博碩士論文 111521055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:121 、訪客IP:3.135.200.121
姓名 林子平(Tzu-Ping Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 機器學習和腦電功能性網路應用於重度憂鬱症與頑固性癲癇的治療效果之預測
(Prediction of Treatment Effects for Major Depressive Disorder and Refractory Epilepsy Using Machine Learning and EEG Functional Networks)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-25以後開放)
摘要(中) 臨床變數(Clinical Variables)是疾病診斷和治療效果預測的重要依據,然而臨床變數有其侷限性,像是重鬱症(Major depressive disorder, MDD)和癲癇(Epilepsy)這類常見精神或神經疾病,臨床變數無法有效反應大腦的情況。
本研究從腦電圖(Electroencephalography)中提取功能網路(Functional Connectivity)和功率(Power),並結合臨床變數,使用留一交叉驗證(Leave-One-Out Cross-Validation, LOOCV)和機器學習的分類器進行訓練,應用於三個子題目,分別為「重鬱症之診斷」、「重鬱症之療效預測」和「頑固性癲癇之療效預測」。
「重鬱症之診斷」的目標為「透過腦電圖和臨床變數輔助診斷重鬱症」,共蒐集到77位病患和46健康者的腦電圖以及臨床變數。最好的診斷效果為絕對功率(Absolute Power)配上Medium KNN時,精確率(Precision)為0.881、召回率(Recall)為0.961、特異性(Specificity)為0.783、準確率(Accuracy)為0.894、F1 Score為0.919、曲線下面積(Area Under Curve, AUC)為0.876。
「重鬱症之療效預測」的目標為「透過腦電圖和臨床變數輔助預測重鬱症患者接受治療後4、6和8週的療效」,共蒐集到77位病患治療前的腦電圖、治療後一週的腦電圖以及臨床變數。
預測治療後4週的療效時,最好的診斷效果為治療後一週腦電圖(W1)的相位鎖定值(Phase Locking Value,PLV)和Absolute Power配上Fine Tree或Medium Tree時,Precision為0.704、Recall為0.792、Specificity為0.849、Accuracy為0.831、F1 Score為0.745、AUC為0.818。
預測治療後6週的療效時,最好的診斷效果為治療後一週腦電圖特徵減去治療前腦電圖特徵(W1-W0)的PLV、相對功率(Relative Power)和臨床變數配上Coarse Gaussian SVM時,Precision為0.724、Recall為0.724、Specificity為0.742、Accuracy為0.733、F1 Score為0.724、AUC為0.772。
預測治療後8週的療效時,最好的診斷效果為治療後一週腦電圖特徵減去治療前腦電圖特徵(W1-W0)的Absolute Power和臨床變數配上Coarse Tree時, Precision為0.675、Recall為0.849、Specificity為0.519、Accuracy為0.700、F1 Score為0.757、AUC為0.790。
「頑固性癲癇之療效預測」的目標為「過腦電圖輔助預測頑固性癲癇患者接受生酮飲食治療後3和6個月的療效」,共蒐集到90位病患的腦電圖。
預測治療後3個月的療效時,最好的診斷效果為PLV和Relative Power配上Fine Tree或Medium Tree時,Precision為0.831、Recall為0.817、Specificity為0.667、Accuracy為0.767、F1 Score為0.824、AUC為0.760。
預測治療後6個月的療效時,最好的診斷效果為PLV和Absolute Power配上Linear SVM時,Precision為0.800、Recall為0.963、Specificity為0.000、Accuracy為0.776、F1 Score為0.874、AUC為0.752。
摘要(英) Clinical variables are crucial for diagnosing diseases and predicting treatment outcomes. However, they have limitations, particularly for common psychiatric or neurological disorders like Major Depressive Disorder (MDD) and Epilepsy, where clinical variables cannot effectively reflect the brain′s condition.
