博碩士論文 105187002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.135.209.107
姓名 陳玉芬(Yuh-Fen Chen)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 數學識讀文本發展與研究--以七年級的負數與分數單元為例
(Mathematical Literacy Reader Development and Validation: A Case Study on Negative Numbers and Fractions in Grade 7)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的在於發展一套培育數學素養之「數學識讀文本」,在七年級學生正要進入抽象思維學習的階段,以「負數」與「分數」內容作為文本發展之主要典範課題。本研究分為三個研究主題:
研究一,以目前巿面上流通的三版本國中數學教科書,作為研究對象,分析教科書中「負數」與「分數」教材內容在「知行識」向度之內涵。研究結果有三:1. 三版本之「知行識」向度內容分布有趨同現象,「知」向度內容占比皆大於70%、「行」向度占比皆大於62%、「識」向度占比皆小於24% ,且「知行識」三個向度的題目分布比例並未因版本的不同而有所差異 ( χ^2=5.987 , p>.05 未達顯著水準);2. 三版本之「識」向度內容有獨立布題趨勢,且識向度內容偏少;3. 教材設計觀點影響布題形式。
研究二,以ADDIE 設計模式針對「分數」單元進行「識讀文本」開發歷程研究。研究結果有四:1. 文本內容設計避免過多專業術語或模糊問語;2. 依循「執行評量報告」設計模式可監督修正文本之預期目標;3. 以視覺操作以及單位分數引入,可以為分數知能與技能的學習提供一致性的操作機會,以生活應用問題提供解題的表徵能力,連結分數與幾何創作概念提升識能學習,並提供閱讀素養欣賞,建立對分數學習的自信;4. 識讀文本設計採用多元的評量模式,可具體觀察學習的障礙與改變。
研究三,以準實驗法針對「負數識讀文本」進行實徵研究。研究結果有二:1.實驗組在「負數識讀文本」學習之後,在前後測之負數素養表現具顯著差異,其中「識能理解」由3.5% 上升至25.9%,「錯誤理解」由11.8% 下降至 2.4%,同時藉由多變量共變異數分析,檢驗「知」、「行」及「識」 後測之結果,顯示實驗組在「識」後測之平均數,顯著高於對照組,而在「知」與「行」方面,兩組則無顯著差異;2. 針對負數學習過程中的「負號分離」(detachment from the minus sign [DFMS])學習障礙,負數識讀文本得到具體的改善佐證。
本文根據三主題之研究結果,對識讀文本在教學上之應用提出建議。
摘要(英) The purpose of this study is to develop a set of "Mathematical Literacy Reader" to cultivate mathematical literacy among grade 7 students who are entering the stage of abstract thinking. The main research focus of this study is on the development of texts concerning "negative numbers" and "fractions." The study Consists of three major topics:
Research One: Three versions of junior high school mathematics textbooks currently circulating in the market are analyzed as research objects to analyze the content of "negative numbers" and "fractions" in terms of "Zhi(to know), Xing(can do), Shi(make sense of)". There are three results: (1) There is a convergence in the distribution of content across the dimensions of "Zhi, Xing, Shi" among the three versions. The proportion of content in the "Zhi" dimension is all above 70%, in the "Xing" dimension is all above 62%, and in the "Shi" dimension is all below 24%. Additionally, the distribution of items across the three dimensions did not differ significantly across versions (x^2=5.987, p>.05). (2) There is an independent trend in the distribution of content in the "Xhi" dimension across the three versions, with a tendency towards less content in the recognition dimension. (3) The perspective of reader disign influences the format of the questions.
Research Two: Using the ADDIE design model, a research process for the development of "literacy reader" for the "fractions" unit is conducted. There are four results: (1) Design of textual content avoids excessive use of professional terminology or vague questions; (2) Following the " Performance Assessment Chart " design model can supervise and revise the expected goals of the text; (3) Visual operations and the introduction of unit fractions can check and inspire consistent operational learning of fraction knowledge and skills, provide problem-solving representation ability through real-life application problems, connect fractions with geometric creation concepts to enhance literacy learning, and provide appreciation of reading literacy to build confidence in learning fractions; (4) The design of literacy reader adopts a multivariate assessment mode, which can observe learning obstacles and changes concretely.
Research Three: An empirical study on "negative number literacy reader" is conducted using quasi-experimental methods. There are two results: (1) After learning "negative number literacy reader", there is a significant difference in the performance of negative number literacy between the pre-test and post-test in the experimental group, with "Shi understanding" increasing from 3.5% to 25.9% and "misunderstanding" decreasing from 11.8% to 2.4%. At the same time, through multivariate analysis of covariance, it is found that the mean of the post-test of "Shi" in the experimental group is significantly higher than that of the control group, while there is no significant difference between the two groups in terms of "Zhi" and "Xing"; (2) Evidence of concrete improvement is provided in the "negative number literacy reader" for addressing learning obstacles in the process of learning negative numbers, such as detachment from the minus sign [DFMS].
