博碩士論文 110521086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.142.131.56
姓名 廖柏勛(Po-Hsun Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 探究虛擬環境下視覺鏡像神經元結合震動刺激之事件非同步腦波律動影響
(Investigating the Impact of Visual Mirror Neurons Combined with Vibration Stimulation on Event-Related Desynchronization of Brain Rhythms in a Virtual Environment)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 動作觀察(Action observation,AO)是觀察他人動作,想像運動(Motor imagery,MI)則是透過想像執行動作;動作觀察與想像運動(Action observation and motor imagery,AOMI) 結合了兩者,通過鏡像神經元(Mirror neurons)機制增強對於行為的理解,並被認為是有效的運動學習與臨床康復方式。然而,傳統的 AOMI 主要依賴視覺,容易引發神經與肌肉疲勞而限制了其應用範圍。因此本研究在原先AOMI的基礎上,嘗試加入震動刺激以增強感知,並使用虛擬實境(Virtual Reality,VR)顯示器進行輔助提升沉浸感。希望能提升腦部活動能量。
我們採用事件相關去同步(Event-Related Desynchronization,ERD)分析資料,並引入去雜訊方法以提高資料品質。透過分析ERD指標、趨勢與ERD半球不對稱性。我們發現AOMI加入震動刺激後,在α band中央對側腦區與頂葉區ERD指標提升,有顯著差異的通道ERD強度可達11%;β band中央區及頂葉區ERD指標則會減弱,ERD強度也能約有10%的差距。結果表明AOMI加入震動刺激可以改善想像運動相關的神經活動,並增強腦部對於視覺與觸覺的空間感知訊息的整合能力。希望加入震動刺激可以提高使用者對AOMI訓練任務的理解,並在後續研究中應用於中風復健與BCI系統的改善,為未來的神經科學研究發展帶來新的突破。
摘要(英) Action Observation (AO) involves observing others′ actions, while Motor Imagery (MI) is the execution of actions through imagination. Action Observation and Motor Imagery (AOMI) combines both, leveraging the mirror neurons mechanism to enhance understanding of behavior, and is recognized as an effective approach for motor learning and clinical rehabilitation. However, traditional AOMI relies heavily on visual stimuli, which can lead to neural and muscular fatigue, limiting its application. Thus, this study attempts to enhance perception by incorporating vibration stimulation into the original AOMI, using Virtual Reality (VR) displays to improve immersion and potentially boost brain activity.
We used Event-Related Desynchronization (ERD) to analyze the data, incorporating denoising methods to improve data quality. By analyzing ERD indicators, trends, and hemispheric asymmetry, we found that adding vibration stimulation to AOMI increased ERD indicators in the α band at the central contralateral brain region and parietal region, with significant channel ERD intensity differences reaching up to 11%. In the β band, ERD indicators in the central and parietal regions decreased, with ERD intensity differences of about 10%.
The results suggest that adding vibration stimulation to AOMI can improve neural activity related to motor states and enhance the brain′s ability to integrate spatial perception information from visual and tactile stimuli. We hope that incorporating vibration stimulation can enhance users′ understanding of AOMI training tasks, and be applied in stroke rehabilitation as well as improvements in BCI systems.
關鍵字(中) ★ 動作觀察與想像運動(AOMI)
★ 鏡像神經元
★ 震動刺激
★ 事件相關去同步(ERD)
關鍵字(英) ★ Action Observation and Motor Imagery (AOMI)
★ Mirror Neurons
★ Vibration Stimulation
★ Event-Related Desynchronization (ERD)
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
第二章 研究設計與方法 4
2-1 系統設備 4
2-2 系統架構 6
2-3 實驗流程 7
2-4 分析方法 10
2-4-1 資料分割 10
2-4-2 ERD雜訊抑制 11
2-4-3 ERD計算 13
2-4-4 數值化分析 15
2-4-5 ERD趨勢分析 17
第三章 實驗結果 19
3-1 兩組ERD各指標分析 19
3-1-1 α band ERD 20
3-1-2 β band ERD 24
3-1-3各指標穩定性 28
3-2 兩組ERD趨勢分析 29
第四章 討論與結論 34
4-1 加入震動刺激對ERD的影響 34
4-2 結論與未來展望 36
第五章 參考文獻 38
第六章 附錄 41
附錄一、兩組α band ERD各指標分析資料表 41
附錄二、兩組β band ERD各指標分析資料表 44
參考文獻 [1] Barsotti, Michele, et al. "Effects of continuous kinaesthetic feedback based on tendon vibration on motor imagery BCI performance." IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26.1, pp. 105-114, (2017).
