博碩士論文 111022601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.191.107.181
姓名 柯倫(Mdluli Kolunga Nkosinathi)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 將生物物理參數整合進行城市熱島效應分析:1997-2022年間,基於衛星數據的曼齊尼 馬察帕(斯威士蘭)時空觀測。
(Analyzing Urban Heat Island Effect with Integration of Biophysical Parameters: A Spatial-Temporal Observation from Satellite Data in Manzini-Matsapha, Eswatini, 1997-2022)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
★ 對數常態分布在氣膠消光係數廓線擬合之應用★ 氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用
★ 地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析★ 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用
★ 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響★ 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析
★ 福爾摩沙衛星五號遙測儀升空前後等化係數之率定★ 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這項研究結合了遙感數據和方法來分析馬薩帕-曼齊尼的城市化進程,斯威士蘭中部地區(以前稱為斯威士蘭)多年來經歷了巨大的城市化進程,社會經濟指標和自然特徵的變化得到了證實。本研究旨在利用遙感技術調查 Manzini-Matsapha 地區從 1997 年到 2022 年的城市化趨勢和相關環境影響,研究分析了地表溫度 (LST)、歸一化植被指數 (NDVI)、歸一化植被指數 (NDVI)、差異建成指數 (NDBI)、土地利用土地覆蓋 (LULC) 和城市熱島,以了解環境變化和城市擴張之間的相互作用。該研究利用 LULC、LST 和社會經濟數據來形成關於城市化影響的具體而全面的觀點。該研究分析了社會經濟變量,以衡量城市化趨勢,繪製 LULC 地圖以分解其對 LST 的影響,為選定的研究時期繪製 LST 地圖,並將其與兩個生物物理參數 (即 NDVI 和 NDBI) 相關聯。除此之外,該研究還利用植被調整植被指數 (VANUI),使用 LST 閾值和夜間燈光對 UHI 區域進行分類。該方法利用 1997-1998、2006-2007、2014-2015 和 2021-2022 這四個時間段的衛星圖像進行多時相分析。數據處理包括圖像預處理、NDVI 和 NDBI 的推導、LST 計算和使用其他學者建立的算法進行 LULC 分類。結果顯示,城市區域覆蓋範圍呈增加趨勢,像素間高 LST 差異相應增加,這也表明城市熱島區域有所增加。該研究表明,植被覆蓋率下降、建成區和高地表溫度像素之間存在明顯的關係。這一結果強調了納入綠色空間以減輕城市熱島影響的必要性。該研究面臨一些限制,例如衛星和社會經濟數據的空間分辨率不同以及時間範圍變化很大。鑑於這些,該研究確實為曼齊尼-馬薩法城市化對環境的影響提供了極其有價值的見解。總之,該研究揭示了遙感在監測城市化及其相關環境影響方面發揮的重要作用。通過利用這種動態,可以制定適當的策略來盡量減少這種不利影響。
摘要(英) This study incorporates remote sensing data and methods to analyze urbanization in Matsapha-Manzini, this central region of Eswatini (formerly known as Swaziland) has undergone tremendous urbanization over the years with a proven growth in socio economic indicators and changes in physical characteristics. This research aims to investigate urbanization trends and the associated environmental impacts in the Manzini-Matsapha area dating back to 1997 until 2022 by employing remote sensing techniques, the research analyzes the land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), land use land cover (LULC) and urban heat islands in a bid to understand the interplay between environmental changes and urban expansion. The research leverages LULC, LST and socio-economic data to develop a concrete and comprehensive view of urbanization impacts. The study analyzed the socio-economic variables to gauge the trend of urbanization, develop LULC maps to break down their influence on LST, develop LST maps for the chosen study periods and correlate them to the two biophysical parameters, namely NDVI and NDBI. Above that, the study classified UHI zones using an LST threshold and night time lights by making use of the vegetated adjusted vegetation index (VANUI). The method made use of a multi-temporal analysis using satellite imagery at four time periods, 1997-1998, 2006-2007, 2014-2015 and 2021-2022. The processing of the data included image preprocessing, derivation of NDVI and NDBI, calculation of LST and LULC classification using established algorithms from other scholars. The result depicted an increasing trend in urban area coverage with a corresponding rise in high LST difference amongst pixels, which also showed a rise in UHI zones. The study showed a clear relationship amongst reduced vegetation coverage, built-up areas and high LST pixels. This result emphasizes on the need for incorporation of green spaces to mitigate UHI effects. The study faced some limitations such as the varying spatial resolutions and largely varying temporal scope of the satellite and socio-economic data. In light to these, the study does provide extremely valuable insights into the environmental impacts of urbanization in Manzini-Matsapha. In conclusion, the study brings forth the vital role that remote sensing plays in monitoring urbanization and the associated environmental impacts. By utilizing such dynamics, appropriate strategies can be developed as to how to minimize such adverse effects.
關鍵字(中) ★ 城市熱島
★ 城市化
★ 地表溫度
★ 社會經濟數據
★ 可見紅外 成像輻射計套件 (VIIRS) 夜間燈光
★ Manzini-Matsapha
關鍵字(英) ★ Urban heat islands
★ Urbanization
★ land surface temperature
★ socio-economic data
★ Visible Infrared Imaging Radiometer Suite (VIIRS) Night Time Lights
★ Manzini-Matsapha
論文目次 摘要 I
Abstract III
Acknowledgments V
List Of Figures IX
List of Table X
Abbreviations XI
Chapter 1: Introduction 1
1.1 Urbanization and Environmental issues 1
1.2 Remote sensing and urbanization 2
1.3 Research questions 3
1.4 Aims and Objectives 4
1.5 Scope and limitations of the study 5
1.6 Main contribution of the study 5
1.7 Conceptual framework 6
1.8 Roadmap of the study 6
Chapter 2: Literature review 8
2.1 Urbanization And Urban heat islands 8
2.1.1. Socio-economic Aspects 9
2.2 Description of study area 10
2.2.1. Urbanization in Matsapha-Manzini 10
2.2.2. Matsapha-Manzini 10
2.2.3. Climate 11
2.3 An approach to studying urbanization 12
2.4 Landsat usage in UHI 13
2.5 Remote sensing orbits, systems, wavelengths and resolutions 14
2.6 Resolution: Spatial, temporal, radiometric and spectral 14
2.7 Satellite Orbit and altitude 15
2.8 Landsat 5 Thematic Mapper (TM) 16
2.9 Landsat 8 operational Land Imager 16
2.10 Visible Infrared Imaging Radiometer Suite (VIIRS) Night Time Lights 16
2.11 Vegetation Adjusted Night Urban Index (VANUI) 18
Chapter 3: Materials and Methodology 19
3.1. Tools and methods used 19
3.1.1. Tools used for data processing and analysis 21
3.2. Indicators of urbanization (UHI) 22
3.3. Processing of Landsat imagery 22
3.3.1. Image preprocessing 22
3.4. Development of Land Use Land Cover (LULC) maps 24
3.4.1. Accuracy assessment of LULC and LST Maps 26
3.5. Deriving the Normalized difference Vegetation Index (NDVI) 26
3.6. Deriving the Normalized difference Built-up Index (NDBI) 27
3.7. Calculation of Land Surface Temperatures (LST) 27
3.6.1. Top of Atmospheric Radiance 28
3.6.2. Brightness Temperature 29
3.6.4. Proportion of vegetation (Pv) 30
3.6.5. Land Surface Emissivity (E) 30
3.6.6. Land surface temperature 30
3.8. Classification of Urban Heat Island (UHI) zones 31
Chapter 4: Results and Discussion 33
4.1. Socio-economic indicators of Urbanization 33
4.1.1. Population Growth 33
4.1.2. Net Migration 34
4.1.3. Energy Demand 34
4.2. Remote Sensing derived Variables 36
4.2.1. Land Use Land Cover 36
4.2.2. Derived NDVI and NDBI 39
4.2.3. Land surface temperature 41
4.2.3.1. Assessment of Satellite derived LST against Ground True Values 42
4.2.4. Correlation of LST with NDVI and NDBI 44
46
4.2.5. Association of LST and LULC 46
4.3. UHI Intensity 47
Chapter 5: Conclusion and Discussion 53
5.1. Conclusion of presented results 53
5.2. Future work 55
References 57
參考文獻 Ali Shah, S., Kiran, M., Nazir, A., & Ashrafani, S. H. (2022). EXPLORING NDVI AND NDBI RELATIONSHIP USING LANDSAT 8 OLI/TIRS IN KHANGARH TALUKA, GHOTKI. Malaysian Journal of Geosciences, 6(1), 08–11. https://doi.org/10.26480/mjg.01.2022.08.11
Burges, C. J. C., & Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121–167. https://www.microsoft.com/en-us/research/publication/a-tutorial-on-support-vector-machines-for-pattern-recognition/
Central Statistical Office. (2019). The 2017 Population and Housing Census Volume 3.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Congalton, R. G., & Green, K. (2008). Assessing the Accuracy of Remotely Sensed Data. CRC Press. https://doi.org/10.1201/9781420055139
Demographia. (2023). Demographia World Urban Areas. http://www.demographia.com/db-worldua.pdf
Dervisoglu, A. (2023). Investigation of the Efficiency of Satellite-Derived LST Data for Mapping the Meteorological Parameters in Istanbul. Atmosphere, 14(4), 644. https://doi.org/10.3390/atmos14040644
Efe, S. I., & Eyefia, A. O. (2014). Urban Effects on the Precipitation of Benin, Nigeria. American Journal of Climate Change, 03(01), 8–21. https://doi.org/10.4236/ajcc.2014.31002
Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). VIIRS night-time lights. International Journal of Remote Sensing, 38(21), 5860–5879. https://doi.org/10.1080/01431161.2017.1342050
Environmental Protection Agency. (2016). Heat Island Impacts. 2016. http://www.epa.gov/hiri/impacts/index.htm
Eswatini Electricity Company. (2023). Eswatini Electricity Company 2023.
