博碩士論文 111022604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.144.235.138
姓名 利小貓(Fidya Rismayatika)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 用於評估台灣春季乾旱時空變異性的氣象乾旱地表乾燥指數
(Meteorological Drought-informed Surface Dryness Index for Spring Drought Spatial-Temporal Variability Assessment in Taiwan)
相關論文
★ 區域發展對土地利用變遷之影響-以桃園縣客家地區為例★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究
★ WVR、GPS及氣球探空觀測可降水量之比較★ GPS斷層掃描估算大氣濕折射係數模式
★ GPS觀測大氣閃爍之研究★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 36.5 GHz微波輻射器接收模組之研製★ GPS 氣象中地面氣象模式之改進
★ 由GPS信號反演大氣濕折射度之數值模擬★ 發展遙測資料反演可感熱與潛熱通量之研究
★ GPS信號估算可降水量與降雨關係之研究★ 近即時GPS觀測可降水技術之研究
★ 利用水氣資訊改善降水估計之研究★ GPS掩星觀測反演與反演誤差探討
★ 微波輻射計數位相關器之設計與實現★ GPS與探空氣球資料觀測可降水量 與降雨之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 由於2020-2021年沒有颱風登陸,台灣面臨水資源問題,導致2021年出現春季乾旱,對需要大量供水的工農業部門造成影響。遙測技術的進步催生了各種乾旱指數來獲取乾旱期間的地表反應。地表水可用性和溫度 (SWAT) 指數結合了歸一化差異潛熱指數 (NDLI)、歸一化差異植被指數 (NDVI) 和地表溫度 (LST),使用歐式距離估算地表乾燥度。本研究建議將NDLI、NDVI 和LST 的測定值(R²) 與氣象乾旱指數(包括帕爾莫嚴重度指數 (PDSI) 和標準化降雨蒸發散指數 (SPEI)的相關性相結合來調整SWAT。此調整方法的結果可用於利用調整後的 SWAT 及其與聖嬰現象ENSO 的相關性來評估乾旱事件的時空特徵,使用柯本氣候分類法來描述地帶特徵;根據SWAT,使用MODIS來反演地表乾燥狀況,並使用TerraClimate來反演氣象乾旱,研究時間範圍為2002年至2021年的1月至5月,重點在於春季乾旱。結果顯示,SPEI-6 最適合調整SWAT,改善與植被水分脅迫和氣象乾旱的相關性,顯示台灣地表條件更容易受到較長時期乾旱的影響。台灣大部分地區經歷潮濕或正常的表面乾燥水平,偶爾有輕度、中度和重度乾燥,主要發生在著重農業的西部和南部地區;減少的趨勢發生在人類住區附近,而增加的趨勢發生在偏遠的森林地區,這表示人為影響發生在可到達的地區。主要影響聖嬰現象的相關方向是地形和地理特徵,不是氣候帶,而這影響最初的降水模式。
摘要(英) Due to a lack of typhoon landfalls in 2020-2012, Taiwan has faced water resource problems, leading to a spring drought in 2021 that impacted both industrial and agricultural sectors, which require extensive water supplies. Advances in remote sensing technology have led to various drought indices to capture surface responses during droughts. The Surface Water Availability and Temperature (SWAT) index combines the Normalized Difference Latent Heat Index (NDLI), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST) to estimate surface dryness using Euclidean distance. This study proposes a modified SWAT by incorporating the coefficient of determination (R²) of NDLI, NDVI, and LST with meteorological drought indices, including the Palmer Drought Severity Index (PDSI) and Standardized Precipitation-Evapotranspiration Index (SPEI). The findings from this adjustment method are used to assess the spatial and temporal characteristics of drought events using the modified SWAT and its correlation with El Niño-Southern Oscillation (ENSO). The Köppen-Geiger climate classification is used to describe zonal characteristics. MODIS is used to retrieve surface dryness conditions based on SWAT, and TerraClimate data is used to retrieve meteorological drought. The study period ranges from January to May, from 2002 to 2021, focusing on spring droughts. The results reveal that SPEI-6 is the most suitable for SWAT weighting, improving correlations with vegetation water stress and meteorological drought, suggesting that Taiwan′s surface conditions are more influenced by longer periods of drought. Taiwan mostly experienced wet or normal surface dryness levels, with occasional mild, moderate, and severe dryness, predominantly in the western and southern regions linked to agricultural practices. Decreasing trends occurred near human settlements, while increasing trends were observed in remote forest areas, suggesting anthropogenic influences in accessible regions. Topographical and geographical features, rather than climate zones, primarily influence correlation directions with ENSO phases, which initially affect precipitation patterns.
關鍵字(中) ★ 乾旱
★ 地表乾燥
★ 地表水可用性和溫度 (SWAT)
★ 調整後SWAT
關鍵字(英) ★ Drought
★ Surface Dryness
★ Surface Water Availability and Temperature (SWAT)
★ Adjusted SWAT
論文目次 CHINESE ABSTRACT (摘要) i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
EXPLANATION OF SYMBOLS ix
Chapter 1 INTRODUCTION 1
1.1. Background 1
1.2. Research Significance and Objectives 4
Chapter 2 LITERATURE REVIEW 6
2.1. Drought 6
2.2. Drought Mechanism in Land-Atmospheric Process 8
2.3. Drought Indices 10
2.3.1. Meteorological Drought 11
2.3.2. Agricultural Drought 12
2.4. El Niño-Southern Oscillation (ENSO) 18
2.5. Köppen-Geiger Climate Classification 20
Chapter 3 METHODOLOGY 23
3.1. Research Flow 23
3.2. Study Area 24
3.2.1. Meteorological Condition 26
3.2.2. Climate Zones 27
3.3. Data 30
3.3.1. Satellite Imagery 30
3.3.2. Climatological Dataset 32
3.3.3. Köppen-Geiger Climate Classification 33
3.3.4. Land Use Land Cover 34
3.3.5. ENSO Index 34
3.4. Image Processing 35
3.4.1. Google Earth Engine 35
3.4.2. Matlab 35
3.4.3. QuantumGIS (QGIS) 35
3.5. Drought Indices 36
3.5.1. Standardized Precipitation Evapotranspiration Index (SPEI) 36
3.5.2. Palmer Drought Severity Index (PDSI) 38
3.5.3. Crop Water Stress Index (CWSI) 39
3.5.4. Surface Water Availability and Temperature (SWAT) 40
3.5.5. Surface Water Availability and Temperature Adjustment 42
3.6. Adjustment Assessment 44
3.7. Zonal Statistic. 45
3.7.1. Drought Event Characteristics 45
3.7.2. Correlation Coefficient Analysis 46
3.7.3. Pixel-based Trend Analysis 46
3.7.4. Wavelet Transform Coherence (WTC) 48
Chapter 4 RESULTS AND DISCUSSIONS 50
4.1. Results 50
4.1.1. SWAT Adjustment using Meteorological Drought Index 50
4.1.1.1. Correlation between Meteorological Drought Indices and CWSI 53
4.1.1.2. Correlation between Meteorological Drought Indices and SWAT 56
4.1.1.3. Surface Responses (NDLI, NDVI, and LST) to Meteorological Drought 58
4.1.1.4. Evaluation of SPEI and PDSI as Weighting Factor for SWAT Adjustment 63
4.1.2. Spatial-temporal Variability of Spring Drought over Different Climate Zone 73
4.1.2.1. Drought Event Characteristics 76
4.1.2.2. Pixel-based Trends of Surface Dryness 80
4.1.2.3. Relationship between Surface Dryness and ENSO 82
4.2. Discussions 88
Chapter 5 CONCLUSIONS AND LIMITATIONS 95
5.1. Conclusions 95
5.2. Limitations 97
BIBLIOGRAPHY 99
參考文獻 [1] A. Wang et al., “Comparison of Changing Population Exposure to Droughts in River Basins of the Tarim and the Indus,” Earths Future, vol. 8, no. 5, May 2020, doi: 10.1029/2019EF001448.
[2] S. S. Mahto and V. Mishra, “Increasing risk of simultaneous occurrence of flash drought in major global croplands,” Environmental Research Letters, vol. 18, no. 4, Apr. 2023, doi: 10.1088/1748-9326/acc8ed.
[3] J. Spinoni et al., “Global exposure of population and land-use to meteorological droughts under different warming levels and SSPs: A CORDEX-based study,” International Journal of Climatology, vol. 41, no. 15, pp. 6825–6853, Dec. 2021, doi: 10.1002/joc.7302.
[4] R. Fu et al., “Attribution of air temperature and precipitation to the future global drought events,” Environ Res Commun, vol. 5, no. 6, Jun. 2023, doi: 10.1088/2515-7620/acde37.
[5] Y.-A. Liou and G. M. Mulualem, “Spatio–temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts,” Remote Sens (Basel), vol. 11, no. 15, p. 1828, Aug. 2019, doi: 10.3390/rs11151828.