[2] Rizzolatti, Giacomo, et al. "Premotor cortex and the recognition of motor actions." Cognitive brain research, vol. 3.2, pp. 131-141, (1996).
[3] Mulder, Th. "Motor imagery and action observation: cognitive tools for rehabilitation." Journal of neural transmission, vol. 114, pp. 1265-1278, (2007).
[4] Jeannerod, Marc. "Neural simulation of action: a unifying mechanism for motor cognition." Neuroimage, vol. 14.1, S103-S109, (2001).
[5] Eaves, Daniel L., et al. "Motor imagery during action observation: a brief review of evidence, theory and future research opportunities." Frontiers in neuroscience, vol. 10 , 218214, (2016).
[6] R. Foong et al., "Assessment of the Efficacy of EEG-Based MI-BCI With Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation." IEEE Transactions on Biomedical Engineering, vol. 67.3, pp. 786-795, (2020).
[7] Vidaurre, Carmen, and Benjamin Blankertz. "Towards a cure for BCI illiteracy." Brain topography 23, pp. 194-198, (2010).
[8] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer and G. Pfurtscheller, "How many people are able to operate an EEG-based brain-computer interface (BCI)?.” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 145-147, (2003).
[9] Kahol, Kanav, et al. "Evaluating the role of visio-haptic feedback in multimodal interfaces through EEG analysis." Augmented Cognition: Past, Present and Future, vol. 290 (2006).
[10] Y. Li et al., "Multimodal BCIs: Target Detection, Multidimensional Control, and Awareness Evaluation in Patients With Disorder of Consciousness.” Proceedings of the IEEE, vol. 104, no. 2, pp. 332-352, (2016).
[11] Li, Wei, et al. "Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: An EEG study." Brain research, vol. 1722 , pp. 146338, (2019).
[12] X. Shu et al., "Tactile Stimulation Improves Sensorimotor Rhythm-Based BCI Performance in Stroke Patients," IEEE Transactions on Biomedical Engineering, vol. 66, no. 7, pp. 1987-1995, (2019).
[13] Gallese, Vittorio, et al. "Action recognition in the premotor cortex." Brain, vol. 119.2, pp. 593-609, (1996).
[14] Filimon, Flavia, et al. "Human cortical representations for reaching: mirror neurons for execution, observation, and imagery." Neuroimage, vol. 37.4, pp. 1315-1328, (2007).
[15] Vogt, Stefan, et al. "Multiple roles of motor imagery during action observation." Frontiers in human neuroscience, vol. 7, pp. 807, (2013).
[16] Hove, Michael J., Michael J. Spivey, and Carol L. Krumhansl. "Compatibility of motion facilitates visuomotor synchronization." Journal of Experimental Psychology: Human Perception and Performance, vol. 36.6, pp. 1525, (2010).
[17] D. Wen, B. Liang, Y. Zhou, H. Chen, and T.-P. Jung, "The current research of combining multi-modal brain-computer interfaces with virtual reality.” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 9, pp. 3278-3287, (2020).
[18] Y. Zinchenko et al., "Virtual reality is more efficient in learning human heart anatomy especially for subjects with low baseline knowledge.” New Ideas in Psychology, vol. 59, pp. 100786, (2020).
[19] Mestre, Daniel R., Marine Ewald, and Christophe Maiano. "Virtual reality and exercise: behavioral and psychological effects of visual feedback." Annual Review of Cybertherapy and Telemedicine 2011, pp. 122-127, (2011).
[20] Vourvopoulos, A., et al. "Influence of VR-based Brain-Computer Interfaces Training in Brain Activity and Clinical Outcome in Chronic Stroke: A Longitudinal Study of Single Cases." (2022).
[21] Yao, Lin, et al. "A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion." Journal of neural engineering, vol. 12.1, pp. 016005 (2014).
