博碩士論文 111521127 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:52.14.75.161
姓名 鄧福欣(Fu-Hsin Teng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用 區間二型遞迴模糊類神經網路估 測器 之 非線性時變系統 之 智慧型步階回歸控制
(Intelligent Backstepping Control of Nonlinear Time-Varying System with Interval Type-2 Recurrent Fuzzy Neural Network Estimator)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究提出了一種使用區間二型遞迴模糊神經網路估測器之智慧型步階回歸控制,能夠修正非線性時變系統固有的非線性和時變控制特性。在區間二型遞迴模糊類神經網路估測器之智慧型步階回歸控制中,設計步階回歸控制法則來穩定閉環控制系統,並使用區間二型遞迴模糊神經網路來估計步階回歸設計中的總集不確定項。最初,非線性步階回歸控制的逐步設計被設定用於追蹤週期性參考軌跡,總集不確定項為保守常數。然而,實際應用通常涉及未知且難以預測的總集不確定項,為解決此問題引入區間二型遞迴模糊神經網路來即時估計總集不確定性。應用李亞普諾夫穩定性方法來確保漸近穩定性,從而製定區間二型遞迴模糊神經網路的線上學習演算法。為主動補償區間二型遞迴模糊神經網路的估計誤差亦提出自適應補償器。最後,本研究包括一個案例研究,展示具有最大每安培扭矩控制的同步磁阻馬達位置伺服驅動器的實驗結果。這些結果旨在驗證所提出的區間二型遞迴模糊神經網路智慧型步階回歸控制的有效性和穩健性。
摘要(英) An intelligent backstepping control with interval type-2 recurrent fuzzy neural network (IBSCIT2RFNN), which is capable of modifying the inherent nonlinear and time-varying control characteristics of a nonlinear time-varying system, is proposed in this research. In the IBSCIT2RFNN, a backstepping control (BSC) law is devised to stabilize the closed-loop control system and the lumped uncertainty in the design of BSC is estimated using an interval type-2 recurrent fuzzy neural network (IT2RFNN). Initially, a step-by-step design of a nonlinear BSC is formulated for tracking periodic reference trajectories, with uncertainties lumped by a conservative constant. However, practical applications often involve unknown and challenging-to-predict lumped uncertainty. To address this, an IT2RFNN is introduced for real-time estimation of the lumped uncertainty. The Lyapunov stability method is applied to ensure asymptotical stability, leading to the formulation of online learning algorithms for the IT2RFNN. In order to proactively compensate the estimation error of the IT2RFNN, an adaptive compensator is also presented. Finally, this research includes a case study presenting experimental results from a synchronous reluctant motor (SRM) position servo drive with maximum torque per ampere (MTPA) control. These results aim to validate the effectiveness and robust qualities of the proposed IBSCIT2RFNN.
關鍵字(中) ★ 步階回歸 控制
★ 區間二型遞迴模糊神經網路步階回歸控制、區間二型遞迴模糊
★ 區間二型遞迴模糊神經網路步階回歸控制、區間二型遞迴模糊 神經網路
★ 同步磁阻馬達
★ 每安培最大 轉 矩控制
關鍵字(英) ★ Backstepping control
★ intelligent backstepping control with interval type-2 recurrent fuzzy neural network
★ interval type-2 recurrent fuzzy neural network
★ synchronous reluctant motor
★ maximum torque per ampere
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目綠 vii
表目錄 xiii
1 第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 7
1.3 論文貢獻 9
1.4 論文大綱 10
2 第二章 同步磁阻馬達驅動系統 11
2.1 前言 11
2.2 以DSP為基礎的同步磁阻馬達控制驅動系統 14
2.3 外部負載控制電路 18
2.4 同步磁阻馬達 21
2.5 三相座標轉換以及磁阻轉矩方程式之推導 25
2.6 同步磁阻馬達其對位方式 30
2.7 同步磁阻馬達之比例積分控制器設計 32
2.7.1 電流比例積分控制器之頻域設計 32
2.7.2 速度比例積分控制器之頻域設計 33
2.7.3 位置比例積分控制器之頻域設計 35