[6] G. Wu, J. Chen, X. Shi, J. S. Kim, J. Xia, and L. Zhang, “Impacts of Global Climate Warming on Meteorological and Hydrological Droughts and Their Propagations,” Earths Future, vol. 10, no. 3, Mar. 2022, doi: 10.1029/2021EF002542.
[7] C.-B. Chou, M.-C. Weng, H.-P. Huang, Y.-C. Chang, H.-C. Chang, and T.-Y. Yeh, “Monitoring the Spring 2021 Drought Event in Taiwan Using Multiple Satellite-Based Vegetation and Water Indices,” Atmosphere (Basel), vol. 13, no. 9, p. 1374, Aug. 2022, doi: 10.3390/atmos13091374.
[8] K. Everington, “Reservoirs in central, southern Taiwan almost bottomed out,” Taiwan News, Mar. 15, 2021. Accessed: Feb. 28, 2024. [Online]. Available: https://www.taiwannews.com.tw/en/news/4151319
[9] D. Shaw, C. K. Yang, T. H. Huang, C. T. Chang, and K. Wang, “Taiwan’s Climate Change Adaptation Policy Framework and The Key Issues in Future Development,” 2008.
[10] C. Hung, M.-F. Shih, and T.-Y. Lin, “The Climatological Analysis of Typhoon Tracks, Steering Flow, and the Pacific Subtropical High in the Vicinity of Taiwan and the Western North Pacific,” Atmosphere (Basel), vol. 11, no. 5, p. 543, May 2020, doi: 10.3390/atmos11050543.
[11] L. Narvaez, S. Janzen, C. Eberle, and Z. Sebesvari, “Technical Report: Taiwan Drought - Interconnected Disaster Risks 2021/2022,” 2022.
[12] O. Lin and E. Syngle, “Taiwan Drought Results in Rice Area Reduction and Crop Loss,” Taipei, Jun. 2021.
[13] T.-T. Huang, “Taiwan’s TSMC reportedly spending US$28.6 million on water,” Taiwan News, May 21, 2021. Accessed: Feb. 28, 2024. [Online]. Available: https://www.taiwannews.com.tw/en/news/4207661
[14] Y.-A. Liou and K.-A. Nguyen, “Assessment of Drought Vulnerability in Taiwan,” in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Jul. 2022, pp. 5598–5601. doi: 10.1109/IGARSS46834.2022.9883683.
[15] Z. Hao and A. AghaKouchak, “Multivariate Standardized Drought Index: A parametric multi-index model,” Adv Water Resour, vol. 57, pp. 12–18, Jul. 2013, doi: 10.1016/j.advwatres.2013.03.009.
[16] D. A. Wilhite and M. H. Glantz, “Understanding: the Drought Phenomenon: The Role of Definitions,” Water Int, vol. 10, no. 3, pp. 111–120, Jan. 1985, doi: 10.1080/02508068508686328.
[17] S. Kchouk, L. A. Melsen, D. W. Walker, and P. R. Van Oel, “A review of drought indices: predominance of drivers over impacts and the importance of local context,” Natural Hazards and Earth System Sciences, 2021, doi: 10.5194/nhess-2021-152.
[18] J. Zhai, B. Su, V. Krysanova, T. Vetter, C. Gao, and T. Jiang, “Spatial Variation and Trends in PDSI and SPI Indices and Their Relation to Streamflow in 10 Large Regions of China,” J Clim, vol. 23, no. 3, pp. 649–663, Feb. 2010, doi: 10.1175/2009JCLI2968.1.
[19] S. M. Vicente-Serrano et al., “Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications,” Earth Interact, vol. 16, no. 10, pp. 1–27, Sep. 2012, doi: 10.1175/2012EI000434.1.
[20] F. Balbo, R. A. Wulandari, M. R. R. Nugraha, A. Dwiandani, M. R. Syahputra, and R. Suwarman, “The evaluation of drought indices: Standard Precipitation Index, Standard Precipitation Evapotranspiration Index, and Palmer Drought Severity Index in Cilacap-Central Java,” IOP Conf Ser Earth Environ Sci, vol. 303, no. 1, p. 012012, Jul. 2019, doi: 10.1088/1755-1315/303/1/012012.
[21] J. J. Kimaiyo, B. M. Mati, J. K. Sang, and E. K. Kanda, “Assessment of drought trends in the Upper Ewaso Ng’iro River Basin using the SPI and SPEI,” Water Pract Technol, vol. 18, no. 8, pp. 1863–1879, Aug. 2023, doi: 10.2166/wpt.2023.122.
[22] J. Zeng et al., “Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018,” Weather Clim Extrem, vol. 35, p. 100412, Mar. 2022, doi: 10.1016/j.wace.2022.100412.
[23] W. Peters, A. Bastos, P. Ciais, and A. Vermeulen, “A historical, geographical and ecological perspective on the 2018 European summer drought,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 375, no. 1810, p. 20190505, Oct. 2020, doi: 10.1098/rstb.2019.0505.
[24] Y. Zhang et al., “Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts,” Agric Water Manag, vol. 282, p. 108266, May 2023, doi: 10.1016/j.agwat.2023.108266.
[25] H. West, N. Quinn, and M. Horswell, “Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities,” Remote Sens Environ, vol. 232, p. 111291, Oct. 2019, doi: 10.1016/j.rse.2019.111291.
[26] B. Matsushita, W. Yang, J. Chen, Y. Onda, and G. Qiu, “Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest,” Sensors, vol. 7, no. 11, pp. 2636–2651, Nov. 2007, doi: 10.3390/s7112636.
[27] P. Reiners, J. Sobrino, and C. Kuenzer, “Satellite-Derived Land Surface Temperature Dynamics in the Context of Global Change—A Review,” Remote Sens (Basel), vol. 15, no. 7, p. 1857, Mar. 2023, doi: 10.3390/rs15071857.
[28] A. Karnieli et al., “Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations,” J Clim, vol. 23, no. 3, pp. 618–633, Feb. 2010, doi: 10.1175/2009JCLI2900.1.
[29] Y.-A. Liou, M. S. Le, and H. Chien, “Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 3, pp. 1423–1433, Mar. 2019, doi: 10.1109/TGRS.2018.2866555.
[30] M. S. Le and Y.-A. Liou, “Spatio-Temporal Assessment of Surface Moisture and Evapotranspiration Variability Using Remote Sensing Techniques,” Remote Sens (Basel), vol. 13, no. 9, p. 1667, Apr. 2021, doi: 10.3390/rs13091667.
[31] Y.-A. Liou and M.-T. Thai, “Surface Water Availability and Temperature (SWAT): An Innovative Index for Remote Sensing of Drought Observation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023, doi: 10.1109/TGRS.2023.3321910.
[32] H. Guo et al., “Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia,” Remote Sens Environ, vol. 231, p. 111220, Sep. 2019, doi: 10.1016/j.rse.2019.111220.
[33] S. Abbas, J. Nichol, F. Qamer, and J. Xu, “Characterization of Drought Development through Remote Sensing: A Case Study in Central Yunnan, China,” Remote Sens (Basel), vol. 6, no. 6, pp. 4998–5018, May 2014, doi: 10.3390/rs6064998.
[34] T. Hua, X. Wang, C. Zhang, L. Lang, and H. Li, “Responses of Vegetation Activity to Drought in Northern China,” Land Degrad Dev, vol. 28, no. 7, pp. 1913–1921, Oct. 2017, doi: 10.1002/ldr.2709.
[35] C. Li et al., “Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau,” J Clean Prod, vol. 179, pp. 210–216, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.113.
[36] V. A. Bento, C. M. Gouveia, C. C. DaCamara, R. Libonati, and I. F. Trigo, “The roles of NDVI and Land Surface Temperature when using the Vegetation Health Index over dry regions,” Glob Planet Change, vol. 190, p. 103198, Jul. 2020, doi: 10.1016/j.gloplacha.2020.103198.
[37] J. Zeng et al., “Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018,” Weather Clim Extrem, vol. 35, Mar. 2022, doi: 10.1016/j.wace.2022.100412.
[38] Z. Hao and V. P. Singh, “Drought characterization from a multivariate perspective: A review,” J Hydrol (Amst), vol. 527, pp. 668–678, Aug. 2015, doi: 10.1016/j.jhydrol.2015.05.031.
[39] C. C. Lin, Y. J. Liou, and S. J. Huang, “Impacts of Two-Type ENSO on Rainfall over Taiwan,” Advances in Meteorology, vol. 2015, 2015, doi: 10.1155/2015/658347.
[40] Z. Jiang, G. Tai-Jen, C. And, and M.-C. Wu, “Large-Scale Circulation Patterns Associated with Heavy Spring Rain Events over Taiwan in Strong ENSO and Non-ENSO Years,” 2003. [Online]. Available: http://www.cpc.noaa.
[41] P. HSU, T. LI, Y.-C. LIN, M.-M. LU, and J.-Y. LEE, “A Spatial-Temporal Projection Method for Seasonal Prediction of Spring Rainfall in Northern Taiwan,” Journal of the Meteorological Society of Japan. Ser. II, vol. 90, no. 2, pp. 179–190, 2012, doi: 10.2151/jmsj.2012-202.