[22] Le Franc, Salomé, et al. "Influence of virtual reality visual feedback on the illusion of movement induced by tendon vibration of wrist in healthy participants." Plos one, vol. 15.11, pp. 0242416, (2020).
[23] Thyrion, Chloé, and Jean-Pierre Roll. "Perceptual integration of illusory and imagined kinesthetic images." Journal of Neuroscience, vol. 29.26, pp. 8483-8492, (2009).
[24] D. Hagimori, N. Isoyama, S. Yoshimoto, N. Sakata and K. Kiyokawa, "Combining Tendon Vibration and Visual Stimulation Enhances Kinesthetic Illusions.” 2019 International Conference on Cyberworlds (CW), pp. 128-134, (2019).
[25] D. Talsma and M. G. Woldorff, "Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity.” Journal of Cognitive Neuroscience, vol. 17, no. 7, pp. 1098-1114, (2005).
[26] Bhattacharyya, Saugat, Maureen Clerc, and Mitsuhiro Hayashibe. "Augmenting motor imagery learning for brain–computer interfacing using electrical stimulation as feedback." IEEE Transactions on Medical Robotics and Bionics, vol. 1.4, pp. 247-255, (2019).
[27] L. Yakovlev, N. Syrov and A. Kaplan, "The Impact of Afferent Periphery Stimulation on the mu-rhythm ERD During the Motor Imagery.” 2021 Third International Conference Neurotechnologies and Neurointerfaces (CNN), pp. 125-127, (2021).
[28] Achanccaray, David, Shin-Ichi Izumi, and Mitsuhiro Hayashibe. "Visual-electrotactile stimulation feedback to improve immersive brain-computer interface based on hand motor imagery." Computational Intelligence and Neuroscience 2021, pp. 1-13, (2021).
[29] Bardouille, Tim, T. W. Picton, and B. Ross. "Attention modulates beta oscillations during prolonged tactile stimulation." European Journal of Neuroscience 31.4 , p.p. 761-769. (2010).
[30] Grigorev, Nikita A., et al. "A BCI-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery." IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1583-1592, (2021).
[31] Lin, Chun-Ling, et al. "EEG correlates of haptic feedback in a visuomotor tracking task." NeuroImage, vol. 60.4, pp. 2258-2273, (2012).
[32] Hu, Yi-Qian, et al. "Motor imagery-based brain-computer interface combined with multimodal feedback to promote upper limb motor function after stroke: a preliminary study." Evidence-Based Complementary and Alternative Medicine 2021, pp. 1116126, (2021).
[33] Park, Wanjoo, Sung-Phil Kim, and Mohamad Eid. "Neural coding of vibration intensity." Frontiers in Neuroscience., vol. 15, pp. 682113, (2021).
[34] López-Larraz, Eduardo, et al. "Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: an artifact removal relevance analysis." NeuroImage: Clinical, vol. 20, pp. 972-986, (2018).
[35] G. Pfurtscheller and F. L. Da Silva, "Event-related EEG/MEG synchronization and desynchronization: basic principles.” Clinical neurophysiology, vol. 110, no. 11, pp. 1842-1857, (1999).
[36] W. Zhang, A. Song, H. Zeng, B. Xu and M. Miao, "The Effects of Bilateral Phase-Dependent Closed-Loop Vibration Stimulation With Motor Imagery Paradigm.” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2732-2742, (2022).
[37] Reed, Catherine L., Roberta L. Klatzky, and Eric Halgren. "What vs. where in touch: an fMRI study." Neuroimage, vol. 25.3, pp. 718-726, (2005).
[38] Feldmann, Lucia K., et al. "Subthalamic beta band suppression reflects effective neuromodulation in chronic recordings." European Journal of Neurology, vol. 28.7, pp. 2372-2377, (2021).
[39] Fabbri-Destro, Maddalena, and Giacomo Rizzolatti. "Mirror neurons and mirror systems in monkeys and humans." Physiology, vol. 23.3, pp. 171-179, (2008).
[40] Kim, Minju, and Sung-Phil Kim. "Distraction Impact of Concurrent Conversation on Event-Related Potential Based Brain-Computer Interfaces." bioRxiv, (2024).
指導教授 李柏磊(Po-Lei Lee) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明