3 第三章 智慧型步階回歸位置控制 37
3.1 前言 37
3.2 步階回歸控制系統 37
3.3 區間二型遞迴模糊類神經網路之架構 40
3.4 區間二型遞迴模糊類神經網路之穩定性分析 44
3.5 同步磁阻馬達之區間二型遞迴模糊類神經網路估測器之智慧型步階回歸定位控制 51
3.5.1 同步磁阻馬達定位控制 51
3.5.2 同步磁阻馬達之每安培最大轉矩 52
4 第四章 同步磁阻馬達有限元素分析與模擬結果 56
4.1 前言 56
4.2 同步磁阻馬達有限元素分析模型 56
4.2.1 Maxwell 2D 模型建立同步磁阻馬達 57
4.2.2 ANSYS功能設定 60
4.2.3 同步磁阻馬達飽和現象 64
4.2.4 電感與電流之變化關係 66
4.3 Simplorer建模和應用 66
4.3.1 ECE簡介與建模設定 67
4.3.2 Simplorer與ECE設定 70
4.3.3 Simplorer與C語言的聯合分析 71
4.4 控制系統於Simplorer分析之模擬結果 74
5 第五章 實驗結果與討論 86
5.1 前言 86
5.2 實驗結果 87
5.3 實驗結果討論 97
6 第六章 結果與未來展望 98
6.1 結論 98
6.2 未來展望 99
參考文獻 100
作者簡歷 106
參考文獻 [1] P. Waide and C. U. Brunner, "Energy-efficiency policy opportunities for electric motor-driven systems," 2011.
[2] E. Robles, M. Fernandez, J. Andreu, E. Ibarra, and U. Ugalde, "Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems," Renewable and Sustainable Energy Reviews, vol. 140, p. 110746, 2021.
[3] 黃雅琪:〈永磁與磁阻馬達市場發展機會與挑戰〉。機械工業雜誌,415期,2017年10月。
[4] 陳世剛:〈高性能同步磁阻馬達驅動系統之寬速度範圍控制器發展〉。博士論文,國立中央大學電機系,民國109年。
[5] R. E. Machines, "Efficiency Classes of Line Operated AC Motors," IEC 60034-30-1, 2014.
[6] M. Doppelbauer, "Update on IEC motor and converter standards," 6th International Motor Summit for Energy Efficiency powered by Impact Energy, Oct. 2016.
[7] S. S. Maroufian and P. Pillay, "Torque characterization of a synchronous reluctance machine using an analytical model," IEEE transactions on transportation electrification, vol. 4, no. 2, pp. 506-516, Jun. 2018.
[8] E. F. Yassin, H. M. Yassin, A. Hemeida, and M. M. Hallouda, "Real time simulation of brushless doubly fed reluctance generator driven wind turbine considering iron saturation," IEEE Access, vol. 10, pp. 9925-9934, 2022.
[9] N. F. Jurca, R. A. Inţe, D. C. Popa, B. Vărăticeanu, P. Minciunescu, and C. Marţiş, "Electromagnetic and mechanical analysis of a modular outer rotor synchronous reluctance machine for light propulsion vehicles," IEEE Transactions on Transportation Electrification, vol. 7, no. 4, pp. 2798-2811, Dec. 2021.
[10] H. H. Safa and H. A. Zarchi, "A nonlinear model for the rapid prediction of the magnetic field in eccentric synchronous reluctance machines," IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 1370-1378, Sep. 2020.
[11] F. P. Scalcon, C. R. Osorio, G. G. Koch, T. S. Gabbi, R. P. Vieira, H. A. Gründling, and V. F. Montagner, "Robust control of synchronous reluctance motors by means of linear matrix inequalities," IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 779-788, Jun. 2020.
[12] J. Li and K. Wang, "A novel spoke-type PM machine employing asymmetric modular consequent-pole rotor," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2182-2192, Oct. 2019.
[13] L. Aarniovuori, J. Kolehmainen, A. Kosonen, M. Niemelä, H. Chen, W. Cao, and J. Pyrhönen, "Application of calorimetric method for loss measurement of a SynRM drive system," IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2005-2015, Apr. 2015.