This study extracts functional connectivity and power from electroencephalography (EEG) and combines these with clinical variables. The data are then trained using Leave-One-Out Cross-Validation (LOOCV) and machine learning classifiers, applied to three sub-topics: "Diagnosis of Major Depressive Disorder," "Prediction of Treatment Efficacy for Major Depressive Disorder," and "Prediction of Treatment Efficacy for Refractory Epilepsy.
The goal of the "Diagnosis of Major Depressive Disorder" is to "assist in diagnosing MDD through EEG and clinical variables." A total of 77 patients and 46 healthy individuals′ EEG and clinical variables were collected. The best diagnostic result was achieved using Absolute Power with Medium KNN, yielding a Precision of 0.881, Recall of 0.961, Specificity of 0.783, Accuracy of 0.894, F1 Score of 0.919, and AUC of 0.876.
The goal of the "Prediction of Treatment Efficacy for Major Depressive Disorder" is to "assist in predicting the efficacy of treatment after 4, 6, and 8 weeks using EEG and clinical variables." EEGs before treatment, EEGs one week after treatment, and clinical variables from 77 patients were collected.
For predicting treatment efficacy at 4 weeks, the best result was achieved using W1 EEG PLV and Absolute Power with Fine Tree or Medium Tree, yielding a Precision of 0.704, Recall of 0.792, Specificity of 0.849, Accuracy of 0.831, F1 Score of 0.745, and AUC of 0.818.
For 6 weeks, the best result was achieved using W1-W0 EEG PLV, Relative Power, and clinical variables with Coarse Gaussian SVM, yielding a Precision of 0.724, Recall of 0.724, Specificity of 0.742, Accuracy of 0.733, F1 Score of 0.724, and AUC of 0.772.
For 8 weeks, the best result was achieved using W1-W0 EEG Absolute Power and clinical variables with Coarse Tree, yielding a Precision of 0.675, Recall of 0.849, Specificity of 0.519, Accuracy of 0.700, F1 Score of 0.757, and AUC of 0.790.
The goal of the "Prediction of Treatment Efficacy for Refractory Epilepsy" is to "assist in predicting the efficacy of ketogenic diet treatment after 3 and 6 months using EEG." EEGs from 90 patients were collected.
For predicting treatment efficacy at 3 months, the best result was achieved using PLV and Relative Power with Fine Tree or Medium Tree, yielding a Precision of 0.831, Recall of 0.817, Specificity of 0.667, Accuracy of 0.767, F1 Score of 0.824, and AUC of 0.760.
For 6 months, the best result was achieved using PLV and Absolute Power with Linear SVM, yielding a Precision of 0.800, Recall of 0.963, Specificity of 0.000, Accuracy of 0.776, F1 Score of 0.874, and AUC of 0.752.
關鍵字(中) ★ 腦電圖
★ 重鬱症
★ 頑固性癲癇
★ 機器學習
關鍵字(英) ★ Electroencephalography
★ Major Depressive Disorder
★ Refractory Epilepsy
★ Machine Learning
論文目次 摘要 i
Abstract iv
致謝 vii
目錄 viii
圖目錄 xiii
表目錄 xv
第一章 緒論 1
1.1研究動機 1
1.2重鬱症 2
1.3頑固性癲癇 3
1.4腦電圖 4
1.5功能網路 5
1.6功率頻譜密度 6
1.7文獻回顧 6
1.7.1重鬱症 6
1.7.2頑固性癲癇 7
1.8論文架構 8
第二章 研究方法 9
2.1重鬱症之診斷 9
