博碩士論文 111521098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.144.243.179
姓名 管昭昀(Chao-Yun Kuan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 下垂控制微電網結合智慧型太陽能配電型靜態同步補償器改善電力品質
(Droop Controlled Micogrid with Intelligent PV-DSTATCOM for Power Quality Improvement)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本論文提出一種儲能系統與基於太陽能光電系統之配電型靜態同步補償器(Photovoltaic Distribution Static Synchronous Compensator, PV-DSTATCOM)組成的下垂控制微電網,由於分散式可再生能源發電系統(DGs)快速發展、感性負載廣泛使用及負載突變,造成電力品質上的問題,例如電流不平衡、電流諧波、功率因數落後等,因此,提出一種新型的PV-DSTATCOM來改善電力品質的問題。
此外,為了有效改善在負載變化時的虛功率補償暫態響應,首次提出了具有線上訓練能力的派翠勒壤得模糊神經網路(Petri Legendre Fuzzy Neural Network, PLFNN)用於取代傳統的比例積分(Proportional-Integral, PI)控制器,並且本論文詳細推導提出的PLFNN之網路架構和線上學習策略。最後,利用實作及電腦模擬結果驗證DSTATCOM使用所提出的PLFNN控制器於下垂控制微電網中改善電流不平衡、降低電流總諧波失真(Total Harmonic Distortion, THD)、功率因數校正(Power Factor, PF)和改善暫態響應的有效性。
摘要(英) A droop controlled microgrid composed of a battery energy storage system (BESS) and a photovoltaic based distribution static synchronous compensator (PV-DSTATCOM) is developed in this study for the power quality improvement. Owing to the high penetration rate of the renewable energy source-based distributed generators (DGs), extensive usage of the inductive loads, and unexpected load change, the power quality issues, including unbalanced currents, current harmonics, and lagging power factor (PF), have become severe challenges in microgrid. Consequently, a novel control algorithm of PV-DSTATCOM is firstly proposed to overcome the power quality issues. The PV-DSTATCOM owns the droop characteristic and the ability to compensate the reactive power for power quality improvement. Moreover, to effectively improve the transient response of the reactive power compensation and the performance of the PV-DSTATCOM during load variations, an online trained Petri Legendre fuzzy neural network (PLFNN) controller is firstly proposed to replace the conventional proportional-integral (PI) controller. Furthermore, the network structure and the online learning algorithm of the proposed PLFNN are detailedly derived. Finally, the effectiveness of the PV-DSTATCOM using the proposed PLFNN controller in the microgrid to reduce the total harmonic distortion (THD) of the current, correct the PF and compensate the three-phase unbalanced currents is verified by simulation and experimentation.
關鍵字(中) ★ 微電網
★ 下垂控制
★ 電力品質
★ 功率因數校正
★ 智慧型控制
★ 配電型靜態同步補償器
關鍵字(英) ★ Microgrid
★ droop control
★ power quality
★ power factor correction
★ intelligent control
★ DSTATCOM
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目綠 vii
表目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文大綱 4
1.4 論文貢獻 4
第二章 微電網規範與配電型靜態同步補償器 6
2.1 簡介 6
2.2 電流諧波 6
2.2.1 電流諧波定義 6
2.2.2 電流諧波管制標準 7
2.3 功率因數 10
2.3.1 功率因數定義 11
2.4 三相電流不平衡 12
2.4.1 電流不平衡比定義 13
2.5 配電型靜態同步補償器 13
2.5.1 配電型靜態同步補償器介紹 13
2.5.2 配電型靜態同步補償器原理 14
2.6 下垂控制策略之下垂控制方程式與曲線 16
第三章 系統架構與微電網控制策略 18
3.1 簡介 18
3.2 三相座標軸轉換 18
3.3 鎖相迴路 20
3.3.1 以同步旋轉座標軸實現的鎖相迴路 20
3.3.2 二階廣義積分器 21
3.3.3 二階廣義積分器之鎖相迴路 22
3.4 實功率、虛功率計算 23
3.5 低通濾波器 24
3.6 PI控制器 25
3.7 下垂控制策略與配電型靜態同步補償器控制策略介紹 26
3.7.1 下垂控制策略 26
3.7.2 配電型靜態同步補償器控制策略 29
第四章 派翠勒壤得模糊類神經網路 31
4.1 簡介 31
4.2 派翠勒壤得模糊類神經網路架構 31
4.3 派翠勒壤得模糊類神經網路線上學習法則 35
4.4 派翠勒壤得模糊類神經網路收斂性分析 37
第五章 模擬結果 39
5.1 配電型靜態同步補償器與下垂控制微電網模擬結果 39
5.1.1 情境一:非線性負載與三相線性感性負載補償之模擬結果 40
5.1.2 情境二:非線性負載、三相線性感性負載與三相不平衡負載補償之模擬結果 48
5.1.3 情境三:情境二負載變動之模擬結果 56
第六章 硬體與實驗結果 61
6.1 簡介 61
6.2 磷酸鋰鐵電池 62
6.2.1 電池保護裝置 63
6.2.2 電池平衡裝置 64
6.3 變流器 65
6.4 儲能系統週邊電路 67
6.4.1 交流電壓、電流回授電路 67
6.4.2 直流電壓回授電路 69
6.4.3 過電壓與電流保護 70
6.4.4 開關互鎖電路 71
6.5 數位訊號處理器 TSM320F28335 74
6.5.1 數位/類比轉換電路 76
6.6 配電型靜態同步補償器系統硬體設備 78
6.6.1 可程式控制直流電源供應器 79
6.6.2 配電型靜態同步補償器之系統變流器 80
6.6.3 太陽能光電系統電流迴路 81
6.6.4 資料擷取卡PCI-1716 82
6.7 配電型靜態同步補償器與下垂控制微電網實驗結果 83
6.7.1 情境一:非線性負載與三相線性感性負載補償之實驗結果 84
6.7.2 情境二:非線性負載、三相線性感性負載與三相不平衡負載補償之實驗結果 92
6.7.3 情境三:情境二負載變動之實驗結果 100
第七章 結論與未來展望 105
7.1 結論 105
7.2 未來展望 106
參考文獻 107
作者簡歷 113
參考文獻 [1] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez and N. D. Hatziargyriou, "Trends in Microgrid Control," IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[2] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, "MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[3] A. Bidram and A. Davoudi, "Hierarchical Structure of Microgrids Control System," IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
[4] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, Feb. 2011.
[5] S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the Art in Research on Microgrids: A Review," IEEE Access, vol. 3, pp. 890-925, Jul. 2015.
[6] J. A. P. Lopes, C. L. Moreira and A. G. Madureira, "Defining Control Strategies for MicroGrids Islanded Operation," IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 916-924, May. 2006.
[7] B. Zhao, X. S. Zhang and J. Chen, "Integrated Microgrid Laboratory System," IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2175-2185, Nov. 2012.
[8] W. Zhang, W. Wang, H. Liu and D. Xu, "A Disturbance Rejection Control Strategy for Droop-Controlled Inverter Based on Super-Twisting Algorithm," IEEE Access, vol. 7, pp. 27037-27046, Mar. 2019.
[9] K. Yu, Q. Ai, S. Y. Wang, J. M. Ni and T. G. Lv, "Analysis and Optimization of Droop Controller for Microgrid System Based on Small-Signal Dynamic Model," IEEE Transactions on Smart Grid, pp. 1-11, Mar. 2016.
[10] J. Arrillaga, M. H. J. Bollen and N. R. Watson, "Power Quality Following Deregulation," Proceedings of the IEEE, vol. 88, no. 2, pp. 246-261, Feb. 2000.
[11] M. Farhoodnea, A. Mohamed and H. Shareef, "A Comparative Ctudy on the Cerformance of Custom Qower Devices for Power Quality Improvement," in 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA) , pp. 153-157, May. 2014.
[12] Q. Zhang, L. W. Qian, C. W. Zhang and D. Cartes, "Study On Grid Connected Inverter Used in High Power Wind Generation System," in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 2, pp. 1053-1058,Oct. 2006.
[13] M. C. Wong, Y. Z. Yang, C. S. Lam, W. H. Choi, N. Y. Dai, Y. Wu, C. K. Wong, S. W. Sin, U. F. Chio, S. P. U and R. Martins "Self-Reconfiguration Property of a Mixed Signal Controller for Improving Power Quality Compensation During Light Loading," IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5938-5951, Oct. 2015.