[42] J.-M. Chen, P.-H. Tan, C.-F. Shih, and H.-S. Chen, “Large-Scale Processes Associated with Inter-Decadal and Inter-Annual Early Spring Rainfall Variability in Taiwan,” Terrestrial, Atmospheric and Oceanic Sciences, vol. 27, no. 1, p. 087, 2016, doi: 10.3319/TAO.2015.06.17.01(A).
[43] H. C. Wang and C. Te Chang, “The dynamic of vegetation growth with regular climate and climatic fluctuations in a subtropical mountainous island, Taiwan,” Remote Sens (Basel), vol. 13, no. 16, Aug. 2021, doi: 10.3390/rs13163298.
[44] C. W. Hung and M. F. Shih, “Analysis of severe droughts in taiwan and its related atmospheric and oceanic environments,” Atmosphere (Basel), vol. 10, no. 3, Mar. 2019, doi: 10.3390/atmos10030159.
[45] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, “World map of the Köppen-Geiger climate classification updated,” Meteorologische Zeitschrift, vol. 15, no. 3, pp. 259–263, Jun. 2006, doi: 10.1127/0941-2948/2006/0130.
[46] T. Dilinuer et al., “Regional drying and wetting trends over Central Asia based on Köppen climate classification in 1961–2015,” Advances in Climate Change Research, vol. 12, no. 3, pp. 363–372, Jun. 2021, doi: 10.1016/j.accre.2021.05.004.
[47] P. Sun, R. Liu, R. Yao, H. Shen, and Y. Bian, “Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types,” J Hydrol (Amst), vol. 619, p. 129305, Apr. 2023, doi: 10.1016/j.jhydrol.2023.129305.
[48] A. K. Mishra and V. P. Singh, “A review of drought concepts,” Journal of Hydrology, vol. 391, no. 1–2. pp. 202–216, Sep. 2010. doi: 10.1016/j.jhydrol.2010.07.012.
[49] S. M. Vicente-Serrano, S. M. Quiring, M. Peña-Gallardo, S. Yuan, and F. Domínguez-Castro, “A review of environmental droughts: Increased risk under global warming?,” Earth Sci Rev, vol. 201, p. 102953, Feb. 2020, doi: 10.1016/J.EARSCIREV.2019.102953.
[50] S. F. Kew et al., “Impact of precipitation and increasing temperatures on drought in eastern Africa”, doi: 10.5194/esd-2019-20.
[51] K. Trenberth, “Changes in precipitation with climate change,” Clim Res, vol. 47, no. 1, pp. 123–138, Mar. 2011, doi: 10.3354/cr00953.
[52] F. KEMAL. SÖNMEZ, A. Ü. KÖMÜSCÜ, A. ERKAN, and E. TURGU, “An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index,” Natural Hazards, vol. 35, no. 2, pp. 243–264, Jun. 2005, doi: 10.1007/s11069-004-5704-7.
[53] S. M. Vicente-Serrano, F. Domínguez-Castro, J. J. Camarero, and A. El Kenawy, “Droughts,” in Water Resources in the Mediterranean Region, Elsevier, 2020, pp. 219–255. doi: 10.1016/B978-0-12-818086-0.00009-1.
[54] J. Won, J. Seo, J. Lee, O. Lee, and S. Kim, “Vegetation Drought Vulnerability Mapping Using a Copula Model of Vegetation Index and Meteorological Drought Index,” Remote Sens (Basel), vol. 13, no. 24, p. 5103, Dec. 2021, doi: 10.3390/rs13245103.
[55] X. Sun, P. Lai, S. Wang, L. Song, M. Ma, and X. Han, “Monitoring of Extreme Agricultural Drought of the Past 20 Years in Southwest China Using GLDAS Soil Moisture,” Remote Sens (Basel), vol. 14, no. 6, p. 1323, Mar. 2022, doi: 10.3390/rs14061323.
[56] U. Feller and I. I. Vaseva, “Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants,” Front Environ Sci, vol. 2, Oct. 2014, doi: 10.3389/fenvs.2014.00039.
[57] U. Feller, “Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts,” J Plant Physiol, vol. 203, pp. 84–94, Sep. 2016, doi: 10.1016/j.jplph.2016.04.002.
[58] E. D. Assad et al., “Adaptation and resilience of agricultural systems to local climate change and extreme events: an integrative review,” Pesqui Agropecu Trop, vol. 52, 2022, doi: 10.1590/1983-40632022v5272899.
[59] B. C. (Bryson C. ) Bates, Z. Kundzewicz, S. Wu, J. Palutikof, and Intergovernmental Panel on Climate Change. Working Group II, Climate change and water. 2008.
[60] R. M. Santos and R. Bakhshoodeh, “Climate change/global warming/climate emergency versus general climate research: comparative bibliometric trends of publications,” Heliyon, vol. 7, no. 11, p. e08219, Nov. 2021, doi: 10.1016/j.heliyon.2021.e08219.
[61] D. R. Easterling, G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, “Climate Extremes: Observations, Modeling, and Impacts,” Science (1979), vol. 289, no. 5487, pp. 2068–2074, Sep. 2000, doi: 10.1126/science.289.5487.2068.
[62] D. Easterling et al., “3 - Changes in Climate Extremes and their Impacts on the Natural Physical Environment,” Cambridge University Press, 2012.
[63] D. R. Easterling, K. E. Kunkel, M. F. Wehner, and L. Sun, “Detection and attribution of climate extremes in the observed record,” Weather Clim Extrem, vol. 11, pp. 17–27, Mar. 2016, doi: 10.1016/j.wace.2016.01.001.
[64] G. J. Kidron and R. Kronenfeld, “Temperature rise severely affects pan and soil evaporation in the Negev Desert,” Ecohydrology, vol. 9, no. 6, pp. 1130–1138, Sep. 2016, doi: 10.1002/eco.1701.
[65] Y. Qing, S. Wang, Z.-L. Yang, P. Gentine, B. Zhang, and J. Alexander, “Accelerated soil drying linked to increasing evaporative demand in wet regions,” NPJ Clim Atmos Sci, vol. 6, no. 1, p. 205, Dec. 2023, doi: 10.1038/s41612-023-00531-y.
[66] A. Khan, M. Koch, and A. Tahir, “Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB),” Sustainability, vol. 12, no. 4, p. 1283, Feb. 2020, doi: 10.3390/su12041283.
[67] G. Konapala, A. K. Mishra, Y. Wada, and M. E. Mann, “Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation,” Nat Commun, vol. 11, no. 1, p. 3044, Jun. 2020, doi: 10.1038/s41467-020-16757-w.
[68] Z. Wang et al., “Temporal and spatial propagation characteristics of meteorological drought to hydrological drought and influencing factors,” Atmos Res, vol. 299, p. 107212, Apr. 2024, doi: 10.1016/j.atmosres.2023.107212.
[69] A. Farahmand, J. T. Reager, and N. Madani, “Drought Cascade in the Terrestrial Water Cycle: Evidence From Remote Sensing,” Geophys Res Lett, vol. 48, no. 14, Jul. 2021, doi: 10.1029/2021GL093482.
[70] A. Zargar, R. Sadiq, B. Naser, and F. I. Khan, “A review of drought indices,” Environmental Reviews, vol. 19, no. NA, pp. 333–349, Dec. 2011, doi: 10.1139/a11-013.
[71] S. Bachmair et al., “Drought indicators revisited: the need for a wider consideration of environment and society,” WIREs Water, vol. 3, no. 4, pp. 516–536, Jul. 2016, doi: 10.1002/wat2.1154.
[72] E. Savelli, M. Rusca, H. Cloke, and G. Di Baldassarre, “Drought and society: Scientific progress, blind spots, and future prospects,” Wiley Interdisciplinary Reviews: Climate Change, vol. 13, no. 3. John Wiley and Sons Inc, May 01, 2022. doi: 10.1002/wcc.761.
[73] D. Młyński, A. Wałęga, and A. Kuriqi, “Influence of meteorological drought on environmental flows in mountain catchments,” Ecol Indic, vol. 133, p. 108460, Dec. 2021, doi: 10.1016/j.ecolind.2021.108460.
[74] O. Ahluwalia, P. C. Singh, and R. Bhatia, “A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria,” Resources, Environment and Sustainability, vol. 5, p. 100032, Sep. 2021, doi: 10.1016/j.resenv.2021.100032.
[75] S. M. S. Islam, K. M. A. Islam, and Md. R. A. Mullick, “Drought hot spot analysis using local indicators of spatial autocorrelation: An experience from Bangladesh,” Environmental Challenges, vol. 6, p. 100410, Jan. 2022, doi: 10.1016/j.envc.2021.100410.
[76] X. Fan, X. Hu, Y. Ma, Y. Pang, J. Sun, and P. Hou, “Influence of high temperature and drought stress at jointing stage on crop physiological responses and growth in summer maize plants (Zea mays L.),” Frontiers in Plant Physiology, vol. 2, Feb. 2024, doi: 10.3389/fphgy.2024.1331421.