2.1.1資料集 9
2.1.2腦電圖前處理 10
2.1.3特徵提取 11
2.1.4機器學習 15
2.2重鬱症之療效預測 20
2.2.1資料集 20
2.2.2腦電圖前處理 22
2.2.3特徵提取 23
2.2.4機器學習 26
2.3頑固性癲癇之療效預測 30
2.3.1資料集 30
2.3.2腦電圖前處理 31
2.3.3特徵提取 33
2.3.4機器學習 35
2.4評估指標 38
第三章 研究結果 42
3.1重鬱症之診斷 42
3.2重鬱症之療效預測 44
3.2.1 W4的預測結果 44
3.2.2 W6的預測結果 45
3.2.3 W8的預測結果 46
3.3頑固性癲癇之療效預測 47
3.3.1 M3的預測結果 47
3.3.2 M6的預測結果 49
第四章 討論 51
4.1腦電圖和臨床變數結合之效果 51
4.1.1重鬱症之診斷 51
4.1.2重鬱症之療效預測 53
4.2資料增量 54
4.2.1 SMOTE 55
4.2.2 Borderline-SMOTE 57
4.2.3 ADASYN 59
4.2.4 Safe-Level-SMOTE 61
4.3特徵選擇 65
4.4不同的功能網路計算方式 68
4.5遇到的問題 70
4.6未來發展的方向 71
4.6.1對特徵使用Z分數標準化 71
4.6.2使用深度卷積網路進行特徵提取 71
第五章 結論 72
參考文獻 74
附錄 A. 分類器評估指標的詳細數據 79
A.1重鬱症之診斷 79
A.2重鬱症之療效預測 95
A.2.1治療後4週 95
A.2.2治療後6週 143
A.2.3治療後8週 191
A.3頑固性癲癇之療效預測 239
A.3.1治療後3個月 239
A.3.2治療後6個月 247
附錄B. 受試者的詳細資料 255
B.1重鬱症之診斷 255
B.2重鬱症之療效預測 257
B.3頑固性癲癇之療效預測 260
參考文獻 1.C. Alves, A. Pineda, K. Roster, C. Thielemann, and F. Rodrigues, "EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia," Journal of Physics: Complexity, vol. 3, p. 025001, 04/13 2022, doi: 10.1088/2632-072X/ac5f8d.
2.S. M. Park et al., "Identification of Major Psychiatric Disorders From Resting-State Electroencephalography Using a Machine Learning Approach," (in eng), Front Psychiatry, vol. 12, p. 707581, 2021, doi: 10.3389/fpsyt.2021.707581.
3.E. A. O′Connor, E. P. Whitlock, B. Gaynes, and T. L. Beil, "U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews," in Screening for Depression in Adults and Older Adults in Primary Care: An Updated Systematic Review. Rockville (MD): Agency for Healthcare Research and Quality (US), 2009.
4.張家銘, 藍色病毒- 我和我們的憂鬱症, 2019, https://topic.udn.com/event/health_depression
5.R. C. Kessler et al., "The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R)," (in eng), Jama, vol. 289, no. 23, pp. 3095-105, Jun 18 2003, doi: 10.1001/jama.289.23.3095.
6.T. P. Sokero, T. K. Melartin, H. J. Rytsälä, U. S. Leskelä, P. S. Lestelä-Mielonen, and E. T. Isometsä, "Suicidal ideation and attempts among psychiatric patients with major depressive disorder," (in eng), J Clin Psychiatry, vol. 64, no. 9, pp. 1094-100, Sep 2003, doi: 10.4088/jcp.v64n0916.
7.(2012). Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level: report by the Secretariat. [Online] Available: https://iris.who.int/handle/10665/78898
8.H. M. de Boer, M. Mula, and J. W. Sander, "The global burden and stigma of epilepsy," Epilepsy & Behavior, vol. 12, no. 4, pp. 540-546, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.yebeh.2007.12.019.
9.M. Teplan, "Fundementals of EEG measurement," Measurement Science Review, vol. 2, pp. 1-11, 01/01 2002.
10.Nayak CS, Anilkumar AC. EEG Normal Waveforms. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539805/
11.C. Linnman, E. A. Moulton, G. Barmettler, L. Becerra, and D. Borsook, "Neuroimaging of the periaqueductal gray: state of the field," (in eng), Neuroimage, vol. 60, no. 1, pp. 505-22, Mar 2012, doi: 10.1016/j.neuroimage.2011.11.095.