[14] E. Song, A. F. Lynch and V. Dinavahi, "Experimental Validation of Nonlinear Control for a Voltage Source Converter," IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1135-1144, Sep. 2009.
[15] P. Ray, P. K. Ray and S. K. Dash, "Power Quality Enhancement and Power Flow Analysis of a PV Integrated UPQC System in a Distribution Network," IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 201-211, Jan. 2022.
[16] K. H. Tan, F. J. Lin, C. Y. Tsai and Y.R. Chang, "A Distribution Static Compensator Using a CFNN-AMF Controller for Power Quality Improvement and DC-Link Voltage Regulation," Energies, vol. 11, no. 8, Aug. 2018.
[17] B. Singh and V. Verma, "Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition," IEEE Transactions on Power Delivery, vol. 23, no. 2, pp. 792-799, Apr. 2008.
[18] M. A. M. Radzi and N. A. Rahim, "Neural Network and Bandless Hysteresis Approach to Control Switched Capacitor Active Power Filter for Reduction of Harmonics," IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1477-1484, May. 2009.
[19] D. Razmi, T. Lu, B. Papari, E. Akbari, G. Fathi and M. Ghadamyari, "An Overview on Power Quality Issues and Control Strategies for Distribution Networks With the Presence of Distributed Generation Resources," IEEE Access, vol. 11, pp. 10308-10325, Feb. 2023.
[20] B. Kedjar and K. Al-Haddad, "DSP-Based Implementation of an LQR With Integral Action for a Three-Phase Three-Wire Shunt Active Power Filter," IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 2821-2828, Aug. 2009.
[21] J. Dixon, L. Moran, J. Rodriguez and R. Domke, "Reactive Power Compensation Technologies: State-of-the-Art Review," Proceedings of the IEEE, vol. 93, no. 12, pp. 2144-2164, Dec. 2005.
[22] P. Rao, M. L. Crow and Z. Yang, "STATCOM Control for Power System Voltage Control Applications," IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1311-1317, Oct. 2000.
[23] B. Singh and S. R. Arya, "Back-Propagation Control Algorithm for Power Quality Improvement Using DSTATCOM," IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1204-1212, Mar. 2014.
[24] S. R. Arya, K. Kant, R. Niwas, B. Singh, A. Chandra and K. Al-Haddad, "Power Quality Improvement in Isolated Distributed Generating System Using DSTATCOM," in 2014 IEEE Industry Application Society Annual Meeting, pp. 1-8.Dec. 2014.
[25] M. T. Ahmad, N. Kumar and B. Singh, "Generalised Neural Network‐Based Control Algorithm for DSTATCOM in Distribution Systems," IET Power Electronics, vol. 10, no. 12, pp. 1529-1538, Jul. 2017.
[26] H. Myneni, G. Siva Kumar and D. Sreenivasarao, "Dynamic Dc Voltage Regulation of Split‐Capacitor DSTATCOM for Power Quality Improvement," IET Generation, Transmission & Distribution, vol. 11, no. 17, pp. 4373-4383, Oct. 2017.
[27] B. Singh and J. Solanki, "A Comparison of Control Algorithms for DSTATCOM," IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2738-2745, Jul. 2009.
[28] K. H. Tan, M. Y. Li and X. Y. Weng, "Droop Controlled Microgrid With DSTATCOM for Reactive Power Compensation and Power Quality Improvement," IEEE Access, vol. 10, pp. 121602-121614, Nov. 2022.
[29] G. S. Chawda, A. G. Shaik, O. P. Mahela and S. Padmanaban, "Performance Improvement of Weak Grid-Connected Wind Energy System Using FLSRF-Controlled DSTATCOM," IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1565-1575, Feb. 2023.
[30] X. S. Zhou, W. B. Zhong, Y. J. Ma, K. R. Guo, J. Yin and C. C. Wei, "Control Strategy Research of D-STATCOM Using Active Disturbance Rejection Control Based on Total Disturbance Error Compensation," IEEE Access, vol. 9, pp. 50138-50150, Apr. 2021.
[31] F. J. Lin, K. H. Tan, Y. K. Lai and W.C. Luo, "Intelligent PV Power System With Unbalanced Current Compensation Using CFNN-AMF," IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8588-8598, Sep. 2019.