[14] F. N. Isaac, A. A. Arkadan and A. El-Antably, "Characterization of axially laminated anisotropic-rotor synchronous reluctance motors," in IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 506-511, Sept. 1999.
[15] J. Kolehmainen, "Synchronous reluctance motor with form blocked rotor," IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 450-456, Jun. 2010.
[16] S. Cai, J. Shen, H. Hao, and M. Jin, "Design methods of transversally laminated synchronous reluctance machines," CES Transactions on Electrical Machines and Systems, vol. 1, no. 2, pp. 164-173, 2017.
[17] C. Oprea, A. Dziechciarz, and C. Martis, "Comparative analysis of different synchronous reluctance motor topologies," in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1904-1909, 2015.
[18] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, "Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines," IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2447-2457, Mar. 2017.
[19] F. Zhang and Y. Y. Chen, "Indirect adaptive fuzzy control for nonaffine nonlinear pure-feedback systems," IEEE Transactions on Fuzzy Systems, vol. 28, no. 11, pp. 2918-2929, Nov. 2019.
[20] B. S. Chen, M. Y. Lee, and T. H. Lin, "DNN-based control scheme of nonlinear time-varying dynamic systems with external disturbance and its application to UAV tracking design," IEEE Access, vol. 9, pp. 69635-69653, 2021.
[21] T. Wang, N. Wang, J. Qiu, C. Buccella, and C. Cecati, "Adaptive event-triggered control of stochastic nonlinear systems with unknown dead zone," IEEE Transactions on Fuzzy Systems, vol. 31, no. 1, pp. 138-147, Jan. 2022.
[22] Z. Ma and H. Ma, "Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems," IEEE Transactions on Fuzzy Systems, vol. 28, no. 1, pp. 122-133, Jan. 2019.
[23] L. Li, J. Xiao, Y. Zhao, K. Liu, X. Peng, H. Luan, and K. Li, "Robust position anti-interference control for PMSM servo system with uncertain disturbance," CES Transactions on Electrical Machines and Systems, vol. 4, no. 2, pp. 151-160, Jun. 2020.
[24] C. Wu, J. Liu, X. Jing, H. Li, and L. Wu, "Adaptive fuzzy control for nonlinear networked control systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2420-2430, Aug. 2017.
[25] L. Ren, G. Lin, Y. Zhao, Z. Liao, and F. Peng, "Adaptive nonsingular finite-time terminal sliding mode control for synchronous reluctance motor," IEEE Access, vol. 9, pp. 51283-51293, 2021.
[26] L. Ye, B. Tian, H. Liu, Q. Zong, B. Liang, and B. Yuan, "Anti-windup robust backstepping control for an underactuated reusable launch vehicle," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 3, pp. 1492-1502, Mar. 2020.
[27] Z. Hou and S. Xiong, "On model-free adaptive control and its stability analysis," IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4555-4569, Nov. 2019.
[28] C. M. Kang, W. Kim, and H. Baek, "Cascade backstepping control with augmented observer for lateral control of vehicle," IEEE Access, vol. 9, pp. 45367-45376, 2021.
[29] Y. Li, Y. Fan, K. Li, W. Liu, and S. Tong, "Adaptive optimized backstepping control-based RL algorithm for stochastic nonlinear systems with state constraints and its application," IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 10542-10555, Oct. 2021.
[30] K. Y. Hu, A. Yusuf, and Z. Cheng, "Fuzzy adaptive backstepping control of nonlinear uncertain systems with unmeasured states and input saturation," IEEE Access, vol. 8, pp. 228442-228453, 2020.
[31] Y. Yu, Y. Yuan, and H. Liu, "Backstepping control for a class of nonlinear discrete-time systems subject to multisource disturbances and actuator saturation," IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 10924-10936, Oct. 2021.
[32] R. J. Wai and Y. Yang, "Design of backstepping direct power control for three-phase PWM rectifier," IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 3160-3173, May.-Jun. 2019.
