以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:67 、訪客IP:3.16.203.151
姓名 陳宗興(Tsung-Hsing Chen) 查詢紙本館藏 畢業系所 數學系 論文名稱 物理信息神經網絡求解二維納維-斯托克斯流
(Physics-Informed Neural Network Approach for Solving 2D Navier-Stokes Flows)相關論文
★ 數值方法與類神經網路應用於內嵌介面問題 ★ 一種計算曲率的類神經網路方法 ★ 學習不規則域中泊松方程式的格林函數 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文中,我們提出了一種修改的投影方法,利用物理信息神經網絡來求解不可壓縮的納維-斯托克斯方程。我們首先應用有限差分法結合投影方法來解決泰勒-格林渦旋,並將結果與解析解進行比較。我們的結果表明,該方法能夠以二階收斂速率準確預測泰勒-格林渦旋的流動和壓力場。隨後,我們使用結合投影方法的物理信息神經網絡來解決泰勒-格林渦旋。然而,我們的實驗結果表明,直接使用投影法會導致速度場的預測結果較差。為了解決這個問題,我們提出了一種修改的投影方法,同時求解流體函數和勢函數,並通過流體函數來更新速度場。我們的數值結果表明,這種方法能夠在方形、橢圓形和L形區域中準確預測泰勒-格林渦旋的流動和壓力場。 摘要(英) In this thesis, we propose a modified projection method for solving the incompressible Navier-Stokes equations using physics-informed neural networks (PINNs). We begin by applying the finite difference method combined with the projection method to solve the Taylor- Green vortex and compare the results with the analytical solution. Our results demonstrate that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex with a second-order convergence rate. We then use PINNs with the projection method to solve the Taylor-Green vortex. However, our experimental results indicate that, direct usage of the projection method leads to poor prediction results of the velocity field. To address this, we propose a modified projection method that simultaneously solves the stream function and potential function. Our numerical results show that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex in square, ellptical and L-shaped domains. 關鍵字(中) ★ 物理信息神經網絡
★ 納維-斯托克斯流
★ 泰勒-格林渦旋關鍵字(英) ★ Physics-Informed Neural Network
★ Navier-Stokes Flows
★ Taylor-Green vortex論文目次 中文摘要 - i
英文摘要 - ii
Table of Contents - iii
List of Figures - iv
List of Tables - v
Chapter 1 Introduction - 1
Chapter 2 Research Context and Methods - 3
2.1 Navier-Stokes Equations - 3
2.2 Projection Method - 4
2.3 Modified Projection Method - 5
Chapter 3 Physics-Informed Neural Networks - 7
Chapter 4 Numerical Simulations - 11
4.1 The Results of the Projection Method and the Modified Projection Method - 12
4.2 Modified Projection Method Results - 14
4.2.1 Numerical Results: Square Domain - 14
4.2.2 Numerical Results: Elliptical Domain - 16
4.2.3 Numerical Results: L-shaped Domain - 18
Chapter 5 Conclusions - 20
Bibliography - 21參考文獻 [1] A. J. Chorin, “Numerical solution of the navier-stokes equations,” Mathematics of computation, vol. 22, no. 104, pp. 745–762, 1968.
[2] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms. Springer Science & Business Media, 2012, vol. 5.
[3] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, “A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers,” Journal of Geophysical Research: Oceans, vol. 102, no. C3, pp. 5753–5766, 1997.
[4] D. L. Brown, R. Cortez, and M. L. Minion, “Accurate projection methods for the incompressible navier-stokes equations,” Journal of Computational Physics, vol. 168, no. 2, pp. 464–499, 2001.
[5] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “Nsfnets (navier-stokes flow nets): Physicsinformed neural networks for the incompressible navier-stokes equations,” Journal of Computational Physics, vol. 426, p. 109 951, Feb. 2021.
[6] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks (pinns) for fluid mechanics: A review,” Acta Mechanica Sinica, vol. 37, no. 12, pp. 1727–1738, 2021.
[7] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine learning through physics–informed neural networks: Where we are and what's next,” Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022.
[8] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
[9] Y.-H. Tseng, “The simulation of incompressible flow around a solid body by volume-offluid approach,” M.S. thesis, National Chiao Tung University, 2005.
[10] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, An expert’s guide to training physicsinformed neural networks, 2023. arXiv: 2308.08468 [cs.LG].
[11] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.指導教授 胡偉帆(Wei-Fan Hu) 審核日期 2024-7-10 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare