參考文獻 |
1.C. Alves, A. Pineda, K. Roster, C. Thielemann, and F. Rodrigues, "EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia," Journal of Physics: Complexity, vol. 3, p. 025001, 04/13 2022, doi: 10.1088/2632-072X/ac5f8d.
2.S. M. Park et al., "Identification of Major Psychiatric Disorders From Resting-State Electroencephalography Using a Machine Learning Approach," (in eng), Front Psychiatry, vol. 12, p. 707581, 2021, doi: 10.3389/fpsyt.2021.707581.
3.E. A. O′Connor, E. P. Whitlock, B. Gaynes, and T. L. Beil, "U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews," in Screening for Depression in Adults and Older Adults in Primary Care: An Updated Systematic Review. Rockville (MD): Agency for Healthcare Research and Quality (US), 2009.
4.張家銘, 藍色病毒- 我和我們的憂鬱症, 2019, https://topic.udn.com/event/health_depression
5.R. C. Kessler et al., "The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R)," (in eng), Jama, vol. 289, no. 23, pp. 3095-105, Jun 18 2003, doi: 10.1001/jama.289.23.3095.
6.T. P. Sokero, T. K. Melartin, H. J. Rytsälä, U. S. Leskelä, P. S. Lestelä-Mielonen, and E. T. Isometsä, "Suicidal ideation and attempts among psychiatric patients with major depressive disorder," (in eng), J Clin Psychiatry, vol. 64, no. 9, pp. 1094-100, Sep 2003, doi: 10.4088/jcp.v64n0916.
7.(2012). Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level: report by the Secretariat. [Online] Available: https://iris.who.int/handle/10665/78898
8.H. M. de Boer, M. Mula, and J. W. Sander, "The global burden and stigma of epilepsy," Epilepsy & Behavior, vol. 12, no. 4, pp. 540-546, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.yebeh.2007.12.019.
9.M. Teplan, "Fundementals of EEG measurement," Measurement Science Review, vol. 2, pp. 1-11, 01/01 2002.
10.Nayak CS, Anilkumar AC. EEG Normal Waveforms. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539805/
11.C. Linnman, E. A. Moulton, G. Barmettler, L. Becerra, and D. Borsook, "Neuroimaging of the periaqueductal gray: state of the field," (in eng), Neuroimage, vol. 60, no. 1, pp. 505-22, Mar 2012, doi: 10.1016/j.neuroimage.2011.11.095.
12.S. S. Huang et al., "Functional connectivity analysis on electroencephalography signals reveals potential biomarkers for treatment response in major depression," (in eng), BMC Psychiatry, vol. 23, no. 1, p. 554, Aug 1 2023, doi: 10.1186/s12888-023-04958-8.
13.A. Falih Mahdi and A. Khalid Ahmed, "Major depressive disorder diagnosis based on PSD imaging of electroencephalogram EEG and AI," Artificial intelligence; Electroencephalogram; Machine learning; Major depressive disorder; Power spectral density vol. 28, no. 1, p. 10, 2022-10-01 2022, doi: 10.11591/ijeecs.v28.i1.pp535-544.
14.T. Y. Su, P. L. Hung, C. Chen, Y. J. Lin, and S. J. Peng, "Graph Theory-Based Electroencephalographic Connectivity and Its Association with Ketogenic Diet Effectiveness in Epileptic Children," (in eng), Nutrients, vol. 13, no. 7, Jun 25 2021, doi: 10.3390/nu13072186.
15.T. Y. Hsieh, P. L. Hung, T. Y. Su, and S. J. Peng, "Graph Theory-Based Electroencephalographic Connectivity via Phase-Locking Value and Its Association with Ketogenic Diet Responsiveness in Patients with Focal Onset Seizures," (in eng), Nutrients, vol. 14, no. 21, Oct 23 2022, doi: 10.3390/nu14214457.
16.S. K. Kessler, P. R. Gallagher, R. A. Shellhaas, R. R. Clancy, and A. G. Bergqvist, "Early EEG improvement after ketogenic diet initiation," (in eng), Epilepsy Res, vol. 94, no. 1-2, pp. 94-101, Mar 2011, doi: 10.1016/j.eplepsyres.2011.01.012.
17.A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," (in eng), J Neurosci Methods, vol. 134, no. 1, pp. 9-21, Mar 15 2004, doi: 10.1016/j.jneumeth.2003.10.009.
18.L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, "ICLabel: An automated electroencephalographic independent component classifier, dataset, and website," (in eng), Neuroimage, vol. 198, pp. 181-197, Sep 2019, doi: 10.1016/j.neuroimage.2019.05.026.
19.S. Aydore, D. Pantazis, and R. M. Leahy, "A note on the phase locking value and its properties," (in eng), Neuroimage, vol. 74, pp. 231-44, Jul 1 2013, doi: 10.1016/j.neuroimage.2013.02.008.
20.C. J. Stam, G. Nolte, and A. Daffertshofer, "Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources," (in eng), Hum Brain Mapp, vol. 28, no. 11, pp. 1178-93, Nov 2007, doi: 10.1002/hbm.20346.
21.M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, and C. M. Pennartz, "An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias," (in eng), Neuroimage, vol. 55, no. 4, pp. 1548-65, Apr 15 2011, doi: 10.1016/j.neuroimage.2011.01.055.
