 結果………………………………………………………………………………15
3-1 海洋熱浪長時間結果…………………………………………………….……….15
3-2不同氣候情況下的海洋熱浪事件結果…………………………………………23
3-3海洋寒潮長時間結果……………………………………………………………57
3-4不同氣候情況下的海洋寒潮事件結果…………………………………………65
四、 海水深度對溫度變化速度的影響………………………………………………103
五、 結論………………………………………………………………………………121
參考文獻……………………………………………………………………………………124
參考文獻 參考文獻
[1] Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., ... & Wernberg, T., “A hierarchical approach to defining marine heatwaves,” Progress in oceanography, Vol 141, 2016, pp.227-238.
[2] Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G., ... & Smale, D. A., “Categorizing and naming marine heatwaves,” Oceanography, Vol 31(2), 2018, pp.162-173.
[3] Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K., & Oliver, E. C., “Marine cold-spells,” Progress in Oceanography, Vol 198, 2021, pp.102684.
[4] Oliver, E. C., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., ... & Wernberg, T., “Longer and more frequent marine heatwaves over the past century,” Nature communications, Vol 9(1), 2018, pp.1-12.
[5] Yao, Y., & Wang, C., “Variations in summer marine heatwaves in the South China Sea,” Journal of Geophysical Research: Oceans, Vol 126(10), 2021, e2021JC017792.
[6] Chen, S., Yao, Y., Feng, Y., Zhang, Y., Xia, C., Sian, K. T. L. K., & Dong, C., “Characteristics and Drivers of Marine Heatwaves in 2021 Summer in East Korea Bay,Japan/East Sea,” Remote Sensing, Vol 15(3), 2023, pp.713.
[7] Cheng, Y. H., & Chang, M. H., “Exceptionally cold water days in the southern Taiwan Strait: their predictability and relation to La Nina,” Natural Hazards and Earth System Sciences, Vol 18(7), 2018, pp.1999-2010.
[8] Hsu, P. C., “Evaluation of wind and solar insolation influence on ocean near-surface temperature from in situ observations and the geostationary Himawari-8 satellite,” Remote Sensing, Vol 14(19), 2022, pp.4975.
[9] Wang, Y. L., & Wu, C. R., “Rapid surface warming of the Pacific Asian marginal seas since the late 1990s,” Journal of Geophysical Research: Oceans, Vol 127(12), 2022, e2022JC018744.
[10] 楊龍奇、許東峰、徐鳴泉、隋丹丹和吳品煌:〈黑潮入侵南海的強弱與太平洋年代際變化及厄爾尼諾-南方濤動現象的關係〉,《海洋學報》,36(7),2014,17-26頁。
[11] Mantua, N. J., & Hare, S. R., “The Pacific decadal oscillation,” Journal of oceanography, Vol 58, 2002, pp.35-44.
[12] Li, S., Wu, L., Yang, Y., Geng, T., Cai, W., Gan, B., ... & Ma, X., “The Pacific Decadal Oscillation less predictable under greenhouse warming,” Nature Climate Change, Vol 10(1), 2020, pp.30-34.
[13] Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., ... & Smith, C. A., “The Pacific decadal oscillation, revisited,” Journal of Climate, Vol 29(12), 2016, pp.4399-4427.
[14] McPhaden, M. J., Zebiak, S. E., & Glantz, M. H., “ENSO as an integrating concept in earth science,” science, Vol 314(5806), 2006, pp.1740-1745.
[15] Yang, S., Li, Z., Yu, J. Y., Hu, X., Dong, W., & He, S., “El Niño–Southern Oscillation and its impact in the changing climate,” National Science Review, Vol 5(6), 2018, pp.840-857.
[16] Hoell, A., & Funk, C., “The ENSO-related west Pacific sea surface temperature gradient,” Journal of climate, Vol 26(23), 2013, pp.9545-9562.
[17] Ge, J., Jia, X., & Ma, H., “Pacific Decadal Oscillation Modulation on the Relationship between Moderate El Niño-Southern Oscillation and East Asian Winter Temperature,” Atmosphere, Vol 15(2), 2024, pp.228.
[18] Zhong, Y., Zhou, M., Waniek, J. J., Zhou, L., & Zhang, Z., “Seasonal variation of the surface Kuroshio intrusion into the South China Sea evidenced by satellite geostrophic streamlines,” Journal of Physical Oceanography, Vol 51(8), 2021, pp.2705-2718.
[19] Li, C., Sun, W., Ji, J., & Zhu, Y., “Historical Marine Cold Spells in the South China Sea: Characteristics and Trends,” Remote Sensing, Vol 16(7), 2024, pp.1171.
[20] Hsu, P. C., “Surface current variations and hydrological characteristics of the Penghu Channel in the southeastern Taiwan Strait,” Remote Sensing, Vol 14(8), 2022, pp.1816.
[21] Lee, H. J., Lee, M. A., Ho, C. Y., Hsu, P. C., & Wang, Y. C., “Crescent-shaped low-temperature distribution along the convex topography in the southeastern edge of Taiwan Bank in summer,” Journal of Physical Oceanography, Vol 52(11), 2022, pp.2705-2723.
[22] Liang, W. D., Tang, T. Y., Yang, Y. J., Ko, M. T., & Chuang, W. S., “Upper-ocean currents around Taiwan,” Deep Sea Research Part II: Topical Studies in Oceanography, Vol 50(6-7), 2003, pp.1085-1105.
[23] Tang, T. Y., Tai, J. H., & Yang, Y. J., “The flow pattern north of Taiwan and the migration of the Kuroshio,” Continental Shelf Research, Vol 20(4-5), 2000, pp.349-371.
[24] Hsu, P. C., Lin, C. C., Huang, S. J., & Ho, C. R., “Effects of cold eddy on Kuroshio meander and its surface properties, east of Taiwan,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 9(11), 2016, pp.5055-5063.
[25] Lu, C. Y., Hsu, P. C., Zheng, Q., & Ho, C. R., “Variations in flow patterns in the northern Taiwan Strait observed by satellite-tracked drifters,” Remote Sensing, Vol 14(9), 2022, pp.2154.
[26] Hsu, P. C., Centurioni, L., Shao, H. J., Zheng, Q., Lu, C. Y., Hsu, T. W., & Tseng, R. S., “Surface current variations and oceanic fronts in the southern East China Sea: Drifter experiments, coastal radar applications, and satellite observations,” Journal of Geophysical Research: Oceans, Vol 126(10), 2021, e2021JC017373.
[27] Hsu, P. C., Zheng, Q., Lu, C. Y., Cheng, K. H., Lee, H. J., & Ho, C. R., “Interaction of coastal countercurrent in I-Lan Bay with the Kuroshio northeast of Taiwan,” Continental Shelf Research, Vol 171, 2018, pp.30-41.
[28] JaN, S., Chen, C. C., Tsai, Y. L., Yang, Y. J., Wang, J., Chern, C. S., ... & Kuo, J. Y., “Mean structure and variability of the cold dome northeast of Taiwan,” Oceanography, Vol 24(4), 2011, pp.100-109.
[29] Shen, M. L., Tseng, Y. H., & Jan, S., “The formation and dynamics of the cold-dome off northeastern Taiwan,” Journal of Marine Systems, Vol 86(1-2), 2011, pp.10-27.
[30] Cheng, Y. H., Hu, J., Zheng, Q., & Su, F. C., “Interannual variability of cold domes northeast of Taiwan,” International journal of remote sensing, Vol 39(13), 2018, pp.4293-4303.
指導教授 許伯駿(Po-Chun Hsu) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明