[77] A. F. Van Loon, “Hydrological drought explained,” WIREs Water, vol. 2, no. 4, pp. 359–392, Jul. 2015, doi: 10.1002/wat2.1085.
[78] M. I. Brunner, J. Götte, C. Schlemper, and A. F. Van Loon, “Hydrological Drought Generation Processes and Severity Are Changing in the Alps,” Geophys Res Lett, vol. 50, no. 2, Jan. 2023, doi: 10.1029/2022GL101776.
[79] R. A. Odongo, H. De Moel, and A. F. Van Loon, “Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices,” Natural Hazards and Earth System Sciences, vol. 23, no. 6, pp. 2365–2386, Jun. 2023, doi: 10.5194/nhess-23-2365-2023.
[80] A. Mehran, O. Mazdiyasni, and A. AghaKouchak, “A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand,” Journal of Geophysical Research: Atmospheres, vol. 120, no. 15, pp. 7520–7533, Aug. 2015, doi: 10.1002/2015JD023147.
[81] S. Liu, J. Zhang, N. Wang, and N. Wei, “Large-Scale Linkages of Socioeconomic Drought with Climate Variability and Its Evolution Characteristics in Northwest China,” Advances in Meteorology, vol. 2020, pp. 1–13, Feb. 2020, doi: 10.1155/2020/2814539.
[82] Y. Kheyruri, A. Sharafati, and A. Neshat, “The socioeconomic impact of severe droughts on agricultural lands over different provinces of Iran,” Agric Water Manag, vol. 289, p. 108550, Nov. 2023, doi: 10.1016/j.agwat.2023.108550.
[83] Y. Wang and X. Yuan, “Land-atmosphere coupling speeds up flash drought onset,” Science of The Total Environment, vol. 851, p. 158109, Dec. 2022, doi: 10.1016/j.scitotenv.2022.158109.
[84] P. A. Dirmeyer, “The terrestrial segment of soil moisture-climate coupling,” Geophys Res Lett, vol. 38, no. 16, p. n/a-n/a, Aug. 2011, doi: 10.1029/2011GL048268.
[85] S. I. Seneviratne, D. Lüthi, M. Litschi, and C. Schär, “Land–atmosphere coupling and climate change in Europe,” Nature, vol. 443, no. 7108, pp. 205–209, Sep. 2006, doi: 10.1038/nature05095.
[86] R. Yuan, F. Li, and R. Ye, “Global diagnosis of land–atmosphere coupling based on water isotopes,” Sci Rep, vol. 13, no. 1, p. 21319, Dec. 2023, doi: 10.1038/s41598-023-48694-1.
[87] M. J. Alessi, D. A. Herrera, C. P. Evans, A. T. DeGaetano, and T. R. Ault, “Soil Moisture Conditions Determine Land‐Atmosphere Coupling and Drought Risk in the Northeastern United States,” Journal of Geophysical Research: Atmospheres, vol. 127, no. 6, Mar. 2022, doi: 10.1029/2021JD034740.
[88] H. Hsu and P. A. Dirmeyer, “Soil moisture-evaporation coupling shifts into new gears under increasing CO2,” Nat Commun, vol. 14, no. 1, p. 1162, Mar. 2023, doi: 10.1038/s41467-023-36794-5.
[89] J. He, Q.-M. Li, W.-C. Wang, D.-M. Xu, and Y.-R. Wan, “The Diurnal Variation Characteristics of Latent Heat Flux under Different Underlying Surfaces and Analysis of Its Drivers in The Middle Reaches of the Heihe River,” Water (Basel), vol. 14, no. 21, p. 3514, Nov. 2022, doi: 10.3390/w14213514.
[90] “Natural evaporation from open water, bare soil and grass,” Proc R Soc Lond A Math Phys Sci, vol. 193, no. 1032, pp. 120–145, Apr. 1948, doi: 10.1098/rspa.1948.0037.
[91] V. Novák, “Evapotranspiration,” 2011, pp. 280–283. doi: 10.1007/978-90-481-3585-1_55.
[92] X. Zhang, J. Duan, F. Cherubini, and Z. Ma, “A global daily evapotranspiration deficit index dataset for quantifying drought severity from 1979 to 2022,” Sci Data, vol. 10, no. 1, p. 824, Nov. 2023, doi: 10.1038/s41597-023-02756-1.
[93] M. Gervais, M. Mkhabela, P. Bullock, R. Raddatz, and G. Finlay, “Comparison of standard and actual crop evapotranspiration estimates derived from different evapotranspiration methods on the Canadian Prairies,” Hydrol Process, vol. 26, no. 10, pp. 1467–1477, May 2012, doi: 10.1002/hyp.8279.
[94] C. W. Thornthwaite, “An Approach toward a Rational Classification of Climate,” Geogr Rev, vol. 38, no. 1, p. 55, Jan. 1948, doi: 10.2307/210739.
[95] A. Raza et al., “Misconceptions of Reference and Potential Evapotranspiration: A PRISMA-Guided Comprehensive Review,” Hydrology, vol. 9, no. 9, p. 153, Aug. 2022, doi: 10.3390/hydrology9090153.
[96] M. Zhao, G. A, Y. Liu, and A. G. Konings, “Evapotranspiration frequently increases during droughts,” Nat Clim Chang, vol. 12, no. 11, pp. 1024–1030, Nov. 2022, doi: 10.1038/s41558-022-01505-3.
[97] S. Zhou et al., “Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity,” Proceedings of the National Academy of Sciences, vol. 116, no. 38, pp. 18848–18853, Sep. 2019, doi: 10.1073/pnas.1904955116.
[98] C. Hartick, C. Furusho‐Percot, M. P. Clark, and S. Kollet, “An Interannual Drought Feedback Loop Affects the Surface Energy Balance and Cloud Properties,” Geophys Res Lett, vol. 49, no. 22, Nov. 2022, doi: 10.1029/2022GL100924.
[99] M. C. Caldeira, X. Lecomte, T. S. David, J. G. Pinto, M. N. Bugalho, and C. Werner, “Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates,” Sci Rep, vol. 5, no. 1, p. 15110, Oct. 2015, doi: 10.1038/srep15110.
[100] M. Liu, J. Huang, A. Y. Sun, K. Wang, and H. Chen, “What roles can water-stressed vegetation play in agricultural droughts?,” Science of The Total Environment, vol. 803, p. 149810, Jan. 2022, doi: 10.1016/j.scitotenv.2021.149810.
[101] G. Murtaza et al., “Climate Change and Water Security in Dry Areas,” in Handbook of Climate Change Adaptation, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 1701–1730. doi: 10.1007/978-3-642-38670-1_79.
[102] Q.-L. He, J.-L. Xiao, and W.-Y. Shi, “Responses of Terrestrial Evapotranspiration to Extreme Drought: A Review,” Water (Basel), vol. 14, no. 23, p. 3847, Nov. 2022, doi: 10.3390/w14233847.
[103] M. D. Svoboda and B. A. Fuchs, “Handbook of Drought Indicators and Indices*,” in Drought and Water Crises, Second edition. | Boca Raton : CRC Press, 2018. | 1st edition published in 2005.: CRC Press, 2017, pp. 155–208. doi: 10.1201/b22009-11.
[104] D. Khadka, M. S. Babel, S. Shrestha, S. G. P. Virdis, and M. Collins, “Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand,” Weather Clim Extrem, vol. 34, p. 100399, Dec. 2021, doi: 10.1016/j.wace.2021.100399.
[105] H.-R. Byun and D. A. Wilhite, “Objective Quantification of Drought Severity and Duration,” J Clim, vol. 12, no. 9, pp. 2747–2756, Sep. 1999, doi: 10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2.
[106] B. A. Parker et al., “DROUGHT ASSESSMENT IN A CHANGING CLIMATE Priority Actions and Research Needs NOAA Technical Memorandum OAR CPO 002,” 2023, doi: 10.25923/5zm3-6x83.
[107] J. F. Agwata, “A Review of Some Indices used for Drought Studies,” vol. 6, no. 2, 2014, [Online]. Available: www.iiste.org
[108] G. Tsakiris et al., “Chapter 7. Drought characterization.”
[109] J. V Vogt et al., “Drought Risk Assessment and Management-A Conceptual Framework”, doi: 10.2760/057223.
[110] M. Tarek, F. P. Brissette, and R. Arsenault, “Large-Scale Analysis of Global Gridded Precipitation and Temperature Datasets for Climate Change Impact Studies,” J Hydrometeorol, vol. 21, no. 11, pp. 2623–2640, Nov. 2020, doi: 10.1175/JHM-D-20-0100.1.
[111] A. AghaKouchak et al., “Remote sensing of drought: Progress, challenges and opportunities,” Reviews of Geophysics, vol. 53, no. 2, pp. 452–480, Jun. 2015, doi: 10.1002/2014RG000456.