Eswatini Environment Authority. (2021). Review and Update of the State of Environment Report Ministry of Tourism and Environmental Affairs Restoring the Environment for Climate Resilient Economic Recovery The Kingdom of Eswatini 2020. Eswatini Environment Authority. www.eea.org.sz
Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 10973. https://doi.org/10.1038/s41598-017-11407-6
Google. (n.d.). VNP46A1: Viirs Daily Gridded Day Night Band 500m Linear Lat Lon grid night. Retrieved June 18, 2024, from https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP46A1#description
Grover, A., & Singh, R. (2015). Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. Environments, 2(2), 125–138. https://doi.org/10.3390/environments2020125
Hamada, S., Tanaka, T., & Ohta, T. (2013). Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas. Urban Forestry & Urban Greening, 12(4), 426–434. https://doi.org/10.1016/j.ufug.2013.06.008
Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023a). Urban heat islands: a review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1), 012038. https://doi.org/10.1088/1755-1315/1129/1/012038
Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023b). Urban heat islands: a review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1), 012038. https://doi.org/10.1088/1755-1315/1129/1/012038
Jacobs, S., David, O. O., & Wyk, A. S.-V. (2023). The Impact of Urbanization on Economic Growth in Gauteng Province, South Africa. International Journal of Economics and Financial Issues, 13(2), 1–11. https://doi.org/10.32479/ijefi.13899
Jerry, R., Rija, R., Jean, R., Lahatra, R., & Fils, R. (2018). Temperature Retrieval of Lake Itasy Using Remote Sensing. Resources and Environment, 8(6), 241–244. https://doi.org/10.5923/j.re.20180806.01
Kadhim, N., Mourshed, M., & Bray, M. (2016). Advances in remote sensing applications for urban sustainability. Euro-Mediterranean Journal for Environmental Integration, 1(1), 7. https://doi.org/10.1007/s41207-016-0007-4
Katie Baynes. (n.d.). Visible Infrared Imaging Radiometer Suite. Retrieved February 18, 2024, from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/
Kumar, S., Shwetank, & Jain, K. (2020). A Multi-Temporal Landsat Data Analysis for Land-use/Land-cover Change in Haridwar Region using Remote Sensing Techniques. Procedia Computer Science, 171, 1184–1193. https://doi.org/10.1016/j.procs.2020.04.127
Li, M., Gao, Q., & Yu, T. (2023). Kappa statistic considerations in evaluating inter-rater reliability between two raters: which, when and context matters. BMC Cancer, 23(1), 799. https://doi.org/10.1186/s12885-023-11325-z
Macarof, P., & Statescu, F. (2017). Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environment and Sustainable Development, 11(2), 141–150. https://doi.org/10.1515/pesd-2017-0032
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
Municipal Council of Manzini. (2019). Municipal-Council-of-Manzini-2019-Annual-Report.
Neinavaz, E., Skidmore, A. K., & Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. International Journal of Applied Earth Observation and Geoinformation, 85, 101984. https://doi.org/10.1016/j.jag.2019.101984
Nguyen, T., Lin, T.-H., & Chan, H.-P. (2019). The Environmental Effects of Urban Development in Hanoi, Vietnam from Satellite and Meteorological Observations from 1999–2016. Sustainability, 11(6), 1768. https://doi.org/10.3390/su11061768
OECD/UN ECA/AfDB. (2022). Africa’s Urbanisation Dynamics 2022. OECD. https://doi.org/10.1787/3834ed5b-en
Pedalo. (n.d.). The Kingdom of Eswatini. Retrieved June 21, 2024, from https://www.thekingdomofeswatini.com/central-eswatini/
PricewaterhouseCoopers. (2011). Protecting human health and safety during severe and extreme heat events A national framework.
Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L. (2015). Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observation and Geoinformation, 36, 1–12. https://doi.org/10.1016/j.jag.2014.10.015
Rahman, Md. N., Rony, Md. R. H., Jannat, F. A., Chandra Pal, S., Islam, Md. S., Alam, E., & Islam, A. R. Md. T. (2022). Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools. Climate, 10(1), 3. https://doi.org/10.3390/cli10010003
Swaziland Electricity Company. (2014). Swaziland Electricity Company Annual Report 2013/14.
Tan, P. Y., Wong, N. H., Tan, C. L., Jusuf, S. K., Chang, M. F., & Chiam, Z. Q. (2018). A method to partition the relative effects of evaporative cooling and shading on air temperature within vegetation canopy. Journal of Urban Ecology, 4(1). https://doi.org/10.1093/jue/juy012
United Nations Human Settlements Programme (UN-Habitat). (2022). Envisaging the Future of Cities. Website: www.unhabitat.org
United States Geological Survey. (2019a). Landsat Missions. https://www.usgs.gov/landsat-missions/landsat-satellite-missions
United States Geological Survey. (2019b). What Is Remote Sensing ? https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing#sensors
Yu, X., Guo, X., & Wu, Z. (2014). Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sensing, 6(10), 9829–9852. https://doi.org/10.3390/rs6109829
Zhang, Q., Schaaf, C., & Seto, K. C. (2013). The Vegetation Adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sensing of Environment, 129, 32–41. https://doi.org/10.1016/j.rse.2012.10.022
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明