參考文獻 |
[1] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia, 2007.
[2] D. S. Balsara. An analysis of the hyperbolic nature of the equations of radiation hydrodynamics. Journal of Quantitative Spectroscopy and Radiative Transfer, 61:617–627, 1999.
[3] A. Jameson. The evolution of computational methods in aerodynamics. Journal of Applied Mechanics, 50:1052–1070, 1983.
[4] G. Boillat. Nonlinear electrodynamics: Lagrangians and equations of motion. Journal of Mathematical Physics, 11:941–951, 1970.
[5] R. M. Colombo. Hyperbolic phase transitions in traffic flow. SIAM Journal on Applied Mathematics, 63:708–721, 2003.
[6] X. Dai and Y. Maday. Stable parareal in time method for first-and second-order hyperbolic systems. SIAM Journal on Scientific Computing, 35:A52–A78, 2013.
[7] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel timeintegration method. SIAM Journal on Scientific Computing, 29:556–578, 2007.
[8] A. J. Howse, H. De Sterck, R. D. Falgout, S. MacLachlan, and J. Schroder. Parallel-in- time multigrid with adaptive spatial coarsening for the linear advection and inviscid Burgers equations. SIAM Journal on Scientific Computing, 41:A538–A565, 2019.
[9] X. Deng, X.-C. Cai, and J. Zou. A parallel space–time domain decomposition method for unsteady source inversion problems. Inverse Problems and Imaging, 9:1069–1091, 2015.
[10] X. Deng, X.-C. Cai, and J. Zou. Two-level space–time domain decomposition methods for three-dimensional unsteady inverse source problems. Journal of Scientific Computing, 67:860–882, 2016.
[11] A. T. Barker and M. Stoll. Domain decomposition in time for PDE-constrained optimization. Computer Physics Communications, 197:136–143, 2015.
[12] H. Yang and X.-C. Cai. Two-level space–time domain decomposition methods for flow control problems. Journal of Scientific Computing, 70:717–743, 2017.
[13] T.-T.-P. Hoang, C. Japhet, M. Kern, and J.E. Roberts. Space-time domain decomposition for reduced fracture models in mixed formulation. SIAM Journal on Numerical Analysis, 54:288–316, 2016.
[14] M. Zheng, F. Liu, I. Turner, and V. Anh. A novel high order space-time spectral method for the time fractional Fokker–Planck equation. SIAM Journal on Scientific Computing, 37:A701–A724, 2015.
[15] H. Yang and F.-N. Hwang. A nonlinear elimination preconditioner for fully coupled space-time solution algorithm with applications to high-Rayleigh number thermal convective flow problems. Communications in Computational Physics, 26:749–767, 2019.
[16] S. Li and X.-C. Cai. Convergence analysis of two-level space-time additive Schwarz method for parabolic equations. SIAM Journal on Numerical Analysis, 53:2727– 2751, 2015.
[17] X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM Journal on Scientific Computing, 24:183–200, 2002.
[18] F.-N. Hwang and X.-C. Cai. Improving robustness and parallel scalability of Newton method through nonlinear preconditioning. In Lecture Notes in Computational Science and Engineering, pages 201–208. Springer-Verlag, Heidelberg, 2004.
[19] L. Liu, D. E. Keyes, and S. Sun . Fully implicit two-phase reservoir simulation with the additive Schwarz preconditioned inexact Newton method. In SPE Reservoir Characterization and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2013.
[20] H.-B. An. On convergence of the additive Schwarz preconditioned inexact Newton method. SIAM Journal on Numerical Analysis, 43:1850–1871, 2005.
[21] S. H. Lui. Nonlinearly preconditioned Newton’s method. In Proceedings of the 14th International Conference on Domain Decomposition Methods, Cocoyoc, Mexico, pages 95–105. Citeseer, 2002.
[22] C. Groß and R. Krause. On the globalization of ASPIN employing trust-region control strategies–convergence analysis and numerical examples. arXiv preprint arXiv:2104.05672, 2021.
[23] O. Moyner Ø. Klemetsdal, A. Moncorgé and K. Lie. Additive Schwarz preconditioned exact Newton method as a nonlinear preconditioner for multiphase porous media flow. In ECMOR XVII, volume 2020, pages 1–20. European Association of Geoscientists & Engineers, 2020.