[112] F. Wang, H. Yang, Z. Wang, Z. Zhang, and Z. Li, “Drought Evaluation with CMORPH Satellite Precipitation Data in the Yellow River Basin by Using Gridded Standardized Precipitation Evapotranspiration Index,” Remote Sens (Basel), vol. 11, no. 5, p. 485, Feb. 2019, doi: 10.3390/rs11050485.
[113] T. B. Mckee, N. J. Doesken, and J. Kleist, “THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES,” 1993.
[114] W. C. Palmer, “Meteorological Drought,” Office of Climatology Research Paper, 1965.
[115] S. M. Vicente-Serrano, S. Beguería, and J. I. López-Moreno, “A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index,” J Clim, vol. 23, no. 7, pp. 1696–1718, Apr. 2010, doi: 10.1175/2009JCLI2909.1.
[116] C. Liu, C. Yang, Q. Yang, and J. Wang, “Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China,” Sci Rep, vol. 11, no. 1, p. 1280, Jan. 2021, doi: 10.1038/s41598-020-80527-3.
[117] C. Tan, J. Yang, and M. Li, “Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China,” Atmosphere (Basel), vol. 6, no. 10, pp. 1399–1421, Sep. 2015, doi: 10.3390/atmos6101399.
[118] I. J. Szép, J. Mika, and Z. Dunkel, “Palmer drought severity index as soil moisture indicator: physical interpretation, statistical behaviour and relation to global climate,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 30, no. 1–3, pp. 231–243, Jan. 2005, doi: 10.1016/j.pce.2004.08.039.
[119] B. Wu, Z. Ma, and N. Yan, “Agricultural drought mitigating indices derived from the changes in drought characteristics,” Remote Sens Environ, vol. 244, p. 111813, Jul. 2020, doi: 10.1016/j.rse.2020.111813.
[120] C. L. Wiegand, P. R. Nixon, and R. D. Jackson, “Drought detection and quantification by reflectance and thermal responses,” Agric Water Manag, vol. 7, no. 1–3, pp. 303–321, Sep. 1983, doi: 10.1016/0378-3774(83)90092-6.
[121] F. J. Del-Toro-Guerrero, L. W. Daesslé, R. Méndez-Alonzo, and T. Kretzschmar, “Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico,” Land (Basel), vol. 11, no. 6, p. 783, May 2022, doi: 10.3390/land11060783.
[122] T. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing and Image Interpretation, 7th ed. United States of America: Wiley, 2015.
[123] A. Roman and T. Ursu, “Multispectral satellite imagery and airborne laser scanning techniques for the detection of archaeological vegetation marks,” 2016, pp. 141–152.
[124] K. Hazaymeh and Q. K. Hassan, “Remote sensing of agricultural drought monitoring: A state of art review,” AIMS Environ Sci, vol. 3, no. 4, pp. 604–630, 2016, doi: 10.3934/environsci.2016.4.604.
[125] Z. Zhao and K. Wang, “Capability of Existing Drought Indices in Reflecting Agricultural Drought in China,” J Geophys Res Biogeosci, vol. 126, no. 8, Aug. 2021, doi: 10.1029/2020JG006064.
[126] S. Modanesi, C. Massari, S. Camici, L. Brocca, and G. Amarnath, “Do Satellite Surface Soil Moisture Observations Better Retain Information About Crop‐Yield Variability in Drought Conditions?,” Water Resour Res, vol. 56, no. 2, Feb. 2020, doi: 10.1029/2019WR025855.
[127] C. Cammalleri, N. McCormick, J. Spinoni, and J. W. Nielsen-Gammon, “An Analysis of the Lagged Relationship between Anomalies of Precipitation and Soil Moisture and Its Potential Role in Agricultural Drought Early Warning,” J Appl Meteorol Climatol, vol. 63, no. 2, pp. 339–350, Feb. 2024, doi: 10.1175/JAMC-D-23-0077.1.
[128] Y. Xie, Z. Sha, and M. Yu, “Remote sensing imagery in vegetation mapping: a review,” Journal of Plant Ecology, vol. 1, no. 1, pp. 9–23, Mar. 2008, doi: 10.1093/jpe/rtm005.
[129] M. Aqeel, Mohd. Jamil, and I. Yusoff, “Introduction to Remote Sensing of Biomass,” in Biomass and Remote Sensing of Biomass, InTech, 2011. doi: 10.5772/16462.
[130] R. W. H. Rouse, J. A. W. Haas, and D. W. Deering, “MONITORING VEGETATION SYSTEMS IN THE GREAT PLAINS WITH ERTS,” Washington DC, 1974.
[131] C. Evangelides and A. Nobajas, “Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration,” Remote Sens Appl, vol. 17, p. 100283, Jan. 2020, doi: 10.1016/j.rsase.2019.100283.
[132] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precis Agric, vol. 13, no. 6, pp. 693–712, Dec. 2012, doi: 10.1007/s11119-012-9274-5.
[133] J. Xue and B. Su, “Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications,” J Sens, vol. 2017, pp. 1–17, 2017, doi: 10.1155/2017/1353691.
[134] F. N. Kogan, “Application of vegetation index and brightness temperature for drought detection,” Advances in Space Research, vol. 15, no. 11, pp. 91–100, Jan. 1995, doi: 10.1016/0273-1177(95)00079-T.
[135] O. Orhan, S. Ekercin, and F. Dadaser-Celik, “Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey,” The Scientific World Journal, vol. 2014, pp. 1–11, 2014, doi: 10.1155/2014/142939.
[136] M. Amani, B. Salehi, S. Mahdavi, A. Masjedi, and S. Dehnavi, “Temperature-Vegetation-soil Moisture Dryness Index (TVMDI),” Remote Sens Environ, vol. 197, pp. 1–14, Aug. 2017, doi: 10.1016/j.rse.2017.05.026.
[137] F. Kogan, “World droughts in the new millennium from AVHRR‐based vegetation health indices,” Eos, Transactions American Geophysical Union, vol. 83, no. 48, pp. 557–563, Nov. 2002, doi: 10.1029/2002EO000382.
[138] H. Wang, H. Lin, and D. Liu, “Remotely sensed drought index and its responses to meteorological drought in Southwest China,” Remote Sensing Letters, vol. 5, no. 5, pp. 413–422, May 2014, doi: 10.1080/2150704X.2014.912768.
[139] C. M. Feldhake, D. M. Glenn, W. M. Edwards, and D. L. Peterson, “Quantifying drought for humid, temperate pastures using the Crop Water Stress Index (CWSI),” New Zealand Journal of Agricultural Research, vol. 40, no. 1, pp. 17–23, Jan. 1997, doi: 10.1080/00288233.1997.9513226.
[140] X. Liu, X. Zhu, Y. Pan, S. Li, Y. Liu, and Y. Ma, “Agricultural drought monitoring: Progress, challenges, and prospects,” Journal of Geographical Sciences, vol. 26, no. 6, pp. 750–767, Jun. 2016, doi: 10.1007/s11442-016-1297-9.
[141] M. Cetin, O. Alsenjar, H. Aksu, M. S. Golpinar, and M. A. Akgul, “Estimation of crop water stress index and leaf area index based on remote sensing data,” Water Supply, vol. 23, no. 3, pp. 1390–1404, Mar. 2023, doi: 10.2166/ws.2023.051.
[142] Z.-C. Ma, P. Sun, Q. Zhang, Y.-Q. Hu, and W. Jiang, “Characterization and Evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for Monitoring Drought from 2001 to 2017 over Inner Mongolia,” Sustainability, vol. 13, no. 2, p. 916, Jan. 2021, doi: 10.3390/su13020916.
[143] G. B. Senay, M. Budde, J. P. Verdin, and A. M. Melesse, “A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields,” Sensors, vol. 7, pp. 979–1000, 2001, [Online]. Available: www.mdpi.org/sensors
[144] W. H. Maes and K. Steppe, “Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review,” J Exp Bot, vol. 63, no. 13, pp. 4671–4712, Aug. 2012, doi: 10.1093/jxb/ers165.
[145] Y. Chen et al., “Remote-Sensing Drought Monitoring in Sichuan Province from 2001 to 2020 Based on MODIS Data,” Atmosphere (Basel), vol. 13, no. 12, p. 1970, Nov. 2022, doi: 10.3390/atmos13121970.
[146] H. Wu et al., “Spatio-Temporal Analysis of Drought Variability Using CWSI in the Koshi River Basin (KRB),” Int J Environ Res Public Health, vol. 16, no. 17, p. 3100, Aug. 2019, doi: 10.3390/ijerph16173100.
[147] R. D. Jackson, S. B. Idso, R. J. Reginato, and P. J. Pinter, “Canopy temperature as a crop water stress indicator,” Water Resour Res, vol. 17, no. 4, pp. 1133–1138, 1981, doi: 10.1029/WR017i004p01133.
[148] Y.-A. Liou and S. Kar, “Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review,” Energies (Basel), vol. 7, no. 5, pp. 2821–2849, Apr. 2014, doi: 10.3390/en7052821.