[32] P. A. Afsher, M. V. Manoj Kumar, C. M. Nirmal Mukundan and K. Shyju, "A PV-DSTATCOM With Adaptive DC-Link Voltage for Grid Integration and PQ Enhancement," IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 6471-6484, Sep. 2022.
[33] N. Beniwal, I. Hussain and B. Singh, "Second-Order Volterra-Filter-Based Control of a Solar PV-DSTATCOM System to Achieve Lyapunov′s Stability," IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 670-679, Jan. 2019.
[34] T. Yamamoto, K. Takao and T. Yamada, "Design of a Data-Driven PID Controller," IEEE Transactions on Control Systems Technology, vol. 17, no. 1, pp. 29-39, Jan. 2009.
[35] X. L. Wang, D. Ding, H. L. Dong and X. J. Yi, "PI-Based Security Control Against Joint Sensor and Controller Attacks and Applications in Load Frequency Control," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 2, pp. 970-980, Feb. 2023.
[36] R. J. Wai, M. W. Chen and Y. K. Liu, "Design of Adaptive Control and Fuzzy Neural Network Control for Single-Stage Boost Inverter," IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5434-5445, Sep. 2015.
[37] J. S. R. Jang, C. T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]," IEEE Transactions on Automatic Control, vol. 42, no. 10, pp. 1482-1484, Oct. 1997.
[38] C. T. Lin and C. S. G. Lee, "Neural-Network-Based Fuzzy Logic Control and Decision System," IEEE Transactions on Computers, vol. 40, no. 12, pp. 1320-1336, Dec. 1991.
[39] J. Zhuo, C. C. An and J. T. Fei, "Fuzzy Multiple Hidden Layer Neural Sliding Mode Control of Active Power Filter With Multiple Feedback Loop," IEEE Access, vol. 9, pp. 114294-114307, Aug. 2021.
[40] A. Salimi-Badr and M. M. Ebadzadeh, "A Novel Self-Organizing Fuzzy Neural Network to Learn and Mimic Habitual Sequential Tasks," IEEE Trans Cybern, vol. 52, no. 1, pp. 323-332, Jan 2022.
[41] B. Cao, J. Zhao, Z. Lv, Y. Gu, P. Yang and S. K. Halgamuge, "Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction," IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp. 939-952, May. 2020.
[42] H. Y. Wang, H. L. Dong, L. Zhang, Y. Y. Niu, T. Liu, X. P. Li, J. Xiong and Q. L. Tan, "Prediction of Dynamic Temperature Rise of Thermocouple Sensors Based on Genetic Algorithm-Back Propagation Neural Network," IEEE Sensors Journal, vol. 22, no. 24, pp. 24121-24129, Dec. 2022.
[43] M. Y. Tan, J. M. Li, G. Y. Xu and X. Z. Cheng, "A Novel Intuitionistic Fuzzy Inhibitor Arc Petri Net With Error Back Propagation Algorithm and Application in Fault Diagnosis," IEEE Access, vol. 7, pp. 115978-115988, Aug. 2019.
[44] F. J. Lin, M. S. Huang, S. G. Chen and C. W. Hsu, "Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12080-12094, Dec. 2019.
[45] J. L. Chen and L. W. Xu, "Improved Modeling and Generalization Capabilities of Graph Neural Networks With Legendre Polynomials," IEEE Access, vol. 11, pp. 63442-63450, Jun. 2023.
[46] S. Khorashadizadeh and A. Akbarzadeh Kalat, "Adaptive Back-Stepping Cancer Control Using Legendre Polynomials," IET Syst Biol, vol. 14, no. 1, pp. 8-15, Feb 2020.
[47] S. S. Yang and C. S. Tseng, "An Orthogonal Neural Network for Function Approximation," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 5, pp. 779-785, Oct. 1996.
[48] J. C. Patra and C. Bornand, "Nonlinear Dynamic System Identification Using Legendre Neural Network," in The 2010 International Joint Conference on Neural Networks (IJCNN) , pp. 1-7, Oct. 2010
[49] R. Zurawski and M. Zhou, "Petri Nets and Industrial Applications: A Tutorial," IEEE Transactions on Industrial Electronics, vol. 41, no. 6, pp. 567-583, Dec. 1994.