[24] O. Møyner, A. F. Rasmussen, Ø. Klemetsdal, H. M. Nilsen, A. Moncorgé, and K.- A. Lie. Nonlinear domain-decomposition preconditioning for robust and efficient field-scale simulation of subsurface flow. Computational Geosciences, 28:241–251, 2024.
[25] Ø. Klemetsdal, A. Moncorgé, O. Møyner, and K.-A. Lie. A numerical study of the additive Schwarz preconditioned exact Newton method (ASPEN) as a nonlinear preconditioner for immiscible and compositional porous media flow. Computational Geosciences, 26:1045–1063, 2022.
[26] L. Liu and D. E. Keyes. Field-split preconditioned inexact Newton algorithms. SIAM Journal on Scientific Computing, 37:A1388–A1409, 2015.
[27] L. Liu and D. E. Keyes. Convergence analysis for the multiplicative Schwarz preconditioned inexact Newton algorithm. SIAM Journal on Numerical Analysis, 54:3145– 3166, 2016.
[28] H. Yu L. Liu, W. Gao and D. E. Keyes. Overlapping multiplicative Schwarz preconditioning for linear and nonlinear systems. Journal of Computational Physics, 496:112548, 2024.
[29] L. Liu, W. Zhang, and D. E. Keyes. Nonlinear multiplicative Schwarz preconditioning in natural convection cavity flow. In Domain Decomposition Methods in Science and Engineering XXIII, pages 227–235. Springer, 2017.
[30] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM Journal on Scientific Computing, 38:A3357–A3380, 2016.
[31] P. M. Kumbhar F. Chaouqui, M. J. Gander and T. Vanzan. Linear and nonlinear substructured restricted additive Schwarz iterations and preconditioning. Numerical Algorithms, 91:81–107, 2022.
[32] F. Chaouqui, M. J. Gander, P. M. Kumbhar, and T. Vanzan. On the nonlinear Dirichlet–Neumann method and preconditioner for Newton’s method. In Domain Decomposition Methods in Science and Engineering XXVI, pages 381–389. Springer, 2023.
[33] G. Ciaramella and L. Mechelli. An overlapping waveform relaxation preconditioner for economic optimal control problems with state constraints. In Domain Decomposition Methods in Science and Engineering XXVI, pages 461–469. Springer, 2023.
[34] F.-N. Hwang and X.-C. Cai. A combined linear and nonlinear preconditioning technique for incompressible Navier-Stokes equations. In International Workshop on Applied Parallel Computing, pages 313–322. Springer, 2004.
[35] X.-C. Cai, D. E. Keyes, and L. Marcinkowski. Non-linear additive Schwarz preconditioners and application in computational fluid dynamics. International Journal for Numerical Methods in Fluids, 40:1463–1470, 2002.
[36] L. Marcinkowski and X.-C. Cai. Parallel performance of some two-level ASPIN algorithms. In Domain Decomposition Methods in Science and Engineering, pages 639–646. Springer, 2005.
[37] F.-N. Hwang and X.-C. Cai. A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms. Computer Methods in Applied Mechanics and Engineering, 196:1603–1611, 2007.
[38] X.-C. Cai, L. Marcinkowski, and P. S. Vassilevski. An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems. Applications of Mathematics, 50:247–275, 2005.
[39] G. Ciaramella, F. Kwok, and G. Müller. A nonlinear optimized Schwarz preconditioner for elliptic optimal control problems. In Domain Decomposition Methods in
Science and Engineering XXVI, pages 391–398. Springer, 2023.
[40] Z. Y. Wong, F. Kwok, R. N. Horne, and H. A. Tchelepi. Sequential-implicit Newton method for multiphysics simulation. Journal of Computational Physics, 391:155–178, 2019.
[41] E. Keilegavlen, J. O. Skogestad, and J. M. Nordbotten. Domain decomposition preconditioning for non-linear elasticity problems. In Proceedings of 11th World Congress of Computational Mechanics. International Centre for Numerical Methods in Engineering, 2014.
[42] H. De Sterck and M. Winlaw. A nonlinearly preconditioned conjugate gradient algorithm for rank-R canonical tensor approximation. Numerical Linear Algebra with Applications, 22:410–432, 2015.
[43] C. Andrea, F. Giovanni, and R. Massimo. Preconditioning strategies for nonlinear conjugate gradient methods, based on quasi-Newton updates. In AIP conference proceedings, volume 1776. AIP Publishing, 2016.
[44] M. Al-Baali, A. Caliciotti, G. Fasano, and M. Roma. Quasi-Newton based preconditioning and damped quasi-Newton schemes for nonlinear conjugate gradient methods. Numerical Analysis and Optimization, pages 1–21. Springer, 2018.
[45] A. Caliciotti, G. Fasano, and M. Roma. Preconditioned nonlinear conjugate gradient methods based on a modified secant equation. Applied Mathematics and Computation, 318:196–214, 2018.
[46] H. De Sterck and A. J. Howse. Nonlinearly preconditioned L-BFGS as an acceleration mechanism for alternating least squares with application to tensor decomposition. Numerical Linear Algebra with Applications, 25:e2202, 2018.
[47] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimization approach for fitting canonical tensor decompositions. Journal of Chemometrics, 25:67–86, 2011.
[48] H. De Sterck. A nonlinear GMRES optimization algorithm for canonical tensor decomposition. SIAM Journal on Scientific Computing, 34:A1351–A1379, 2012.
[49] H. De Sterck. Steepest descent preconditioning for nonlinear GMRES optimization. Numerical Linear Algebra with Applications, 20:453–471, 2013.
[50] H. De Sterck and A. Howse. Nonlinearly preconditioned optimization on grassmann manifolds for computing approximate Tucker tensor decompositions. SIAM Journal on Scientific Computing, 38:A997–A1018, 2016.
[51] H. De Sterck, Y. He, and O. A. Krzysik. Anderson acceleration as a Krylov method with application to asymptotic convergence analysis. arXiv preprint arXiv:2109.14181, 2021.
[52] D. Wang, Y. He, and H. De Sterck. On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM. Journal of Scientific Computing, 88:38, 2021.
[53] H. De Sterck and Y. He. On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES. SIAM Journal on Scientific Computing, 43:S21–S46, 2021.
[54] S. Wang, P. H. Winterfeld, and Y.-S. Wu. An efficient adaptive nonlinearity elimination preconditioned inexact Newton method for parallel simulation of thermalhydraulic- mechanical processes in fractured reservoirs. SPE Reservoir Simulation Conference, page D011S002R003. SPE, 2015.
[55] X.-C. Cai and X. Li. Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems with high local nonlinearity. SIAM Journal on Scientific Computing, 33:746–762, 2011.
[56] L. Luo, R. Chen, X.-C. Cai, and D. E. Keyes. A nonlinear elimination preconditioned inexact Newton algorithm for steady state incompressible flow problems on 3D unstructured meshes. In Domain Decomposition Methods in Science and Engineering XXV, pages 441–449. Springer, 2020.
[57] H. Yang and F.-N. Hwang. An adaptive nonlinear elimination preconditioned inexact Newton algorithm for highly local nonlinear multicomponent PDE systems. Applied Numerical Mathematics, 133:100–115, 2018.
[58] S.-R. Cai and F.-N. Hwang. A hybrid-line-and-curve search globalization technique for inexact Newton methods. Applied Numerical Mathematics, 173:79–93, 2022.
[59] P. Gosselet, C. Negrello, and C. Rey. Nonlinearly preconditioned FETI method. In MAFELAP, 2019.
[60] A. Klawonn, M. Lanser, and O. Rheinbach. Nonlinear FETI-DP and BDDC methods. SIAM Journal on Scientific Computing, 36:A737–A765, 2014.
[61] A. Klawonn, M. Lanser, and M. Uran. Adaptive nonlinear elimination in nonlinear FETI-DP methods. In Domain Decomposition Methods in Science and Engineering XXVI, pages 337–345. Springer International Publishing, 2022.
[62] C. Negrello, P. Gosselet, and C. Rey. Nonlinearly preconditioned FETI solver for substructured formulations of nonlinear problems. Mathematics, 9:3165, 2021.
[63] A. Heinlein, A. Klawonn, and M. Lanser. Adaptive nonlinear domain decomposition methods with an application to the p-Laplacian. SIAM Journal on Scientific Computing, 45:S152–S172, 2022.