[149] K.-A. Nguyen, Y.-A. Liou, and L.-T. Ho, “Evaluatiing the NDLI’s Performance for Identifying Water Surface Using Sentinel-2 MSI Data,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Sep. 2020, pp. 4959–4962. doi: 10.1109/IGARSS39084.2020.9323478.
[150] M. S. Le and Y. A. Liou, “Spatio-temporal assessment of surface moisture and evapotranspiration variability using remote sensing techniques,” Remote Sens (Basel), vol. 13, no. 9, May 2021, doi: 10.3390/rs13091667.
[151] Y.-A. Liou and L. M. Son, “Rapid Identification of Evapotranspiration Features Using Normalized Difference Latent Heat Index (NDLI),” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Jul. 2019, pp. 1915–1918. doi: 10.1109/IGARSS.2019.8898154.
[152] S. P. P. Pahar, S. A. Paembonan, and A. S. Soma, “Identification of drought level using normalized difference latent heat index on Maros Watershed,” IOP Conf Ser Earth Environ Sci, vol. 681, no. 1, p. 012123, Mar. 2021, doi: 10.1088/1755-1315/681/1/012123.
[153] M. Nursaputra, S. P. Putra Pahar, and C. A, “Identification of drought level using Normalized Difference Latent Heat Index in the South Coast of South Sulawesi Province,” IOP Conf Ser Earth Environ Sci, vol. 807, no. 2, p. 022032, Jul. 2021, doi: 10.1088/1755-1315/807/2/022032.
[154] M. Son Le, Y.-A. Liou, and M. T. Pham, “Crop Response to Disease and Water Scarcity Quantified by Normalized Difference Latent Heat Index,” IEEE Access, vol. 11, pp. 55938–55946, 2023, doi: 10.1109/ACCESS.2023.3283033.
[155] B. Clarke, F. Otto, R. Stuart-Smith, and L. Harrington, “Extreme weather impacts of climate change: an attribution perspective,” Environmental Research: Climate, vol. 1, no. 1, p. 012001, Sep. 2022, doi: 10.1088/2752-5295/ac6e7d.
[156] T. Delworth and S. Manabe, “Climate variability and land-surface processes,” Adv Water Resour, vol. 16, no. 1, pp. 3–20, 1993, doi: 10.1016/0309-1708(93)90026-C.
[157] S. K. Behera, T. Doi, and J.-J. Luo, “Air–sea interaction in tropical Pacific: The dynamics of El Niño/Southern Oscillation,” in Tropical and Extratropical Air-Sea Interactions, Elsevier, 2021, pp. 61–92. doi: 10.1016/B978-0-12-818156-0.00005-8.
[158] R. Lindsey and T. Di Liberto, “Global impacts of El Niño and La Niña,” Climate.gov. Accessed: Mar. 27, 2024. [Online]. Available: https://www.climate.gov/news-features/featured-images/global-impacts-el-ni%C3%B1o-and-la-ni%C3%B1a
[159] M. Peña, L. G. Chen, and H. van den Dool, “Intraseasonal to Interannual Climate Variability and Prediction,” in Handbook of Hydrometeorological Ensemble Forecasting, Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 195–236. doi: 10.1007/978-3-642-39925-1_12.
[160] A. Z. Abiy, A. M. Melesse, W. M. Seyoum, and W. Abtew, “Drought and climate teleconnection and drought monitoring,” in Extreme Hydrology and Climate Variability, Elsevier, 2019, pp. 275–295. doi: 10.1016/B978-0-12-815998-9.00022-1.
[161] K.-S. Yun et al., “Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship,” Commun Earth Environ, vol. 2, no. 1, p. 43, Feb. 2021, doi: 10.1038/s43247-021-00108-8.
[162] S. Mukherjee, J. Pal, S. Manna, A. Saha, and D. Das, “El-Niño Southern Oscillation and its effects,” in Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence, Elsevier, 2023, pp. 207–228. doi: 10.1016/B978-0-323-99714-0.00013-3.
[163] World Meteorological Organization, “El Niño / La Niña.” Accessed: Mar. 25, 2024. [Online]. Available: https://wmo.int/topics/el-nino-la-nina#:~:text=The%20El%20Ni%C3%B1o%2DSouthern%20Oscillation,various%20parts%20of%20the%20world.
[164] CLIMATE.GOV, “El Niño and La Niña: Frequently asked questions.” Accessed: Mar. 25, 2024. [Online]. Available: https://www.climate.gov/news-features/understanding-climate/el-ni%C3%B1o-and-la-ni%C3%B1a-frequently-asked-questions
[165] M. F. Stuecker, “The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle,” Geosci Lett, vol. 10, no. 1, p. 51, Nov. 2023, doi: 10.1186/s40562-023-00305-7.
[166] D. E. Hanley, M. A. Bourassa, J. J. O’Brien, S. R. Smith, and E. R. Spade, “A Quantitative Evaluation of ENSO Indices,” J Clim, vol. 16, no. 8, pp. 1249–1258, Apr. 2003, doi: 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2.
[167] A. Barnston, “Why are there so many ENSO indexes, instead of just one?” Accessed: Mar. 25, 2024. [Online]. Available: https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
[168] A. Viña and G. M. Henebry, “Spatio‐temporal change analysis to identify anomalous variation in the vegetated land surface: ENSO effects in tropical South America,” Geophys Res Lett, vol. 32, no. 21, Nov. 2005, doi: 10.1029/2005GL023407.
[169] F. I. Woodward, M. R. Lomas, and T. Quaife, “Global responses of terrestrial productivity to contemporary climatic oscillations,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1504, pp. 2779–2785, Aug. 2008, doi: 10.1098/rstb.2008.0017.
[170] T. Zhang, M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, “Physics of U.S. Surface Temperature Response to ENSO,” J Clim, vol. 24, no. 18, pp. 4874–4887, Sep. 2011, doi: 10.1175/2011JCLI3944.1.
[171] D. Gushchina, I. Zheleznova, A. Osipov, and A. Olchev, “Effect of Various Types of ENSO Events on Moisture Conditions in the Humid and Subhumid Tropics,” Atmosphere (Basel), vol. 11, no. 12, p. 1354, Dec. 2020, doi: 10.3390/atmos11121354.
[172] M. P. King, E. Yu, and J. Sillmann, “Impact of strong and extreme El Ni~nos on European hydroclimate,” Tellus A: Dynamic Meteorology and Oceanography, vol. 72, no. 1, p. 1704342, Jan. 2020, doi: 10.1080/16000870.2019.1704342.
[173] T. Le and D. Bae, “Causal Impacts of El Niño–Southern Oscillation on Global Soil Moisture Over the Period 2015–2100,” Earths Future, vol. 10, no. 3, Mar. 2022, doi: 10.1029/2021EF002522.
[174] K. E. Trenberth et al., “Global warming and changes in drought,” Nat Clim Chang, vol. 4, no. 1, pp. 17–22, Jan. 2014, doi: 10.1038/nclimate2067.
[175] M. K. Davey, A. Brookshaw, and S. Ineson, “The probability of the impact of ENSO on precipitation and near-surface temperature,” Clim Risk Manag, vol. 1, pp. 5–24, 2014, doi: 10.1016/j.crm.2013.12.002.
[176] C.-T. Chang, H.-C. Wang, and C. Huang, “Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia,” Environmental Research Letters, vol. 8, no. 4, p. 045030, Dec. 2013, doi: 10.1088/1748-9326/8/4/045030.
[177] J. Haigh, “Solar influences on Climate,” London, Feb. 2011. [Online]. Available: www.imperial.
[178] J. Henry, “Tropical And Equatorial Climates,” in Encyclopedia of World Climatology, Springer Netherlands, 2005, pp. 742–750. doi: 10.1007/1-4020-3266-8_212.
[179] E. F. Roots, “Climate change: High-latitude regions,” Clim Change, vol. 15, no. 1–2, pp. 223–253, Oct. 1989, doi: 10.1007/BF00138853.
[180] C. W. Thornthwaite, “Problems in the Classification of Climates,” Geogr Rev, vol. 33, no. 2, p. 233, Apr. 1943, doi: 10.2307/209776.
[181] M. Belda, E. Holtanová, T. Halenka, and J. Kalvová, “Climate classification revisited: from Köppen to Trewartha,” Clim Res, vol. 59, no. 1, pp. 1–13, Feb. 2014, doi: 10.3354/cr01204.
[182] F. Rubel and M. Kottek, “Comments on: ‘The thermal zones of the Earth’ by Wladimir Köppen (1884),” Meteorologische Zeitschrift, vol. 20, no. 3, pp. 361–365, Jun. 2011, doi: 10.1127/0941-2948/2011/0285.
[183] U. Lohmann, R. Sausen, L. Bengtsson, U. Cubasch, J. Perlwitz, and E. Roeckner, “The Köppen climate classification as a diagnostic tool for general circulation models,” Clim Res, vol. 3, no. 3, pp. 177–193, 1993, [Online]. Available: http://www.jstor.org/stable/24863394
[184] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, “World Map of the Köppen-Geiger climate classification updated,” Meteorologische Zeitschrift, vol. 15, no. 3, pp. 259–263, Jul. 2006, doi: 10.1127/0941-2948/2006/0130.
[185] M. R. Boland, P. Parhi, P. Gentine, and N. P. Tatonetti, “Climate Classification is an Important Factor in Assessing Quality-of-Care Across Hospitals,” Sci Rep, vol. 7, no. 1, p. 4948, Jul. 2017, doi: 10.1038/s41598-017-04708-3.
[186] P. Sarricolea, M. Herrera-Ossandon, and Ó. Meseguer-Ruiz, “Climatic regionalisation of continental Chile,” J Maps, vol. 13, no. 2, pp. 66–73, Nov. 2017, doi: 10.1080/17445647.2016.1259592.
[187] A. Navarro, A. Merino, J. L. Sánchez, E. García‐Ortega, R. Martín, and F. J. Tapiador, “Towards better characterization of global warming impacts in the environment through climate classifications with improved global models,” International Journal of Climatology, vol. 42, no. 10, pp. 5197–5217, Aug. 2022, doi: 10.1002/joc.7527.
[188] C. Chen, Geo-essays on Taiwan. Taipei: SMC Publishing Inc, 1995.
[189] C.-W. Chen, H. Saito, and T. Oguchi, “Rainfall intensity–duration conditions for mass movements in Taiwan,” Prog Earth Planet Sci, vol. 2, no. 1, p. 14, Dec. 2015, doi: 10.1186/s40645-015-0049-2.
[190] Central Weather Bureau, “Taiwan’s Climate in 2021,” 2021.
[191] E. Vermote, “MOD09A1 v061.” Accessed: Jan. 27, 2024. [Online]. Available: https://doi.org/10.5067/ MODIS/MOD09A1.061
[192] Z. Wan, “MOD11A2 v061.” Accessed: Jan. 27, 2024. [Online]. Available: https://doi.org/10.5067/ MODIS/MOD11A2.061
[193] S. Running, “MOD16A2 v061.” Accessed: Jan. 27, 2024. [Online]. Available: https://doi.org/10.5067/ MODIS/MOD16A2.061)
[194] J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch, “TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015,” Sci Data, vol. 5, no. 1, p. 170191, Jan. 2018, doi: 10.1038/sdata.2017.191.
[195] H. E. Beck, N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, “Present and future köppen-geiger climate classification maps at 1-km resolution,” Sci Data, vol. 5, 2018, doi: 10.1038/sdata.2018.214.
[196] C. A. Greene et al., “The Climate Data Toolbox for MATLAB,” Geochemistry, Geophysics, Geosystems, vol. 20, no. 7, pp. 3774–3781, Jul. 2019, doi: 10.1029/2019GC008392.
[197] L. Liu et al., “Applicability of the crop water stress index based on canopy–air temperature differences for monitoring water status in a cork oak plantation, northern China,” Agric For Meteorol, vol. 327, p. 109226, Dec. 2022, doi: 10.1016/j.agrformet.2022.109226.
[198] D. J. Garrot, M. W. Kilby, D. D. Fangmeier, S. H. Husman, and A. E. Ralowicz, “Production, Growth, and Nut Quality in Pecans under Water Stress Based on the Crop Water Stress Index,” 1993.
[199] H. G. Jones, R. Serraj, B. R. Loveys, L. Xiong, A. Wheaton, and A. H. Price, “Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field,” Functional Plant Biology, vol. 36, no. 11, p. 978, 2009, doi: 10.1071/FP09123.
[200] T. Erdem, A. Halim Orta, Y. Erdem, and H. Okursoy, “Crop water stress index for potato under furrow and drip irrigation systems,” Potato Res, vol. 48, no. 1–2, pp. 49–58, Mar. 2005, doi: 10.1007/BF02733681.
[201] A. Qin, D. Ning, Z. Liu, S. Li, B. Zhao, and A. Duan, “Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield,” Agriculture, vol. 11, no. 10, p. 958, Oct. 2021, doi: 10.3390/agriculture11100958.
[202] M. Guo, J. Li, H. He, J. Xu, and Y. Jin, “Detecting Global Vegetation Changes Using Mann-Kendal (MK) Trend Test for 1982–2015 Time Period,” Chin Geogr Sci, vol. 28, no. 6, pp. 907–919, Dec. 2018, doi: 10.1007/s11769-018-1002-2.
[203] J. A. Sobrino and Y. Julien, “Trend Analysis of Global MODIS-Terra Vegetation Indices and Land Surface Temperature Between 2000 and 2011,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 6, no. 5, pp. 2139–2145, Oct. 2013, doi: 10.1109/JSTARS.2013.2239607.
[204] F. Wang et al., “Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series,” Front Earth Sci (Lausanne), vol. 8, Feb. 2020, doi: 10.3389/feart.2020.00014.
[205] H. Gao and J. Jin, “Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test,” Remote Sens (Basel), vol. 14, no. 9, p. 2009, Apr. 2022, doi: 10.3390/rs14092009.
[206] Y. Yue et al., “Spatial and temporal characteristics of drought and its correlation with climate indices in Northeast China,” PLoS One, vol. 16, no. 11, p. e0259774, Nov. 2021, doi: 10.1371/journal.pone.0259774.
[207] F. Wang et al., “Spatial and temporal evolutions of terrestrial vegetation drought and the influence of atmospheric circulation factors across the Mainland China,” Ecol Indic, vol. 158, Jan. 2024, doi: 10.1016/j.ecolind.2023.111455.
[208] X. Cui, D. M. Bryant, and A. L. Reiss, “NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation,” Neuroimage, vol. 59, no. 3, pp. 2430–2437, Feb. 2012, doi: 10.1016/j.neuroimage.2011.09.003.
[209] P. Léné et al., “Wavelet Transform Coherence: An Innovative Method to Investigate Social Interaction in NeuroIS,” 2020, pp. 147–154. doi: 10.1007/978-3-030-28144-1_16.
[210] A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Process Geophys, vol. 11, no. 5/6, pp. 561–566, Nov. 2004, doi: 10.5194/npg-11-561-2004.
[211] G. Konapala, A. K. Mishra, Y. Wada, and M. E. Mann, “Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation,” Nat Commun, vol. 11, no. 1, p. 3044, Jun. 2020, doi: 10.1038/s41467-020-16757-w.
[212] F.-Y. Cheng and Y. Chen, “Variations in soil moisture and their impact on land–air interactions during a 6-month drought period in Taiwan,” Geosci Lett, vol. 5, no. 1, p. 26, Dec. 2018, doi: 10.1186/s40562-018-0125-8.
[213] T.-S. Lin and F.-Y. Cheng, “Impact of Soil Moisture Initialization and Soil Texture on Simulated Land–Atmosphere Interaction in Taiwan,” J Hydrometeorol, vol. 17, no. 5, pp. 1337–1355, May 2016, doi: 10.1175/JHM-D-15-0024.1.
[214] M. F. Seleiman et al., “Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects,” Plants, vol. 10, no. 2, p. 259, Jan. 2021, doi: 10.3390/plants10020259.
[215] C. H. Chow, Q. Liu, and S. Xie, “Effects of Kuroshio Intrusions on the atmosphere northeast of Taiwan Island,” Geophys Res Lett, vol. 42, no. 5, pp. 1465–1470, Mar. 2015, doi: 10.1002/2014GL062796.
[216] M. C. Yen and T. C. Chen, “Seasonal variation of the rainfall over Taiwan,” International Journal of Climatology, vol. 20, no. 7, pp. 803–809, Jun. 2000, doi: 10.1002/1097-0088(20000615)20:7<803::AID-JOC525>3.0.CO;2-4.
[217] Q. Chang et al., “Earlier Ecological Drought Detection by Involving the Interaction of Phenology and Eco‐Physiological Function,” Earths Future, vol. 11, no. 3, Mar. 2023, doi: 10.1029/2022EF002667.
[218] D. A. Mariano et al., “Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil,” Remote Sens Environ, vol. 213, pp. 129–143, Aug. 2018, doi: 10.1016/j.rse.2018.04.048.
[219] A. E. Fentaw, A. A. Yimer, and G. A. Zeleke, “Monitoring spatio-temporal drought dynamics using multiple indices in the dry land of the upper Tekeze Basin, Ethiopia,” Environmental Challenges, vol. 13, p. 100781, Dec. 2023, doi: 10.1016/j.envc.2023.100781.
[220] L. Tuoku, Z. Wu, and B. Men, “Impacts of climate factors and human activities on NDVI change in China,” Ecol Inform, vol. 81, p. 102555, Jul. 2024, doi: 10.1016/j.ecoinf.2024.102555.
[221] M. Jiang, Y. He, C. Song, Y. Pan, T. Qiu, and S. Tian, “Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China,” Science of The Total Environment, vol. 786, p. 147574, Sep. 2021, doi: 10.1016/j.scitotenv.2021.147574.
[222] E. Styger, H. M. Rakotondramasy, M. J. Pfeffer, E. C. M. Fernandes, and D. M. Bates, “Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar,” Agric Ecosyst Environ, vol. 119, no. 3–4, pp. 257–269, Mar. 2007, doi: 10.1016/j.agee.2006.07.012.
[223] S. Babu et al., “Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas,” Science of The Total Environment, vol. 722, p. 137874, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137874.
[224] D. Wuyun et al., “Mapping fallow fields using Sentinel-1 and Sentinel-2 archives over farming-pastoral ecotone of Northern China with Google Earth Engine,” GIsci Remote Sens, vol. 59, no. 1, pp. 333–353, Dec. 2022, doi: 10.1080/15481603.2022.2026638.
[225] W. Song, A. V. Prishchepov, and W. Song, “Mapping the spatial and temporal patterns of fallow land in mountainous regions of China,” Int J Digit Earth, vol. 15, no. 1, pp. 2148–2167, Dec. 2022, doi: 10.1080/17538947.2022.2148765.
[226] Water Resources Agency, “Statistic of Water Resources,” Aug. 2012.
[227] Water Resources Agency, “Statistic of Water Resources,” Aug. 2022.
[228] M.-H. Yao et al., “Agricultural Disaster Prevention System: Insights from Taiwan’s Adaptation Strategies,” Atmosphere (Basel), vol. 15, no. 5, p. 526, Apr. 2024, doi: 10.3390/atmos15050526.
[229] W. Ching-Yu and W. Jhen-Bin, “Analysis and Evaluation of Taiwan Water Shortage Factors and Solution Strategies,” Asian Soc Sci, vol. 6, no. 10, 2010, [Online]. Available: www.ccsenet.org/ass
[230] Sean Scanlan, “Southern Taiwan rice fields go fallow due to lack of rain,” Taiwan News. Accessed: May 30, 2024. [Online]. Available: https://www.taiwannews.com.tw/news/4796715
[231] H.-H. Hsu, C.-H. Weng, P.-G. Chiu, C.-Y. Lin, and T.-M. Liu, “Future Change in Spring Drought and Its Impact on Water Resource in Taiwan,” 2019.
[232] K.-C. Huang, C.-J. Lee, S.-L. Chan, and C.-H. Tai, “Vulnerability Assessment and Adaptation Strategies for the Impact of Climate Change on Agricultural Land in Southern Taiwan,” Sustainability, vol. 12, no. 11, p. 4637, Jun. 2020, doi: 10.3390/su12114637.
[233] J. Peereman, J. Aaron Hogan, and T.-C. Lin, “Intraseasonal interactive effects of successive typhoons characterize canopy damage of forests in Taiwan: A remote sensing-based assessment,” For Ecol Manage, vol. 521, p. 120430, Oct. 2022, doi: 10.1016/j.foreco.2022.120430.
[234] M.-D. Yang, S.-C. Chen, and H. P. Tsai, “A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images,” Remote Sens (Basel), vol. 9, no. 9, p. 893, Aug. 2017, doi: 10.3390/rs9090893.
[235] H. P. Tsai and M.-D. Yang, “Relating Vegetation Dynamics to Climate Variables in Taiwan Using 1982–2012 NDVI3g Data,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 9, no. 4, pp. 1624–1639, Apr. 2016, doi: 10.1109/JSTARS.2015.2511742.
[236] H.-H. Hsu and C.-T. Chen, “Observed and projected climate change in Taiwan,” Meteorology and Atmospheric Physics, vol. 79, no. 1–2, pp. 87–104, Feb. 2002, doi: 10.1007/s703-002-8230-x.
[237] X. Zeng et al., “The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018,” Glob Chang Biol, vol. 28, no. 22, pp. 6823–6833, Nov. 2022, doi: 10.1111/gcb.16403.
[238] Z. Chen, W. Wang, and J. Fu, “Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China,” Sci Rep, vol. 10, no. 1, p. 830, Jan. 2020, doi: 10.1038/s41598-020-57910-1.
[239] A. Baumgertel et al., “Spatio-Temporal Analysis of Vegetation Response to Climate Change, Case Study: Republic of Serbia,” Int J Environ Res, vol. 18, no. 2, p. 21, Apr. 2024, doi: 10.1007/s41742-024-00571-z.
[240] Y. Hao, Z. Hao, S. Feng, X. Zhang, and F. Hao, “Response of vegetation to El Niño-Southern Oscillation (ENSO) via compound dry and hot events in southern Africa,” Glob Planet Change, vol. 195, p. 103358, Dec. 2020, doi: 10.1016/j.gloplacha.2020.103358.
[241] N. Sazib, lliana E. Mladenova, and J. D. Bolten, “Assessing the Impact of ENSO on Agriculture Over Africa Using Earth Observation Data,” Front Sustain Food Syst, vol. 4, Oct. 2020, doi: 10.3389/fsufs.2020.509914.
[242] R. S. Vilanova et al., “Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon,” Remote Sens Appl, vol. 23, p. 100531, Aug. 2021, doi: 10.1016/j.rsase.2021.100531.
[243] J. Pacheco, A. Solera, A. Avilés, and M. D. Tonón, “Influence of ENSO on Droughts and Vegetation in a High Mountain Equatorial Climate Basin,” Atmosphere (Basel), vol. 13, no. 12, p. 2123, Dec. 2022, doi: 10.3390/atmos13122123.
[244] T. Delcroix et al., “Clarifying the Role of ENSO on Easter Island Precipitation Changes: Potential Environmental Implications for the Last Millennium,” Paleoceanogr Paleoclimatol, vol. 37, no. 12, Dec. 2022, doi: 10.1029/2022PA004514.
[245] J. Feng and J. Li, “Influence of El Niño Modoki on spring rainfall over south China,” J Geophys Res, vol. 116, no. D13, p. D13102, Jul. 2011, doi: 10.1029/2010JD015160.
[246] C. Wang et al., “Eastern‐Pacific and Central‐Pacific Types of ENSO Elicit Diverse Responses of Vegetation in the West Pacific Region,” Geophys Res Lett, vol. 49, no. 3, Feb. 2022, doi: 10.1029/2021GL096666.
[247] Y. Wu, J. Chu, and Y. Yu, “Climatology and the Interannual Variability of the High‐Temperature Extremes in Taiwan,” Journal of Geophysical Research: Atmospheres, vol. 125, no. 3, Feb. 2020, doi: 10.1029/2019JD030992.
[248] C. Hung, H. Hsu, and M. Lu, “Decadal oscillation of spring rain in northern Taiwan,” Geophys Res Lett, vol. 31, no. 22, Nov. 2004, doi: 10.1029/2004GL021344.
[249] H.-H. Hsu, Y.-L. Chen, and W.-S. Kau, “Effects of atmosphere-ocean interaction on the interannual variability of winter temperature in Taiwan and East Asia,” Clim Dyn, vol. 17, no. 4, pp. 305–316, Feb. 2001, doi: 10.1007/s003820000116.
[250] B. Wang, R. Wu, and X. Fu, “Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate?,” J Clim, vol. 13, no. 9, pp. 1517–1536, May 2000, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
[251] R. C. Y. Li and W. Zhou, “Changes in Western Pacific Tropical Cyclones Associated with the El Niño–Southern Oscillation Cycle,” J Clim, vol. 25, no. 17, pp. 5864–5878, Sep. 2012, doi: 10.1175/JCLI-D-11-00430.1.
[252] A.-Y. Tsai and W.-C. Huang, “Impact of Climate Change on Water Resources in Taiwan,” Terrestrial, Atmospheric and Oceanic Sciences, vol. 22, no. 5, p. 507, 2011, doi: 10.3319/TAO.2011.04.15.01(Hy).
[253] J.-H. Chang, Agricultural geography of Taiwan. Taipei: Chinese Geographical Research Institute, 1958.
[254] S. Feng, Z. Zhang, S. Zhao, X. Guo, W. Zhu, and P. Das, “Time lag effect of vegetation response to seasonal precipitation in the Mara River Basin,” Ecol Process, vol. 12, no. 1, p. 49, Oct. 2023, doi: 10.1186/s13717-023-00461-w.
[255] D. Zuo et al., “Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China,” J Hydrol (Amst), vol. 600, p. 126532, Sep. 2021, doi: 10.1016/j.jhydrol.2021.126532.
[256] X. Liu et al., “Time-Lag Effect of Climate Conditions on Vegetation Productivity in a Temperate Forest–Grassland Ecotone,” Forests, vol. 13, no. 7, p. 1024, Jun. 2022, doi: 10.3390/f13071024.
[257] J. Zhao, S. Huang, Q. Huang, H. Wang, G. Leng, and W. Fang, “Time-lagged response of vegetation dynamics to climatic and teleconnection factors,” Catena (Amst), vol. 189, p. 104474, Jun. 2020, doi: 10.1016/j.catena.2020.104474.
[258] M. Wu et al., “Regional Responses of Vegetation Productivity to the Two Phases of ENSO,” Geophys Res Lett, vol. 51, no. 8, Apr. 2024, doi: 10.1029/2024GL108176.
指導教授 劉說安(Yuei-An Liou) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明