博碩士論文 110521097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.16.130.110
姓名 張嘉芳(Chia-Fang Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 準 Z 源結合切換電感電容之單開關高升壓轉換器
(A Single Switch High Step-Up DC–DC Converter Utilizing Quasi-Z-Source Combined with Switched Inductor and Capacitor)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文提出一個新型架構結合準Z源與切換電感電容之高升壓轉換器,可用於太陽能發電應用。太陽能發電系統中需要高升壓直流-直流轉換器,將低源電壓提升到預定的高電壓側。
所提出的電路架構以二次升壓轉換器為基礎,將準 Z 源架構套入取代電感,使轉換器保有輸入電流連續的特性,同時降低電容的電壓應力,並且在較小的工作週期內,達到高電壓轉換比;再藉由切換電感電容拓撲,使轉換器可模組化成多階結構,根據應用層面擴增結構,以達到目標高電壓輸出;整體電路使用單開關做切換,因此只需單個控制信號及驅動電路,降低架構複雜度。
本研究針對所提出的轉換器架構進行了詳細的計算分析,以確定各參數和規格,並提供相關計算公式,以方便實際應用。此外,透過模擬和實際電路製作,並與其他高升壓拓撲進行比較,以驗證該轉換器架構的可行性和有效性。
摘要(英) This thesis proposes a novel architecture that combines the quasi-Z-source and switched inductor-capacitor frameworks for high step-up converters, which are applicable in solar power generation systems. High step-up DC-DC converters are essential in solar power systems to elevate the low source voltage to the predetermined high voltage level.
The proposed circuit architecture is based on quadratic boost converter, where the quasi-Z-source framework is incorporated to replace the inductor. This design ensures the continuous input current characteristic while reducing the voltage stress on the capacitors. Additionally, it achieves a high voltage conversion ratio within a smaller operating duty cycle. By integrating the switched inductor-capacitor topology, the converter can be modularized into multiple stages to achieve the desired high voltage output based on application requirements. The overall circuit utilizes a single switch for switching operation, resulting in simplified architecture with a single control signal and driver circuit.
Detailed calculations and analysis are conducted in this thesis to determine the parameters and specifications of the proposed converter architecture. Relevant calculation formulas are provided for practical implementation convenience. Furthermore, simulation and experimentation are conducted to implement the circuit and compare it with other high step-up topologies. The purpose is to validate the feasibility and effectiveness of the proposed converter architecture.
關鍵字(中) ★ 準 Z 源架構
★ 切換電感電容
★ 高電壓轉換比
★ 直流–直流轉換器
★ 非隔離式轉換器
關鍵字(英) ★ Quasi-Z-Source
★ Switched Inductor-Capacitor
★ High Voltage Conversion Ratio
★ DC-DC Converter
★ Non-Isolated Converter
論文目次 摘 要 ......................i
Abstract ..................ii
誌 謝 .....................iii
圖目錄 ....................vii
表目錄 ......................x
第一章 緒論 .................1
1-1 前言 ...................1
1-2 研究動機與目的 ..........5
1-3 論文架構 ...............6
第二章 升壓型轉換器 .........7
2-1 傳統升壓轉換器介紹 ......7
2-2 二次升壓轉換器介紹 ......8
2-3 Z 源轉換器介紹 .........10
第三章 轉換器電路設計 .......13
3-1 電路主架構分析 .........13
3-2 電路切換時序說明 .......15
3-3 電壓轉換比推導 .........20
3-4 元件設計 ...............22
3-4-1 電感設計 .............22
3-4-2 電容設計 .............23
3-5 元件電壓應力 ...........25
3-5-1 開關電壓應力計算 ......25
3-5-2 二極體電壓應力計算 .....25
3-6 元件電流應力 ............27
3-6-1 二極體電流應力計算 .....27
3-6-2 開關電流應力計算 .......28
第四章 電路模擬分析 ..........29
4-1 PSIM 電路模擬 ...........29
4-2 轉換器模擬波形 ..........30
4-2-1 結合準 Z 源與切換電感電容架構之二級轉換器 .........30
4-2-2 結合準 Z 源與切換電感電容架構之三級轉換器 .........35
4-3 架構比較 .........................................39
4-4 轉換器非理想元件分析 .............................45
4-4-1 本論文轉換器之功率損耗 ..........................47
4-4-2 本論文轉換器之效率及非理想增益估算 ...............53
4-5 PSIM 模擬非理想電路 ...............................55
第五章 電路實作與實驗結果 ..............................59
5-1 電路實作 ..........................................59
5-1-1 STM32F103 微控制器 ..............................60
5-1-2 轉換器電路設計 ...................................60
5-2 結合準 Z 源與切換電感電容架構之二級轉換器實驗結果 .....62
5-2-1 結合準 Z 源與切換電感電容架構之二級轉換器電路波形 ...62
5-2-3 轉換器效率 .......................................68
第六章 結論與未來研究方向 ...............................70
參考文獻 ...............................................72
參考文獻 [1] Frede Blaabjerg and Ke Ma, “Future on Power Electronics for Wind Turbine Systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., Vol. 1, No. 3, pp. 139–152, Sep. 2013.
[2] Tao Zhao, Xing Zhang, Wang Mao, Fusheng Wang, Jun Xu, Yilei Gu, and Xinyu Wang,“Single-Stage Three-Phase Current-Source Photovoltaic Grid-Connected Inverter High Voltage Transmission Ratio,” IEEE Trans. Ind. Electron., Vol. 65, No. 11, pp. 8635–8645, Nov. 2018.
[3] Tao Zhao, Xing Zhang, Wang Mao, Fusheng Wang, Jun Xu, Yilei Gu, and Xinyu Wang,“Analysis and Suppression of Resonant Current Envelope Ripple of LLC Converter in Cascaded Modular PV Solid-State Transformer,” IEEE Trans. Emerg. Sel. Topics Power Electron., Vol. 9, No. 3, pp. 3744–
3757, June 2021.
[4] Ali Ajami, Hossein Ardi, and Amir Farakhor,“A Novel High Step-up DC/DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications,” IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4255–4263, Aug. 2015.
[5] Hossein Ardi, Ali Ajami, and Mehran Sabahi,“A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications,” IEEE Trans. Ind. Electron., Vol. 65, No. 2, pp. 1306–1315, Feb. 2018.
[6] Mojtaba Forouzesh, Yanfeng Shen, Keyvan Yari, Yam P. Siwakoti, and Frede Blaabjerg, “High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems,” IEEE Trans. Power Electron., Vol. 33, No. 7, pp. 5967–5982, July 2018.
[7] Ping Wang, Lei Zhou, Yun Zhang, Jing Li, and Mark Sumner, “Input-Parallel Output-Series DC-DC Boost Converter With a Wide Input Voltage Range, For Fuel Cell Vehicles,” IEEE Trans. Veh. Technol., Vol. 66, No. 9, pp. 7771–7781, Sep. 2017.
[8] Minh-Khai Nguyen, Truong-Duy Duong, Young-Cheol Lim, and Yong-Jae Kim, “Isolated Boost DC–DC Converter With Three Switches,” IEEE Trans. Power Electron., Vol. 33, No. 2, pp. 1389–1398, Feb. 2018.
[9] Huawu Liu, Haibing Hu, Hongfei Wu, Yan Xing, and Issa Batarseh, “Overview of High-Step-Up Coupled-Inductor Boost Converters,” IEEE Trans. Emerg. Sel. Topics Power Electron., Vol. 4, No. 2, pp. 689–704, June 2016.
[10]N.P. Papanikolaou and E.C. Tatakis, “Active Voltage Clamp in Flyback Converters Operating in CCM Mode Under Wide Load Variation,” IEEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 632–640, June 2004.
[11]Chien-Ming Wang, “A Novel ZCS-PWM Flyback Converter With a Simple ZCS-PWM Commutation Cell,” IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 749–757, Feb. 2008.
[12]Tsai-Fu Wu, Yu-Sheng Lai, Jin-Chyuan Hung, and Yaow-Ming Chen, “Boost Converter With Coupled Inductors and Buck–Boost Type of Active Clamp,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 154–162, Jan. 2008.
[13]Mahmoodreza Eskandarpour Azizkandi, Farzad Sedaghati, Hossein Shayeghi, and Frede Blaabjerg, “A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell,”IEEE Trans. Power Electron., Vol. 35, No. 5, pp. 4558–4567, May 2020.
[14]Wuhua Li and Xiangning He, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239–1250, Apr. 2011.
[15]Marcos Antonio Salvador, Telles Brunelli Lazzarin, and Roberto Francisco Coelho, “High Step-Up DC–DC Converter With Active Switched-Inductor and Passive Switched-Capacitor Networks,” IEEE Trans. Ind. Electron., Vol. 65, No. 7, pp. 5644–5654, July 2018.
[16]Yifei Zheng and Keyue Ma Smedley, “Analysis and Design of a Single-Switch High Step-Up Coupled-Inductor Boost Converter,” IEEE Trans. Power Electron., Vol. 35, No. 1, pp. 535–545, Jan. 2020.
[17]Rong-Jong Wai, Chung-You Lin, Rou-Yong Duan, and Yung-Ruei Chang, “High-Efficiency DC-DC Converter With High Voltage Gain and Reduced Switch Stress,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 354–364, Feb. 2007.
[18]S.V. Cheong, S.H. Chung, and A. Ioinovici, “Development of Power Electronics Converters Based on Switched-Capacitor Circuits,” in Proc. IEEE Int. Symp. Circuits Syst. , 1992, pp. 1907-1910.
[19]R. Madeira and N. Paulino, “Analysis and Implementation of a Power Management Unit With a Multiratio Switched Capacitor DC–DC Converter for a Supercapacitor Power Supply,” Int. J. Circuit Theory Appl., Vol. 44, No. 11, pp. 2018–2034, Nov. 2016.
[20]M. Soltani, A. Mostaan, Y. P. Siwakoti, P. Davari, and F. Blaabjerg, “Family of Step-Up DC/DC Converters With Fast Dynamic Response for Low Power Applications,” IET Power Electron., Vol. 9, No. 14, pp. 2665–2673, Nov. 2016.
[21]Antonio Manuel Santos Spencer Andrade, Tiago Miguel Klein Faistel, Ronaldo Antonio Guisso, and Ademir Toebe, “Hybrid High Voltage Gain Transformerless DC–DC Converter,” IEEE Trans. Ind. Electron., Vol. 69, No. 3, pp. 2470–2479, Mar. 2022.
[22]Zahra Saadatizadeh, Pedram Chavoshipour Heris, Mehran Sabahi, and Ebrahim Babaei, “A DC–DC Transformerless High Voltage Gain Converter With Low Voltage Stresses on Switches and Diodes,” IEEE Trans. Power Electron., Vol. 34, No. 11, pp. 10600–10609, Nov. 2019.
[23]M. Lakshmi and S. Hemamalini, “Nonisolated High Gain DC–DC Converter for DC Microgrids,” IEEE Trans. Ind. Electron., Vol. 65, No. 2, pp. 1205–1212, Feb. 2018.
[24]Yu Tang, Dongjin Fu, Ting Wang, and Zhiwei Xu, “Hybrid SwitchedInductor Converters for High Step-Up Conversion,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1480–1490, Mar. 2015.
[25]Dunisha S. Wijeratne and Gerry Moschopoulos, “Quadratic Power Conversion for Power Electronics: Principles and Circuits,” IEEE Trans. Circuits Syst. I: Regul. Pap., Vol. 59, No. 2, pp. 426–438, Feb. 2012.
[26]Yuan-mao Ye and Ka Wai Eric Cheng , “Quadratic boost converter with low buffer capacitor stress,” IET Power Electron., Vol. 7, No. 5, 1162–1170, May 2014.
[27]Fang Zheng Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504–510, Mar.-Apr. 2003.
[28]Joel Anderson and F.Z. Peng, “Four Quasi-Z-Source Inverters,” in Proc. IEEE Power Electron. Spec. Conf., June 2008, pp. 2743–2749.
[29]Hanyun Shen, Bo Zhang, and Dongyuan Qiu, “Hybrid Z-Source Boost DC–DC Converters,” IEEE Trans. Ind. Electron., Vol. 64, No. 1, pp. 310–319, Jan. 2017.
[30]P. Padmavathi and S. Natarajan, “Single switch quasi z-source based high voltage gain DC–DC converter,” Int. Trans. Elect. Energy Syst., Vol. 30, No. 7, July 2020.
[31]Ramin Rahimi, Saeed Habibi, Mehdi Ferdowsi, and Pourya Shamsi, “Z-Source-Based High Step-Up DC–DC Converters for Photovoltaic Applications,” IEEE Access, Vol. 9, pp. 10228–10238, Jan. 2021.
[32]Jiawei Zhao, Daolian Chen, and Jiahui Jiang, “Transformerless High Step-Up DC-DC Converter With Low Voltage Stress for Fuel Cells,” IEEE Trans. Power Electron., Vol. 33, No. 12, pp. 10563–10571, Dec. 2018.
[33]Jie Zhang and Jing Ge, “Analysis of Z-source DC-DC Converter in Discontinuous Current Mode,” 2010 Asia-Pacific Power and Energy Engineering Conference, Mar. 2010.
[34]Guidong Zhang, Ziyang Wu, Shenglong S. Yu, Hieu Trinh, and Yun Zhang, “Four Novel Embedded Z-Source DC–DC Converters,” IEEE Trans. Power Electron., Vol. 37, No. 1, pp. 607–616, Jan. 2022.
[35]Mummadi Veerachary and Poorna Sen, “Dual-Switch Enhanced Gain Boost DC–DC Converters,” IEEE Trans. Ind. Appl., Vol. 58, No. 4, pp. 4903–4913, July-Aug. 2022.
[36]Yigeng Huangfu, Rui Ma, Ben Zhao, Zehua Liang, Yuhui Ma, Aiben Wang, Dongdong Zhao, Haiyan Li, and Rui Ma, “A Novel Robust Smooth Control of Input Parallel Output Series Quasi-Z-Source DC–DC Converter for Fuel Cell Electrical Vehicle Applications,” IEEE Trans. Ind. Appl., Vol. 57, No. 4, pp. 4207–4221, July-Aug. 2021.
[37]Junfeng Liu, Jialei Wu, Jianyong Qiu, and Jun Zeng, “Switched Z-Source/Quasi-Z-Source DC-DC Converters With Reduced Passive Components for Photovoltaic Systems,” IEEE Access, Vol. 7, pp. 40893–40903, Mar. 2019
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明