Based on the research results of the three major topics, suggestions for the application of literacy texts in teaching are proposed in this paper.
關鍵字(中) ★ 分數
★ 負數
★ 數學素養
★ 知行識課程架構
★ 數學識讀文本
★ 數學識能規準
★ 概念譬喻
★ 視覺操作
關鍵字(英) ★ Fraction
★ Negative Number
★ Mathematical Literacy
★ Zhi-Xing-Shi Teaching Construct
★ Mathematical Literacy Reader
★ Mathematical Competency Rubrics
★ Conceptual Metaphor,
★ Visual Operations
論文目次 目錄
第 壹 章 緒論 1
第 一 節 背景 1
第 二 節 研究動機 6
第 三 節 研究目的 10
第 四 節 研究限制 10
第 五 節 名詞釋義 11
第 貳 章 文獻探討 13
第 一 節 數學素養 13
一、 「數學素養」的宏觀理念 13
二、 「數學素養」的微觀解析 19
第 二 節 「知行識」課程架構 22
第 三 節 數學教科書內容分析 24
一、 數學教科書研究 24
二、 數學教科書的素養實踐指標 26
三、 數學教科書的負數與分數 28
第 四 節 數學識讀文本 34
一、 識讀文本設計理論 34
二、 識讀文本設計模式 42
三、 識讀文本類型與書寫 48
小結 52
第 參 章 研究方法 53
研究一 三版數學教科書內容分析研究 54
一、 研究流程 54
二、 研究樣本 55
三、 研究工具 56
四、 內容分析單位與分析模型 58
五、 資料處理與分析 65
研究二 識讀文本開發研究 65
一、 識讀文本開發流程 65
二、 研究參與對象 67
三、 研究對象 68
四、 研究工具 68
五、 資料收集與分析 70
六、 研究倫理審查 72
研究三 識讀文本實徵研究 72
一、 研究對象 73
二、 研究工具 73
三、 資料收集與分析 79
四、 研究倫理審查 80
第 肆 章 研究結果 81
研究一 三版數學教材的「知行識」內涵 81
一、 三版本之「知行識」向度內容分佈有趨同現象 81
二、 三版本之「識」向度內容有獨立布題趨勢 81
三、 三版本之「識」向度內容偏少 82
四、 教材設計觀點影響布題形式 83
小結… 87
研究二 分數識讀文本實作設計發展歷程 87
一、 ADDIE第一階段啟動 87
二、 識讀文本格式設計歷程 91
三、 識讀文本「知行識」內容設計歷程 98
小結… 116
研究三 識讀文本實徵研究—以負數為例 117
一、 「負數識讀文本」對學生負數素養表現之影響 117
二、 「負數識讀文本」對提升負數素養的表現 118
小結… 121
第 伍 章 結論與建議 123
第一節 結論 123
研究一: 三家版本負數與分數教材內容之「知行識」內涵 123
研究二:「分數數識讀文本」開發歷程設計 124
研究三:「負數識讀文本」實徵研究 126
第二節 建議 127
一、 教科書教材內容的設計 127
二、 識讀文本教材設計原則 128
總結 131
參考文獻…. 133
附件一 負數識讀文本1 145
附件二 負數識讀文本2 150
附件三 分數識讀文本1 154
附件四 分數識讀文本2 158
附件五 分數識讀文本3 161
附件六 負數前測檢核卷 167
附件七 負數後測檢核卷 169
附件八 分數檢核卷 170
附件九 閱讀數界課 期末學習心得晤談卷 172
參考文獻 參考文獻
水心 (1979) 。國民教育論叢。臺北巿:臺灣商務印書館。
左台益、李健恆 (2017) 。從教學事件分析國中數學教科書與備課用書之設計脈絡──以三角形性質單元為例。教科書研究,10 (2),67-97。
左台益、李健恆、潘亞衛、呂鳳琳 (2018) 。臺灣、新加坡及巴西數學教科書中數學素養內涵之比較─以畢氏定理為例。教科書研究,11 (3) ,33-62。
呂秀蓮 (2019)。課綱為本課程設計經驗之研究:以國中教師為對象。教育實踐與研究, 32(1),1-32。
李國偉、黃文璋、楊德清、劉柏宏 (2013) 。教育部提升國民素養實施方案—數學素養研究計劃結案報告。教育部提升國民素養專案辦公室研究計劃成果報告。取自http://literacytw.naer.edu.tw/data/cht/20140801/20140801lu4v194.pdf
林芳玫、洪萬生 (2009)。數學小說初探:以結構主義敘事分析比較兩本小說。科學教育學刊,17 (6) ,531-549。
林保平 (2005)。正負數的概念及其加減運算。科學教育月刊,277,10-22。