22.K. Schneider and M. Farge, "Wavelets: Mathematical Theory," in Encyclopedia of Mathematical Physics, J.-P. Françoise, G. L. Naber, and T. S. Tsun Eds. Oxford: Academic Press, 2006, pp. 426-438.
23.J. Yordanova, V. Kolev, and A. Rothenberger, "Chapter 18 - Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder," in Supplements to Clinical Neurophysiology, vol. 62, E. Başar, C. Başar-Eroĝlu, A. Özerdem, P. M. Rossini, and G. G. Yener Eds.: Elsevier, 2013, pp. 289-301.
24.T.-B. Catherine, B. Olivier, D. Claude, and P. Jacques, "Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans," The Journal of Neuroscience, vol. 17, no. 2, p. 722, 1997, doi: 10.1523/JNEUROSCI.17-02-00722.1997.
25.A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble, "Overview of use of decision tree algorithms in machine learning," in 2011 IEEE Control and System Graduate Research Colloquium, 27-28 June 2011 2011, pp. 37-42, doi: 10.1109/ICSGRC.2011.5991826.
26.T. Ramayah, N. Ahmad, H. Abdul-Halim, S. Rohaida, S. mohamed zainal, and M. c. Lo, "Discriminant analysis: An illustrated example," African Journal of Business Management, vol. 4, pp. 1654-1667, 09/04 2010.
27.X. Zou, Y. Hu, Z. Tian, and K. Shen, "Logistic Regression Model Optimization and Case Analysis," in 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), 19-20 Oct. 2019 2019, pp. 135-139, doi: 10.1109/ICCSNT47585.2019.8962457.
28.H. Chen, S. Hu, R. Hua, and X. Zhao, "Improved naive Bayes classification algorithm for traffic risk management," EURASIP Journal on Advances in Signal Processing, vol. 2021, no. 1, p. 30, 2021/06/22 2021, doi: 10.1186/s13634-021-00742-6.
29.Y. Zhang, "Support Vector Machine Classification Algorithm and Its Application," in Information Computing and Applications, Berlin, Heidelberg, C. Liu, L. Wang, and A. Yang, Eds., 2012// 2012: Springer Berlin Heidelberg, pp. 179-186.
30.J. Laaksonen and E. Oja, "Classification with learning k-nearest neighbors," in Proceedings of International Conference on Neural Networks (ICNN′96), 3-6 June 1996 1996, vol. 3, pp. 1480-1483 vol.3, doi: 10.1109/ICNN.1996.549118.
31.D. Carrozzino, C. Patierno, Giovanni A. Fava, and J. Guidi, "The Hamilton Rating Scales for Depression: A Critical Review of Clinimetric Properties of Different Versions," Psychotherapy and Psychosomatics, vol. 89, no. 3, pp. 133-150, 2020, doi: 10.1159/000506879.
32.A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997/07/01/ 1997, doi: https://doi.org/10.1016/S0031-3203(96)00142-2.
33.D. J. Hand and R. J. Till, "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems," Machine Learning, vol. 45, no. 2, pp. 171-186, 2001/11/01 2001, doi: 10.1023/A:1010920819831.
34.J. M. Johnson and T. M. Khoshgoftaar, "Survey on deep learning with class imbalance," Journal of Big Data, vol. 6, no. 1, p. 27, 2019/03/19 2019, doi: 10.1186/s40537-019-0192-5.
35.N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," J. Artif. Intell. Res. (JAIR), vol. 16, pp. 321-357, 06/01 2002, doi: 10.1613/jair.953.
36.H. Han, W.-Y. Wang, and B.-H. Mao, "Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning," in Advances in Intelligent Computing, Berlin, Heidelberg, D.-S. Huang, X.-P. Zhang, and G.-B. Huang, Eds., 2005// 2005: Springer Berlin Heidelberg, pp. 878-887.
37.H. Haibo, B. Yang, E. A. Garcia, and L. Shutao, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1-8 June 2008 2008, pp. 1322-1328, doi: 10.1109/IJCNN.2008.4633969.
38.C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, "Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem," in Advances in Knowledge Discovery and Data Mining, Berlin, Heidelberg, T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho, Eds., 2009// 2009: Springer Berlin Heidelberg, pp. 475-482.
39.S. Rosidin, Muljono, G. F. Shidik, A. Z. Fanani, F. A. Zami, and Purwanto, "Improvement with Chi Square Selection Feature using Supervised Machine Learning Approach on Covid-19 Data," in 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), 18-19 Sept. 2021 2021, pp. 32-36, doi: 10.1109/iSemantic52711.2021.9573196.
40.D. Anggoro and W. Supriyanti, "Improving Accuracy by applying Z-Score Normalization in Linear Regression and Polynomial Regression Model for Real Estate Data," International Journal of Emerging Trends & Technology in Computer Science, pp. 549-555, 11/01 2019, doi: 10.30534/ijeter/2019/247112019.
41.A. Défossez, C. Caucheteux, J. Rapin, O. Kabeli, and J.-R. King, "Decoding speech perception from non-invasive brain recordings," Nature Machine Intelligence, vol. 5, no. 10, pp. 1097-1107, 2023/10/01 2023, doi: 10.1038/s42256-023-00714-5. |