[64] A. Klawonn, M. Lanser, and O. Rheinbach. Nonlinear BDDC methods with approximate solvers. Electronic Transactions on Numerical Analysis, 49:244–273, 2018.
[65] A. Klawonn, M. Lanser, O. Rheinbach, and M. Uran. Nonlinear FETI-DP and BDDC methods: a unified framework and parallel results. SIAM Journal on Scientific Computing, 39:C417–C451, 2017.
[66] H. Yang, S. Sun, and C. Yang. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media. Journal of Computational Physics, 332:1–20, 2017.
[67] F.-N. Hwang, H.-L. Lin, and X.-C. Cai. Two-level nonlinear elimination based preconditioners for inexact Newton methods with application in shocked duct flow calculation. Electronic Transactions on Numerical Analysis, 37:239–251, 2010.
[68] F.-N. Hwang, Y.-C. Su, and X.-C. Cai. A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential equation. Computers and Fluids, 110:96–107, 2015.
[69] H. Tang, S. Wang, C. Yin, Y. Di, Y.-S. Wu, and Y. Wang. Fully-coupled multiphysical simulation with physics-based nonlinearity-elimination preconditioned inexact Newton method for enhanced oil recovery. Communications in Computational Physics, 1:244–265, 2019.
[70] L. Luo, X.-C. Cai, Z. Yan, L. Xu, and D. E. Keyes. A multilayer nonlinear elimination preconditioned inexact Newton method for steady-state incompressible flow problems in three dimensions. SIAM Journal on Scientific Computing, 42:B1404– B1428, 2020.
[71] H. Yang, Y. Li, and S. Sun. Nonlinearly preconditioned constraint-preserving algorithms for subsurface three-phase flow with capillarity. Computer Methods in Applied Mechanics and Engineering, 367:113140, 2020.
[72] H. Yang, S. Sun, Y. Li, and C. Yang. Parallel reservoir simulators for fully implicit complementarity formulation of multicomponent compressible flows. Computer Physics Communications, 244:2–12, 2019.
[73] L. Luo, X.-C. Cai, and D. E. Keyes. Nonlinear preconditioning strategies for two-phase flows in porous media discretized by a fully implicit discontinuous Galerkin method. SIAM Journal on Scientific Computing, 43:S317–S344, 2021.
[74] L. Luo, W.-S. Shiu, R. Chen, and X.-C. Cai. A nonlinear elimination preconditioned inexact Newton method for blood flow problems in human artery with stenosis. Journal of Computational Physics, 399:108926, 2019.
[75] S. Gong and X.-C. Cai. A nonlinear elimination preconditioned inexact Newton method for heterogeneous hyperelasticity. SIAM Journal on Scientific Computing, 41:S390–S408, 2019.
[76] S. Gong and X.-C. Cai. A nonlinear elimination preconditioned Newton method with applications in arterial wall simulation. In Domain Decomposition Methods in Science and Engineering XXIV, pages 353–361. Springer, 2018.
[77] J. Huang, C. Yang, and X.-C. Cai. A nonlinearly preconditioned inexact Newton algorithm for steady Lattice Boltzmann equations. SIAM Journal on Scientific Computing, 38:A1701–A1724, 2016.
[78] T. A. Brunner, T. S. Haut, and P. F. Nowak. Nonlinear elimination applied to radiation diffusion. Nuclear Science and Engineering, 194:939–951, 2020.
[79] L. Liu, F.-N. Hwang, L. Luo, X.-C. Cai, and D. E. Keyes. A nonlinear elimination preconditioned inexact Newton algorithm. SIAM Journal on Scientific Computing, 44:A1579–A1605, 2022.
[80] L. Luo and X.-C. Cai. Preconditioned inexact Newton with learning capability for nonlinear system of equations. SIAM Journal on Scientific Computing, 45:A849– A871, 2023.
[81] C. Hu. On widening region of convergence for Newton’s method–a numerical ODE perspective. International Journal of Computer Mathematics, 78:433–444, 2001.
[82] N. C. Nguyen, P. Fernandez, R. M. Freund, and J. Peraire. Accelerated residual methods for the iterative solution of systems of equations. SIAM Journal on Scientific Computing, 40:A3157–A3179, 2018.