林福來 (2021)。二十一世紀技能數學素養教學與評量的指標。載於教育部國教署 (編),央團數學月刊。取 自https://cirn.moe.edu.tw/Upload/file/42440/119817.pdf
林福來、單維彰、李源順、鄭章華 (2013)。十二年國民基本教育領域綱要內容前導研究」整合型研究子計畫三:十二年國民基本教育數學領域綱要內容之前導研究研究報告。新北市:國家教育研究院。
柯華葳著、陳明蕾編 (2022) 。語言、語文與閱讀。新竹巿:國立清華大學出版社。
洪有情編 (2023) 。國中數學1上、1下 (教科書、習作、教師手冊) 。臺北巿:康軒。
洪裕宏 (2011)。定義與選擇國民核心素養的理論架構。研習資訊,28(4),15-24。
洪震宇 (2022)。精準提問。臺北巿:漫遊者文化。
徐偉民 (2013)。國小教師數學教科書使用之初探。科學教育學刊,21(1),25-48。
徐偉民、柯富渝 (2014)。臺灣、芬蘭、新加坡國小數學教科書幾何教材之比較。教科書研究,7(3),101-141。
徐偉民、黃皇元 (2012) 。臺灣與芬蘭國小數學教科書分數教材內容之分析。課程與教學季刊,15 (3),75-108。
秦麗花 (2016) 。數學閱讀指導的理論與實務。臺北市:洪葉文化。
秦麗花、邱上真 (2004) 。數學文本閱讀理解相關因素探討及其模式建立之研究∼以角度單元為例。特殊教育與復健學報,12,99-121。
國立臺灣師範大學心理與教育測驗研究發展中心 [心測中心] (2021) 。十二年國教課綱 國 民 中 學 標 準 本 位 評 量 示 例 彙 編 : 數 學 領 域 。 臺北市: 作者。 取 自 https://sbasa.rcpet.edu.tw/SBASA/documents/Math.pdf?20200805
國家教育研究院 (2021) 。十二年國民基本教育課程綱要總綱。新北市:作者。 取 自 https://www.naer.edu.tw/PageSyllabus?fid=52
張幼賢編 (2023) 。國中數學1上、1下 (教科書、習作、教師手冊) 。臺北巿:翰林。
張芬芬 (2012) 。文本分析方法論及其對教科書分析研究的啟示。載於國家教育研究院(主編),開卷有益:教科書的回顧與前瞻 (頁161-197)。臺北巿:高等教育出版社。
張芬芬、陳麗華、楊國楊 (2010)。臺灣九年一貫課程轉化之議題與因應。教科書研究,3(1),1-40。
張春興 (2012) 。教育心理學—三化取向的理論與實踐。臺北巿:東華書局。
張祖忻、朱純 (1995) 。教學設計—基本原理與方法。臺北巿:五南書局。
教育部 (1973)。高級中學課程標準。臺北市:正中書局。
教育部 (2005)。普通高級中學課程暫行綱要。臺北市:作者。
教育部 (2014)。十二年國民基本教育課程綱要總綱。臺北市:作者。
教育部 (2018) 。十二年國民基本教育國民中小學暨普通型高級中等學校數學領域課程綱要。取自https://www.naer.edu.tw/PageSyllabus?fid=52
郭明田 (2021) 。國中數學素養導向教學設計與學習成效之行動研究。臺灣教育評論月刊,10 (10) ,196-228 。
陳玉芬、單維彰 (2021) 。符號語言學做為數學的教學進路初探─以負數的概念模型譬喻為例。臺灣數學教師,42 (1) ,1-16
陳玉芬、單維彰 (2022) 。數學識能評量初探─以 7 年級分數主題為例。臺灣教育評論月刊,11 (9) ,118-123 。
陳玉芬、趙子揚、單維彰(2023)。數學識讀文本教學對數學素養之影響-以負數單元為例。 臺灣數學教育期刊,10 (2),27–54。 http://doi.org/10.6278/tjme.2023
10_10(2).002
陳宜良、單維彰、洪萬生、袁媛 (2005)。中小學數學科課程綱要評估與發展研究。臺北市:教育部
陳金尚 (2016)。國中數學素養之數位評量設計與探討 (未出版論文) 。國立臺灣師範大學數學系研究所碩士論文。
陳冒海 (1989)。我國國民中學數學課程之發展。教育資料集刊,14,157-194。
陳冒海編 (2023) 。國中數學1上、1下 (教科書、習作、教師手冊) 。臺北巿:南一。
陳盈如、左太政、劉嘉茹 (2022) 。PISA視角下:數學素養概念架構與量表工具之發展與驗證。科學教育學刊,30 (2) ,121-147。
陳珮珊、秦爾聰 (2013)。數學探究教學對國中七年級學生數學素養影響之研究。科學教育月刊,361,37-49。
陳麗華 (2008)。評介「為學習而設計的教科書」及其對我國 中小學教科書設計與研究的啟示。教科書研究,1 (2),137-159
陳嘉皇 (2007)。國小三年級學童代數推理教學與解題表現研究。高雄師大學報:自然科學與科技類,23,125-150。https://doi.org/10.7060/KNUJST.200712.0125
單維彰 (2016) 。素養、課程與教材—以數學為例。國家教育研究院《教育脈動》電子期刊 5。https://bit.ly/3bcSYBj
單維彰 (2017) 。以知行識做為數學素養培育架構的課程綱要內涵。 第 19 屆「兩岸三地課程理論」研討會,台北市:國立臺北教育大學。
單維彰 (2018a) 。論知行識做為素養培育的課程架構—以數學為例。臺灣教育評論月刊,7 (2) ,101-106。
單維彰 (2018b) 。108 數學課程的展望。國家教育研究院「21 世紀人才培育:教育系統之 自主‧跨域‧創新」國際學術研討會,新北市。
單維彰 (2018c) 。中學數學教育的半世紀回顧及其啟示,教育研究月刊,294,4-18。
單維彰 (2021) 。數學素養課程的轉銜。課程研究期刊,16 (1),1-16。
單維彰 (主編) (2020)。分科教材教法:中學數學教材教法。臺北市:五南。
曾志朗、柯華葳、李俊仁、陳明蕾 (2017)。105年度「十二年國民基本教育實施計畫提升國民素養實施方案」。國家教育研究院研究報告 (NAER-105-12 -B-2-05-00-1-05)。新北市:國家研究院。
游自達 (2016)。數學素養之意涵與其變遷。國家教育研究院《教育脈動》電子期刊 5。https://bit.ly/3bcSYBj
黃嘉雄 (2017)。 十二年國教素養 導向教學的觀念迷思。論文發表於國立臺北教育大學舉辦之「第十九屆兩 岸三地課程理論研討會」,臺北市。
楊德清 (2018) 。未來中小學數學教科書發展新方向之我見我思。臺灣教育評論月刊, 7 (10) ,151-155。
楊德清、洪素敏 (2008) 分數補救教學之歷程的研究。教育研究與發展期刊,4 (2) ,85-118。
楊德清、鄭婷芸 (2015)。臺灣、美國與新加坡國中階段幾何教材內容之分析比較。教育科學研究期刊,60 (1),33-72。
葉惠貞 (2021) 。讀繪本,學素養。天下文化。
葉興華 (2011)。我國國中小教科書使用問題及促進未來教科書使用之道。教師天地,174,62-68。
圖地 [@todemap] (2022,7月30日)。誰是國中課本的霸主[臉書貼文]。臉書。https://www.facebook.com/110705290699375/posts/566913121745254/?locale=ms_MY
歐用生 (2000)。內容分析法。載於黃光雄、簡茂發(主編),教育研究法 (頁 229-254) 。臺北巿:師大書苑。
蔡清田 (2020)。十二年國民基本教育課程綱要研修的核心素養。臺灣教育評論月刊,9 (1),頁8-12。
鄭章華、單維彰 (2015)。素養導向之數學教材初探。邁向十二年國教新課綱的第一哩路: 從課綱轉化到學校教育的系統性變革學術研討會。新北巿:國家教育研究院。
鍾靜、林鳴芳、白玉如 (2014)。以不同觀點分析問題探討 芬蘭國小數學教科書。教科書研究,7 (1) ,31-79。
蘇意雯 (2023)。國中數學史數位閱讀文本之開發初探。臺灣數學教育期刊,10 (1) ,1–28。 http://doi.org/10.6278/tjme.202304_10(1).001
Wiggins, G., & McTighe, J. (2014). 重理解的課程設計 (賴麗珍譯) 。臺北巿:心理出版社 (原著出版於2005) 。
Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786-795.
Albert, L. R., Corea, D., & Macadino, V. (2012). Rhetorical ways of thinking: Vygotskian theory and mathematical learning. Dordrecht: Springer.
Alibert, D., & Thomas, M. (2002). Research on mathematical proof. In D. Tall (Ed). Advanced Mathematical thinking (pp. 215–230). Netherlands: Springer, Dordrecht. https://doi.org/10.1007/0-306-47203-1_13
Altiparmak, K., & Özdoan, E. (2010). A Study on the teaching of the concept of negative numbers. International Journal of Mathematical Education in Science and Technology, 41(1), 31- 47. http://doi.org/10.1080/00207390903189179
Arcavi, A. (2003). The role of visual representation in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.
Areepattamannil, S. (2014). International note: What factors are associated with reading, mathematics, and science literacy of Indian adolescents? A multilevel examination. Jour-nal of Adolescence, 37(4), 367–372. http://doi.org/10.1016/j.adolescence.2014.02.007
Baroody, A. J., & Ginsburg, H. P. (1986). The relationship Between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.) Conceptural and procedural knowledge: The case of mathematics (pp. 75-112). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Berns, R., & Erickson, P. (2001). Contextual teaching and learning: Preparing students for the new economy. Retrieved on 12-12-2011 from http://www.cord.org/uploadedfiles/NC CTE_Highlight05ContextualTeachingL earning.pdf.
Blair, K. P., Rosenberg-Lee, M., Tsang, J. M., Schwartz, D. L., & Menon, V. (2012). Beyond natural numbers: negative number representation in parietal cortex. Frontiers in Human Neuroscience, 6(7), 1-17. http://doi.org/ 10.3389/fnhum.2012.00007
Bofferding, L. (2014). Negative integer understanding: Characterizing first graders′ mental models. Journal for Research in Mathematics Education, 45(2), 194–245.
https://doi.org/10.5951/jresematheduc.45.2.0194
Branch, R. M. (2009). Instructional Design: The ADDIE Approach. New York: Springer.
Branson, R. K., Rayner, G. T., Cox, J. L., Furman, J. P., & King, F. J. (1975). Interservice procedures for instructional systems development. Executive summary and model. Center for Educational, The Florida State University.
Brousseau, G., Brousseau, N., & Warfield, V. (2004). Rationals and decimals as required in the school curriculum. Part 1: rationals as measurements. J. Math. Behav. 23, 1–20. https://doi: 10.1016/j.jmathb.2003. 12.001
Brozo, W., Shiel, G., & Topping, K. (2007). Engagement in reading: Lessons learned from three PISA countries, Journal of Adolescent and Adult Literacy, 51(4), 304-315.
Carpenter, T., Corbitt, M., Kepner, H., Lindquist, M., Reys, R. (1980). Results of the second NAEP mathematics assessment: Secondary school. Mathematics Teacher, 73, 329-338.
Cervetti, G., & Pearson, P. D. (2012) . Reading, writing, and thinking like a scientist. Journal of Adolescent and Adult Literacy, 55(7). 580-586. https://doi.org/10.1002/JAAL.00069
Chen, C. H., & Chiu, C. H. (2016). Collaboration scripts for enhancing metacognitive self‐regulation and mathematics literacy. International Journal of Science and Mathemat-ics Education, 14(2), 263–280. https://doi.org/10.1007/s10763‐015‐9681‐y
Coiro, J., & Dobler, E. (2007). Exploring the online comprehension strategies used by sixth-grade skilled readers to search for and locate information on the Internet. Reading Research Quarterly, 42(2), 214-257. https://doi.org/10.1598/RRQ.42.2.2
Cortina, J. L., Visnovska, J. & Zuniga, C. (2014). Unit fractions in the context of proportionality: supporting students′ reasoning about the inverse order relationship. Mathematics Education Research Journal, 26, 79-99. https://doi.org/10.1007/s13394-013-0112-5
Damerow, P. (2007). The Material Culture of Calculation. In U. Gellert & E. Jablonka (Eds.), Mathematisation and demathematisation: Social, political and philosophical ramifications (pp. 19-56). Rotterdam, The Netherlands: Sense Publishers. https://doi.org/10.1163/9789460911439_003
Davis, O. L., & Hunkins, F. P. (1986). Textbook questions: What thinking processes do they foster? Peabody Journal of Education, 43(5), 285-292.
de Lange, J. (2003). Mathematics for literacy. In B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: Why numeracy matters for schools and colleges. Princeton, NJ: National Council on Education and Disciplines.
Department for Education (2013). The National Curriculum in England: Framework Document. Retrieved 2013.11.18, Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/25 4336/MASTER_final_national_curriculum_11_9_13_2.pdf.
Department of Basic Education (DBE). (2011). Curriculum and Assessment Policy Statement (CAPS): Mathematical Literacy. Pretoria, South Africa: Government Printers.
Dick, W., Carey, L., & Carey, J. O. (2009). The Systematic Design of Instruction (7th ed.). Upper Saddle River, New Jersey: Pearson.
Dostal, H. M., & Robinson, R. (2018). Doing mathematics with purpose: mathematical text types. The Clearing House: A Journal of Educational Strategies, 91(1), 21-28, http://doi.org/10.1080/00098655.2017.1357409
Draper, R. J. (2002). School mathematics reform, constructivism, and literacy: A case for literacy instruction in the reform-oriented math classroom. Journal of Adolescent and Adult Literacy 45(6), 520-529.
Dym, C. L. (2004). Principles of Mathematical Modeling (2nd ed.). San Diego, CA: Elsevier Academic Press.
Ekowati, K. C., Darwis, M., Pua Upa, H. M. D., & Tahmir, S. (2015). The application of contextual approach in learning mathematics to improve students motivation at SMPN. International Education Studies, 8(8), 81-86. http://doi.org/10.5539/ies.v8n8p81
Fang, Z., & Coatoam, S. (2013). Disciplinary literacy: What you want to know about it. Journal of Adolescent and Adult Literacy, 56(8), 627–632.
Fuadiah, N. F., Suryadi, D., & Turmudi (2017). Some difficulties in understanding negative numbers faced by students: A qualitative study applied at secondary schools in Indonesia. International Education Studies, 10(1), 24-38. http://doi.org/10.5539/ies.v10n1p24
Gabriel, F., Coché, F., Szucs D., Carette, V., Rey, B., & Content, A. (2013). A componential view of children’s difficulties in learning fractions. Frontiers in Psyhcology. 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00715
Gagatsis, A., & Maria, A. (2022). A review of the research in teaching and learning the negative numbers: an “action research” concerning the application of the geometrical model of the number line. Didattica della Matematica [DdM]. 11, 9-32. https://doi.org/10.33683/ddm.22.11.1
Gagné, R., Wager, W., Golas, K., & Keller, J. (2005). Principles of Instructional Design (5th ed.). Belmont , CA : Thomson/Wadsworth.
Gatabi, A. R., Stacey, K., & Gooya, Z. (2012). Investigating grade nine textbook problems for characteristics related to mathematical literacy. Mathematics Education Research
Journal, 24(4), 403–421.
Gracin, D. (2018). Requirements in mathematics textbooks: A five-dimensional analysis of textbook exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 1003–1024.
Graven, M., & Venkat, H. (2007). Emerging pedagogic agendas in the teaching of Mathematical Literacy. African Journal of Research in Mathematics, Science and Technology Education, 11(2), 67-84. https:// doi.org/10.1080/10288457.2007.10740622
Haara, F. O., Bolstad, O. H., & Jenssen, E. S. (2017). Research on mathematical literacy in schools - Aim, approach and attention. European Jorunal of Science and Mahtematics Education , 5(3), 285‐284. https://doi.org/10.30935/scimath/9512
Hanna, G. (2002). Mathematical proof. In D. Tall (Ed) Advanced mathematical thinking, (pp.54–61). Netherlands: Springer.
Harlaar, N., Dale, P. S., & Plomin R. (2007). From learning to read to reading to learn: Substantial and stable genetic influence. Child Development, 78, 116-131.
Heinich, R., Molenda, M., & Russell, J. D. (1982). Instructional Media and The New Technologies of Instruction (2nd ed.). San Francisco: John Wiley & Sons.
Herscovics, N. & Linchevski, L. (1994). The cognitive gap between arithmetic and algebra, Educational Studies in Mathematics 27(1), 59-78.
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). New York: Macmillian.
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Höfer, T., & Beckmann, A. (2009). Supporting mathematical literacy: Examples from a cross‐curricular project. International Journal on Mathematics Education, 41(1), 223–230. https:// doi.org/10.1007/s11858‐008‐0117‐9
Hoffer, W. W. (2020). Developing Literate Mathematicians: A Guide for Integrating Language and Literacy Instruction into Secondary Mathematics. Reston, VA: NCTM.
Jablonka, E., & Niss, M. (2014). Mathematical literacy. In S. Lerman, B. Sriraman, E. Jablonka, Y. Shimizu, M. Artigue, R. Even, R. Jorgensen, & M. Graven (Eds.), Encyclopedia of mathematics education (pp. 391-396). Dordrecht: Springer.
Jewitt, C., & Kress, G. (2003). Multimodal Literacy. New York: Peter Lang.
Johnson, E. B. (2002). Contextual Teaching and Learning: What It Is and Why It’s Here to Stay. Thousands Oaks: Corwin.
Jürges, H., Schneider, K., Senkbeil, M., & Carstensen, C. H. (2012). Assessment drives learning: The effect of central exit exams on curricular knowledge and mathematical literacy. Economics of Education Review, 31(1), 56-65. http://dx.doi.org/10.1016/j.econedurev.
2011.08.007
Kilhamn, C. (2011). Making sense of negative numbers. Unpublished Ph.D. Dissertation, University of Gothenburg, Gothenburg, Sweden. Retrieved from https://www.researchgate.net/publication/305033448_Making_Sense_of_Negative_Nu-mbers on Oct 12, 2020.
Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for Research in Mathematics Education 35(4), 224–257.
Kristanto, Y. D., & Santoso, E. B. (2020). Towards a mathematics textbook for supporting 21st century learning: The student perspective. Journal of Physics: Conference Series. http://dx.doi.org/10.1088/1742-6596/1657/1/012037
Lakoff, G. & Johnson, M. ( 2003 ). Metaphors We Live By. London: University of Chicago
Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books
Lin, Y. H., & Tsai, L. T. (2021). Development of mathemathics reading assessment: psychometric Evaluation Based on SEM and IRT. International Journal of Education, Psychology and Counselling, 6(38), 46-56.
Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations, Educational Studies in Mathematics 30 (1), 39–65.
Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173–196. https://d oi.org/10.1023/A:1003606308064
Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult ? Developmental Review, 38, 201-221. https://doi.org/10.1016/j.dr
.2015.07.008
Lustick, D. (2010). The priority of the question: Focus questions for sustained reasoning in science. Journal of Science Teacher Education, 21(5), 495-511.
Mannaz, M. (1998). An expert teacher’s thinking and teaching and instructional design models and principles: An Ethnographic study. Educational Teachnology Research and Development, 46(2), 37-64.
Maryani, N., & Widjajanti, D. B. (2020). Mathematical literacy: How to improve it using contextual teaching and learning method? Journal of Physics: Conference Series 1581. https://doi.org/10.1088/1742-6596/1581/1/012044
Mason, J. (1980). When is a symbol symbolic? For the Learning of Mathematics 1(2), 8-12.
Mckenna, M. C., & Robinson, R.D. (2002). Teaching through text-reading and writing in the content area. New York: Person.
Molenda, M. (2003). In search of the elusive ADDIE model. Performance Improvement, 42(5), 34–36. https://doi.org/10.1002/pfi.4930420508
Molina, M., & Castro, E. (2021). Third grade students’ use of relational thinking. Mathematics, 9(2), 187. https://doi.org/10.3390/math9020187
National Council of Teachers of Mathematics (NCTM) (1945). The second report of the commission1 on post-war plans. The Mathematics Teacher, 38(5), 195-221. https://doi.org/10.5951/MT.38.5.0195
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC: Authors.
National Research Council (NRC). (2001). National Science Education Standards. Washington, DC: National Academic Press.
NCTM (1970/2002). A History of Mathematics Education in the United States and Canada, Reston, VA: Author.
NCTM (1989) Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
NCTM (2000). Principles and Standards for School Mathematics. Reston, VA: Author.
NCTM (2002). Principles and Standards for School Mathematics. Reston, VA: Author.
NCTM (2004). Principles and Standards for School Mathematics. Reston, VA: Author.
Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 35-55). Cham, Switzerland: Springer. https:// doi.org/10.1007/978-3-319-10121-7_2
Niss, M., & Jablonka, E. (2020). Mathematical literacy. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 391-396). Springer. https://doi.org/10.1007/978-3-030-15789 0_100
Norberg, M. (2019). Potential for meaning making in mathematics textbooks. Designs for Learning, 11(1), 52–62. https://doi.org/10.16993/dfl.123
NRC (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, J. Swafford, and B. Findell (Eds.). Mathematics learning study committee, center for education, division of behavioral and social sciences and education. Washington, DC: National Academy Press.
O’Halloran, K. L. (1998). Classroom discourse in mathematics: A multisemiotic analysis. Linguistics and Education, 10(3), 359-388. https://doi.org/10.1016/S0898-5898 (99) 00013-3
Organisation for Economic Co-operation and Development (OECD) (1999). Measuring stud-entknowledge and skills. A new framework for assessment. OECD Publishing. Retrieved from https://www.oecd.org/edu/school/programmeforinternationalstudentassessmentpisa/33693997.pdf
OECD (2004). The PISA 2003 Assessment Famework – Mathematics, Reading, Science and Problem Solving Knowledge and Skills. OECD Publishing. Retrieved from https://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33694881.pdf
OECD (2013), PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en
OECD (2018). PISA 2022 Mathematics Framework. OECD Publishing. Retrieved from https://pisa2022-maths.oecd.org/ca/index.html
OECD (2019). PISA 2018 Assessment and Analytical Framework. OECD Publishing. Retrieved from https://doi.org/10.1787/b25efab8-en
OECD (2022). PISA 2022 Assessment and Analytical Framework. OECD Publishing. Retrieved from https://www.oecd-ilibrary.org/fr/education/pisa-2022-assessment-and-analytical-framework_dfe0bf9c-en
Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM: The International Journal on Mathematics Education, 33(5), 158-175.
Pimm, D. (1981). Metaphor and analogy in mathematics. For the Learning of Mathematics, 1(3), 47–50.
Polya, G. (1954). Induction and Analogy in Mathematics. Princeton University Press.
Pujiastuti, H., & Haryadi, R. (2023). Enhancing mathematical literacy ability through guided inquiry learning with augmented reality. Journal of Education and e-Learning Research , 10(1), 43-50. http://doi.org/10.20448/jeelr.v10i1.4338
Roth, W.M., Ercikan, K., Simon, M., & Fola, R. (2015). The assessment of mathematical
literacy of linguistic minority students: Results of a multimethod investigation. Jour-nal of Mathematical Behavior, 40, 88–105. http://doi:10.1016/j.jmathb.2015.01.004
Saxe, G., et al. (2007). Learning about fractions as points on the number line. In W. G. Martin, M. E. Strutchens, & P. C. Elliott (Eds.), The learning of mathematics: The 69th yearbook (pp. 221-237). Reston, VA: NCTM.
Schmidt, W., Houang, R. & Cogan, L. (2002). A coherent curriculum the case of mathematics. Journal of Direct Instruction, 4(1), 13–28.
Schöber, C., Schütte, K., Köller, O., McElvany, N., & Gebauer, M. M. (2018). Reciprocal effects between self-efficacy and achievement in mathematics and reading. Learning and Individual Differences, 63, 1-11.
Selvianiresa1, D., & Prabawanto, S. (2017). Contextual Teaching and Learning Approach of Mathematics in Primary Schools. 2017 International Conference on Mathematics and Science Education (ICMScE), IOP Conf. Series: Journal of Physics: Conf. Series 895 (2017) 012171. https://doi.org/10.1088/1742-6596/895/1/012171
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.
Sfard, A. (1997). Commentary: On metaphorical roots of conceptual growth. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (339-371). London: Lawrence Erlbaum Associates.
Sfard, A. (2008). Thinking as Communitcation. Cambridge University Press.
Shanahan, C., & Shanahan, T. (2014). Does disciplinary literacy have a place in elementary school? The Reading Teacher, 67(8), 636–639.
Soto-Andrade, J. (2007). Metaphors and cognitive modes in the teaching-learning of mathematics. Proc. CERME 11. https://www.researchgate.net/publication/228583228_Metaphors_and_cognitive_modes_in_the_teaching-learning_of_mathematics
Stacey, K. (2015). The International Assessment of Mathematical Literacy: PISA 2012 Framework and Items. In Sung-Je Cho (Ed.), Selected regular lectures from the 12th international congress of mathematical education. (pp.771-790). Switzerland: Springer. https://doi.org/10.1007/978-3-319-17187-6_43
Steen, L. A. (1997). Why Numbers Count: Quantitative Literacy for Tomorrow′s America. New York, NY: The College Board.
Thompson, P. W. & Saldanha, L. A. (2003). Fractions and Multiplicative Reasoning. In J. Kilpatrick, G. Martin, & D. Schifter (Eds.), Research companion to the principles and standards for school mathematics (pp. 95-114), NCTM Press.
Thriling, B., & Fadel, C. (2009). 21st Century Skills: Learning for Life in Our Times . San Francisco: John Wiley & Sons
Tymoczko, I. (1986). Making room for mathematicians in the philosophy of mathematics. The Mathematical lntelligencer, 8 (3), 44-50.
Umbara, U., & Suryadi, D. (2019). Re-Interpretation of Mathematical Literacy Based on the Teacher′s Perspective. International Journal of Instruction, 12(4), 789-806. https://doi.org/10.29333/iji.2019.12450a
Valverde, G., Bianchi, L., Wolfe, R., Schmidt, W., & Houang, R. (2002). According to the Book: Using TIMSS to Investigate the Translation of Policy into Practice through the World of Textbooks. London: Kluwer Academic Publishers.
Vlassis, J. (2004). Making sense of the minus sign or becoming flexible in ‘negativity’. Learning and Instruction 14 (2004), 469–484
Vlassis, J. (2008). The role of mathematical symbols in the development of number conceptualization: The case of the minus sign. Philosophical Psychology, 21(4), 555-570. doi: 10.1080/09515080802285552
Vygotsky, L. S. (1962). Thought and language (E. Hanfmann & G. Vakar, Eds. and Trans.). Cambridge: MIT Press.
Wible, D. (2005). Language learning and language technology. Taipei: Crane Publishing.
Yuan, Y, & Chen, K. (2023). Whole Number Bias of Students in Fraction Number Line Tasks. International Journal of Science and Mathematics Education 21(5), 1433–1449. https://doi.org/10.1007/s10763-022-10315-0
Zaslavsky, O. (2019). There is more to examples than meets the eye: Thinking with and through mathematical examples in different settings. The Journal of Mathematical Behavior, 53, 245-255. https://doi.org/10.1016/j.jmathb.2017.10.001
指導教授 單維彰 趙子揚(Wei-Chang Shann Tzu-Yang Chao) 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明