參考文獻 |
[1.] Aguilar, M. A., Jiménez-Lao, R., Ladisa, C., Aguilar, F. J., & Tarantino, E. (2022). Comparison of spectral indices extracted from Sentinel-2 images to map plastic covered greenhouses through an object-based approach. GIScience & Remote Sensing, 59(1), 822-842.
[2.] Baetens, L., Desjardins, C., & Hagolle, O. (2019). Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sensing, 11(4), 433.
[3.] Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., & Holben, B. N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical research letters, 29(12), MOD2-1.
[4.] Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., ... & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote sensing of environment, 219, 145-161.
[5.] Copernicus. (n.d.). L1C processing baseline. Sentinel-2 MSI User Guide. Retrieved June 17, 2024, from https://sentiwiki.copernicus.eu/web/s2-processing#S2Processing-L1Cprocessingbaseline
[6.] Copernicus. (n.d.). L2A processing baseline. Sentinel-2 MSI User Guide. Retrieved June 17, 2024, from https://sentiwiki.copernicus.eu/web/s2-processing#S2Processing-L2Aprocessingbaseline
[7.] Deschamps, P. Y., Duhaut, P., Rouquet, M. C., & Tanré, D. (1984). Demonstration, analysis, and correction of atmospheric effects on Landsat or SPOT multispectral data. Spectral signatures of objects in remote sensing, 709-722.
[8.] Doxani, G., Vermote, E., Roger, J. C., Gascon, F., Adriaensen, S., Frantz, D., ... & Vanhellemont, Q. (2018). Atmospheric correction inter-comparison exercise. Remote Sensing, 10(2), 352.
[9.] ESA. 2017. Sentinel-2A & 2B imagery metadata files.
[10.] Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., ... & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote sensing of environment, 194, 379-390.
[11.] Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054, doi: 10.1017/9781009157896.009.
[12.] Fang, Z., Li, G., Hou, G., & Qiu, X. (2022). Light Management of Nanocellulose Films. In Emerging Nanotechnologies in Nanocellulose (pp. 179-209). Cham: Springer International Publishing.
[13.] Grosso, N., & Paronis, D. (2012). Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements. Atmospheric research, 116, 33-45.
[14.] Goddard Space Flight Center. "Aerosol Robotic Network (AERONET) Homepage." Accessed June 20, 2024, from https://aeronet.gsfc.nasa.gov/.
[15.] Gulev, S.K., P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, and R.S. Vose, 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, doi: 10.1017/9781009157896.004.
[16.] Hansen, J. E., & Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4), 527-610.
[17.] Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 38(4), 513-543.
[18.] Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE transactions on geoscience and remote sensing, 42(3), 557-569.
[19.] Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE transactions on geoscience and remote sensing, 44(11), 3180-3195.
[20.] Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., ... & Tsay, S. C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296-9315.
[21.] Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997a). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
[22.] Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997b). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14), 17051-17067.
[23.] Kokhanovsky, A. A. (2009). Satellite aerosol remote sensing over land (Vol. 111, p. 24). G. Leeuw (Ed.). Berlin: Springer.
[24.] Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres, 112(D13).
[25.] Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399-10420.
[26.] Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989-3034.
[27.] Lin, H., Li, S., Xing, J., Yang, J., Wang, Q., Dong, L., & Zeng, X. (2021a). Fusing retrievals of high resolution aerosol optical depth from landsat-8 and sentinel-2 observations over urban areas. Remote Sensing, 13(20), 4140.
[28.] Lin, H., Li, S., Xing, J., He, T., Yang, J., & Wang, Q. (2021b). High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmospheric Environment, 261, 118591.
[29.] Mennis, J., & Guo, D. (2009). Spatial data mining and geographic knowledge discovery—An introduction. Computers, Environment and Urban Systems, 33(6), 403-408.
[30.] NASA. 2017. Spectral Response of the Operational Land Imager In-Band, Band-Average Relative Spectral Response. Data downloads available. Cited at: https://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/
[31.] Obregón, M. Á., Rodrigues, G., Costa, M. J., Potes, M., & Silva, A. M. (2019). Validation of ESA Sentinel-2 L2A aerosol optical thickness and columnar water vapour during 2017–2018. Remote Sensing, 11(14), 1649.
[32.] Qiu, S., Zhu, Z., & He, B. (2019). Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sensing of Environment, 231, 111205.
[33.] Retalis, A. (1999). Assessment of the distribution of aerosols in the area of Athens with the use of Landsat Thematic Mapper data. International Journal of Remote Sensing, 20(5), 939-945.
[34.] Roy, D. P., Li, J., Zhang, H. K., Yan, L., Huang, H., & Li, Z. (2017). Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment, 199, 25-38.
[35.] Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
[36.] Skakun, S., Roger, J. C., Vermote, E. F., Masek, J. G., & Justice, C. O. (2017). Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. International Journal of Digital Earth, 10(12), 1253-1269.
[37.] Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964.
[38.] U.S. Geological Survey. (2019). Landsat 8 Data Users Handbook. Retrieved June 20, 2024, from https://www.usgs.gov/media/files/landsat-8-data-users-handbook
[39.] U.S. Geological Survey. (2024). Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Retrieved June 20, 2024, from https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide
[40.] Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research: Atmospheres, 113(D23).
[41.] Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote sensing of environment, 185, 46-56.
[42.] Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., & Bilal, M. (2017). A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. Journal of Geophysical Research: Atmospheres, 122(24), 13-338.
[43.] Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote sensing of Environment, 159, 269-277.
[44.] Zhong, B., Wu, S., Yang, A., & Liu, Q. (2017). An improved aerosol optical depth retrieval algorithm for moderate to high spatial resolution optical remotely sensed imagery. Remote Sensing, 9(6), 555.
[45.] Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., ... & Roger, J. C. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote sensing of environment, 215, 482-494.
[46.] 葉雨松. (2005). 空氣品質監測站介紹. 科儀新知, (145), 47-53.
[47.] 張國恩. 2010. "MTSAT-1R 衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討." 碩士, 太空科學研究所, 國立中央大學
[48.] 王瑞源, 徐逸祥, 陳依婕, 樊先達, 黃昭雄, & 朱子豪. (2011). 整合空間及遙測分析於非法廢棄物棄置場之判釋. 航測及遙測學刊, 16(1), 45-61.
[49.] 張淵翔. 2017. "地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析." 碩士, 遙測科技碩士學位學程, 國立中央大學
[50.] 陳文姿. (2017.04.07). PM2.5現形記:1000個小盒子完成不可能的任務. 環境資訊中心. https://e-info.org.tw/node/204036. [訪問日期: 2024年7月27日]
[51.] 黃淑倫, 林裕清, 蕭光佑, 林玠模, 紀妙青, & 陳玟諭. (2021). 嘉義縣空氣盒子與環保署空氣監測站 PM_ (2.5) 濃度差異之影響分析. 醫學與健康期刊, 10(1), 11-33.
[52.] 空氣思庫AIRSCHOOL. (2022.03.30). 五分鐘快速理解,空污在臺灣我們呼吸的空氣是如何管理. https://airschool.com.tw/article/46. [訪問日期: 2024年7月27日]
[53.] 環境保護署. (2024). https://airtw.moenv.gov.tw/ |