[83] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser, Basel, 1992.
[84] D. P. Ballou. Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions. Transactions of the American Mathematical Society, 152:441–460, 1970.
[85] S. Marx, T. Weisser, D. Henrion, and J. Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. arXiv preprint arXiv:1807.02306, 2018.
[86] L. Schneider, R. di Chiara Roupert, G. Schäfer, and P. Helluy. Highly gravity-driven flow of a NAPL in water-saturated porous media using the discontinuous Galerkin finite-element method with a generalised Godunov scheme: Highly gravity-driven flow of a NAPL in water-saturated porous media. Computational Geosciences, 19:855–876, 2015.
[87] P. H. Iryanto, Gunawan. An OpenMP parallel Godunov scheme for 1D two phase oil displacement problem. In 2017 5th International Conference on Information and Communication Technology (ICoIC7), pages 1–5. IEEE, 2017.
[88] C. W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. Journal of Computational Physics, 83:32–78, 1989.
[89] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM Journal on Numerical Analysis, 19:400–408, 1982.
[90] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.
[91] H. Yang, F.-N. Hwang, and X.-C. Cai. Nonlinear preconditioning techniques for fullspace Lagrange-Newton solution of PDE-constrained optimization problems. SIAM Journal on Scientific Computing, 5:A2756–A2778, 2016.
[92] K. Jittorntrum. An implicit function theorem. Journal of Optimization Theory and Applications, 25:575–577, 1978.
[93] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7:856–869, 1986.
[94] Y. Zhu and A. H. Sameh. How to generate effective block Jacobi preconditioners for solving large sparse linear systems. Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, pages 231–244, 2016.
[95] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie. Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. The Journal of Chemical Physics, 119:12784–12794, 2003.
[96] L. J. Pyrak-Nolte and J. P. Morris. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow. International Journal of Rock Mechanics and Mining Sciences, 37:245–262, 2000.
[97] S.-H. Weng, Q. Chen, N. Wong, and C.-K. Cheng. Circuit simulation via matrix exponential method for stiffness handling and parallel processing. In Proceedings of the International Conference on Computer-Aided Design, pages 407–414, 2012.
[98] C. F. Curtiss and J. O. Hirschfelder. Integration of stiff equations. Proceedings of the National Academy of Sciences, 38:235–243, 1952.
[99] C. W. Gear. The automatic integration of ordinary differential equations. Communications of the ACM, 14:176–179, 1971.
[100] J. G. Verwer. An analysis of Rosenbrock methods for nonlinear stiff initial value problems. SIAM Journal on Numerical Analysis, 19:155–170, 1982.
[101] L. F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SIAM Journal on Scientific Computing, 18:1–22, 1997.
[102] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10:241–256, 1973.
[103] G. W. Stewart. On the sensitivity of the eigenvalue problem Ax = λBx. SIAM Journal on Numerical Analysis, 9:669–686, 1972.
[104] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 4th edition, 2013.
[105] R. A. Jabr, M. Hamad, and Y. M. Mohanna. Newton-Raphson solution of Poisson’s equation in a pn diode. International Journal of Electrical Engineering Education, 44:23–33, 2007.
[106] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, and J. E. Bussoletti. A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. Journal of Computational Physics, 92:1–66, 1991.
[107] W. Gander and G. H. Golub. Cyclic reduction-history and applications. In Scientific Computing: Proceedings of the Workshop, 10-12 March 1997, Hong Kong, page 73. Springer Science & Business Media, 1998.
[108] D. I. Ketcheson, R. J. LeVeque, and M. J. del Razo. Riemann Problems and Jupyter Solutions. SIAM, Philadelphia, 2020.
[109] C. B. Laney. Computational Gasdynamics. Cambridge University Press, Cambridge, 1998.
[110] O. Castro-Orgaz and W. H. Hager. Shallow Water Hydraulics. Springer, New York, 2019.
[111] F. Benkhaldoun and M. Seaïd. A simple finite volume method for the shallow water equations. Journal of Computational and Applied Mathematics, 234:58–72, 2010.
[112] P. L. Roe. Characteristic-based schemes for the Euler equations. Annual Review of fluid Mechanics, 18:337–365, 1986. |