12.S. S. Huang et al., "Functional connectivity analysis on electroencephalography signals reveals potential biomarkers for treatment response in major depression," (in eng), BMC Psychiatry, vol. 23, no. 1, p. 554, Aug 1 2023, doi: 10.1186/s12888-023-04958-8.
13.A. Falih Mahdi and A. Khalid Ahmed, "Major depressive disorder diagnosis based on PSD imaging of electroencephalogram EEG and AI," Artificial intelligence; Electroencephalogram; Machine learning; Major depressive disorder; Power spectral density vol. 28, no. 1, p. 10, 2022-10-01 2022, doi: 10.11591/ijeecs.v28.i1.pp535-544.
14.T. Y. Su, P. L. Hung, C. Chen, Y. J. Lin, and S. J. Peng, "Graph Theory-Based Electroencephalographic Connectivity and Its Association with Ketogenic Diet Effectiveness in Epileptic Children," (in eng), Nutrients, vol. 13, no. 7, Jun 25 2021, doi: 10.3390/nu13072186.
15.T. Y. Hsieh, P. L. Hung, T. Y. Su, and S. J. Peng, "Graph Theory-Based Electroencephalographic Connectivity via Phase-Locking Value and Its Association with Ketogenic Diet Responsiveness in Patients with Focal Onset Seizures," (in eng), Nutrients, vol. 14, no. 21, Oct 23 2022, doi: 10.3390/nu14214457.
16.S. K. Kessler, P. R. Gallagher, R. A. Shellhaas, R. R. Clancy, and A. G. Bergqvist, "Early EEG improvement after ketogenic diet initiation," (in eng), Epilepsy Res, vol. 94, no. 1-2, pp. 94-101, Mar 2011, doi: 10.1016/j.eplepsyres.2011.01.012.
17.A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," (in eng), J Neurosci Methods, vol. 134, no. 1, pp. 9-21, Mar 15 2004, doi: 10.1016/j.jneumeth.2003.10.009.
18.L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, "ICLabel: An automated electroencephalographic independent component classifier, dataset, and website," (in eng), Neuroimage, vol. 198, pp. 181-197, Sep 2019, doi: 10.1016/j.neuroimage.2019.05.026.
19.S. Aydore, D. Pantazis, and R. M. Leahy, "A note on the phase locking value and its properties," (in eng), Neuroimage, vol. 74, pp. 231-44, Jul 1 2013, doi: 10.1016/j.neuroimage.2013.02.008.
20.C. J. Stam, G. Nolte, and A. Daffertshofer, "Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources," (in eng), Hum Brain Mapp, vol. 28, no. 11, pp. 1178-93, Nov 2007, doi: 10.1002/hbm.20346.
21.M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, and C. M. Pennartz, "An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias," (in eng), Neuroimage, vol. 55, no. 4, pp. 1548-65, Apr 15 2011, doi: 10.1016/j.neuroimage.2011.01.055.
22.K. Schneider and M. Farge, "Wavelets: Mathematical Theory," in Encyclopedia of Mathematical Physics, J.-P. Françoise, G. L. Naber, and T. S. Tsun Eds. Oxford: Academic Press, 2006, pp. 426-438.
23.J. Yordanova, V. Kolev, and A. Rothenberger, "Chapter 18 - Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder," in Supplements to Clinical Neurophysiology, vol. 62, E. Başar, C. Başar-Eroĝlu, A. Özerdem, P. M. Rossini, and G. G. Yener Eds.: Elsevier, 2013, pp. 289-301.
24.T.-B. Catherine, B. Olivier, D. Claude, and P. Jacques, "Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans," The Journal of Neuroscience, vol. 17, no. 2, p. 722, 1997, doi: 10.1523/JNEUROSCI.17-02-00722.1997.
25.A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble, "Overview of use of decision tree algorithms in machine learning," in 2011 IEEE Control and System Graduate Research Colloquium, 27-28 June 2011 2011, pp. 37-42, doi: 10.1109/ICSGRC.2011.5991826.
26.T. Ramayah, N. Ahmad, H. Abdul-Halim, S. Rohaida, S. mohamed zainal, and M. c. Lo, "Discriminant analysis: An illustrated example," African Journal of Business Management, vol. 4, pp. 1654-1667, 09/04 2010.
27.X. Zou, Y. Hu, Z. Tian, and K. Shen, "Logistic Regression Model Optimization and Case Analysis," in 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), 19-20 Oct. 2019 2019, pp. 135-139, doi: 10.1109/ICCSNT47585.2019.8962457.
28.H. Chen, S. Hu, R. Hua, and X. Zhao, "Improved naive Bayes classification algorithm for traffic risk management," EURASIP Journal on Advances in Signal Processing, vol. 2021, no. 1, p. 30, 2021/06/22 2021, doi: 10.1186/s13634-021-00742-6.
29.Y. Zhang, "Support Vector Machine Classification Algorithm and Its Application," in Information Computing and Applications, Berlin, Heidelberg, C. Liu, L. Wang, and A. Yang, Eds., 2012// 2012: Springer Berlin Heidelberg, pp. 179-186.
30.J. Laaksonen and E. Oja, "Classification with learning k-nearest neighbors," in Proceedings of International Conference on Neural Networks (ICNN′96), 3-6 June 1996 1996, vol. 3, pp. 1480-1483 vol.3, doi: 10.1109/ICNN.1996.549118.
31.D. Carrozzino, C. Patierno, Giovanni A. Fava, and J. Guidi, "The Hamilton Rating Scales for Depression: A Critical Review of Clinimetric Properties of Different Versions," Psychotherapy and Psychosomatics, vol. 89, no. 3, pp. 133-150, 2020, doi: 10.1159/000506879.
32.A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997/07/01/ 1997, doi: https://doi.org/10.1016/S0031-3203(96)00142-2.
33.D. J. Hand and R. J. Till, "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems," Machine Learning, vol. 45, no. 2, pp. 171-186, 2001/11/01 2001, doi: 10.1023/A:1010920819831.
34.J. M. Johnson and T. M. Khoshgoftaar, "Survey on deep learning with class imbalance," Journal of Big Data, vol. 6, no. 1, p. 27, 2019/03/19 2019, doi: 10.1186/s40537-019-0192-5.
35.N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," J. Artif. Intell. Res. (JAIR), vol. 16, pp. 321-357, 06/01 2002, doi: 10.1613/jair.953.
36.H. Han, W.-Y. Wang, and B.-H. Mao, "Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning," in Advances in Intelligent Computing, Berlin, Heidelberg, D.-S. Huang, X.-P. Zhang, and G.-B. Huang, Eds., 2005// 2005: Springer Berlin Heidelberg, pp. 878-887.
37.H. Haibo, B. Yang, E. A. Garcia, and L. Shutao, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1-8 June 2008 2008, pp. 1322-1328, doi: 10.1109/IJCNN.2008.4633969.
38.C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, "Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem," in Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho, Eds., 2009// 2009: Springer Berlin Heidelberg, pp. 475-482.
39.S. Rosidin, Muljono, G. F. Shidik, A. Z. Fanani, F. A. Zami, and Purwanto, "Improvement with Chi Square Selection Feature using Supervised Machine Learning Approach on Covid-19 Data," in 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), 18-19 Sept. 2021 2021, pp. 32-36, doi: 10.1109/iSemantic52711.2021.9573196.
40.D. Anggoro and W. Supriyanti, "Improving Accuracy by applying Z-Score Normalization in Linear Regression and Polynomial Regression Model for Real Estate Data," International Journal of Emerging Trends & Technology in Computer Science, pp. 549-555, 11/01 2019, doi: 10.30534/ijeter/2019/247112019.
41.A. Défossez, C. Caucheteux, J. Rapin, O. Kabeli, and J.-R. King, "Decoding speech perception from non-invasive brain recordings," Nature Machine Intelligence, vol. 5, no. 10, pp. 1097-1107, 2023/10/01 2023, doi: 10.1038/s42256-023-00714-5.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明