[50] X. H. Gao and X. Y. Hu, "A Petri Net Neural Network Robust Control for New Paste Backfill Process Model," IEEE Access, vol. 8, pp. 18420-18425, Jan. 2020.
[51] S. I. Ahson, "Petri net models of fuzzy neural networks," IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 6, pp. 926-932, Jun. 1995.
[52] K. H. Tan, "Squirrel Cage Induction Generator System Using Wavelet Petri Fuzzy Neural Network Control for Wind Power Applications," IEEE Transactions on Power Electronics, pp. 1-1, Jul. 2015.
[53] "IEEE Standard for Harmonic Control in Electric Power Systems," IEEE Std 519-2022 (Revision of IEEE Std 519-2014), pp. 1-31, 2022.
[54] "IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions," IEEE Std 1459-2010 (Revision of IEEE Std 1459-2000), pp. 1-50, 2010.
[55] 陳俊豪:〈利用智慧型控制之三相主動式電力濾波器的研製〉。碩士論文,電機工程學系,國立中央大學,民國107年。
[56] N. G. Hingorani, "High Power Electronics and flexible AC Transmission System," IEEE Power Engineering Review, vol. 8, no. 7, pp. 3-4, 1988.
[57] H. Akagi, E. H. Watanabe and M. Aredes, Instantaneous power theory and applications to power conditioning. John Wiley & Sons, Jul. 2017.
[58] 翁祥瑀:〈利用智慧型估測之可變係數下垂控制微電網〉。碩士論文,電機工程學系,國立中央大學,民國112年。
[59] G. C. Hsieh and J. C. Hung, "Phase-Locked Loop Techniques. A survey," IEEE Transactions on Industrial Electronics, vol. 43, no. 6, pp. 609-615, 1996.
[60] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, "A New Single-Phase PLL Structure Based on Second Order Generalized Integrator," in 2006 37th IEEE Power Electronics Specialists Conference, pp. 1-6, Dec. 2006.
[61] A. H. M. Abu-Jalala, T. Cox, C. Gerada, M. Rashed, T. Hamiti and N. Brown, "Power Quality Improvement of Synchronous Generators Using an Active Power Filter," IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4080-4090, Sep. 2018.
[62] S. Mohamadian, H. Pairo and A. Ghasemian, "A Straightforward Quadrature Signal Generator for Single-Phase SOGI-PLL With Low Susceptibility to Grid Harmonics," IEEE Transactions on Industrial Electronics, vol. 69, no. 7, pp. 6997-7007, Jul. 2022.
[63] A. Ranjan, S. Kewat and B. Singh, "DSOGI-PLL With In-Loop Filter Based Solar Grid Interfaced System for Alleviating Power Quality Problems," IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 730-740, Jan. 2021.
[64] 羅文洲:〈在弱電網情況下之智慧型控制太陽光發電系統的低電壓穿越控制〉。碩士論文,電機工程學系,國立中央大學,民國112年。
[65] F. J. Lin, K. H. Tan, C. F. Chang, M. Y. Li and T. Y. Tseng, "Development of Intelligent Controlled Microgrid for Power Sharing and Load Shedding," IEEE Transactions on Power Electronics, vol. 37, no. 7, pp. 7928-7940, Jul. 2022.
[66] H. Walvekar, H. Beltran, S. Sripad and M. Pecht, "Implications of the Electric Vehicle Manufacturers’ Decision to Mass Adopt Lithium-Iron Phosphate Batteries," IEEE Access, vol. 10, pp. 63834-63843, 2022.
[67] M. T. Lawder, B. Suthar, P. W. C. Northrop. S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan and V. R. Subramanian, "Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications," Proceedings of the IEEE, vol. 102, no. 6, pp. 1014-1030, Jun. 2014.
[68] S. J. Lee, M. H. Kim, J. W. Baek, D. W. Kang and J. H. Jung, "Enhanced Switching Pattern to Improve Cell Balancing Performance in Active Cell Balancing Circuit Using Multi-Winding Transformer," IEEE Access, vol. 8, pp. 149544-149554, Aug. 2020
指導教授 林法正(Faa-Jeng Lin) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明