[33] J. Zhou, E. Liu, X. Tian, and Z. Li, "Adaptive fuzzy backstepping control based on dynamic surface control for uncertain robotic manipulator," IEEE Access, vol. 10, pp. 23333-23341, 2022.
[34] G. Wen, W. Hao, W. Feng, and K. Gao, "Optimized backstepping tracking control using reinforcement learning for quadrotor unmanned aerial vehicle system," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 8, pp. 5004-5015, Aug. 2021.
[35] R. Ali, Y. Peng, M. T. Iqbal, R. U. Amin, O. Zahid, and O. I. Khan, "Adaptive backstepping sliding mode control of coaxial octorotor unmanned aerial vehicle," IEEE Access, vol. 7, pp. 27526-27534, 2019.
[36] W. He and Y. Dong, "Adaptive fuzzy neural network control for a constrained robot using impedance learning," IEEE transactions on neural networks and learning systems, vol. 29, no. 4, pp. 1174-1186, Apr. 2017.
[37] F. J. Lin, P. H. Chou, P. H. Shieh, and S. Y. Chen, "Robust Control of an LUSM-Based Motion Control Stage Using an Adaptive Interval Type-2 Fuzzy Neural Network," IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 24-38, Feb. 2008.
[38] J. Fei, Y. Chen, L. Liu, and Y. Fang, "Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller," IEEE transactions on cybernetics, vol. 52, no. 9, pp. 9519-9534, Sep. 2021.
[39] Y. Fang, J. Fei, and T. Wang, "Adaptive backstepping fuzzy neural controller based on fuzzy sliding mode of active power filter," IEEE Access, vol. 8, pp. 96027-96035, 2020.
[40] Y. Dong, G. Zhang, G. He, and W. Si, "A novel control strategy for uninterruptible power supply based on backstepping and fuzzy neural network," IEEE Access, vol. 11, pp. 5306-5313, 2023.
[41] Y. Gao, J. Liu, Z. Wang, and L. Wu, "Interval type-2 FNN-based quantized tracking control for hypersonic flight vehicles with prescribed performance," IEEE transactions on systems, man, and cybernetics: systems, vol. 51, no. 3, pp. 1981-1993, Mar. 2019.
[42] H. G. Han, C. Y. Wang, H. Y. Sun, H. Y. Yang, and J. F. Qiao, "Iterative learning model predictive control with fuzzy neural network for nonlinear systems," IEEE Transactions on Fuzzy Systems, Sep. 2023.
[43] J. Wang, W. Luo, J. Liu, and L. Wu, "Adaptive type-2 FNN-based dynamic sliding mode control of DC–DC boost converters," IEEE transactions on systems, man, and cybernetics: systems, vol. 51, no. 4, pp. 2246-2257, Apr. 2019.
[44] C. L. Hwang and C. Jan, "Recurrent-neural-network-based multivariable adaptive control for a class of nonlinear dynamic systems with time-varying delay," IEEE transactions on neural networks and learning systems, vol. 27, no. 2, pp. 388-401, Feb. 2015.
[45] "TMS320F2807x Microcontrollers Technical Ref Manual, Texas Instruments."
[46] 黃泰寅:〈新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發〉。碩士論文,電機工程學系,國立中央大學,民國106年。
[47] 許哲瑋:〈同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制〉。碩士論文,電機工程學系,國立中央大學,民國108年。
[48] 梁家輝:〈利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制〉。碩士論文,電機工程學系,國立中央大學,民國109年。
[49] "Bimal K. Bose, “Modern Power Electronics and AC Drives” Oct. 2001."
[50] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, "The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account," in 2009 IEEE International Electric Machines and Drives Conference, May. 2009.
[51] P. Pillay, R. Harley, and E. Odendal, "A comparison between star and delta connected induction motors when supplied by current source inverters," Electric power systems research, vol. 8, no. 1, pp. 41-51, Oct. 1984.
[52] M. Y. Wei and T. H. Liu, "Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives," IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3644-3657, Sep. 2012.
[53] S. Foti, S. De Caro, T. Scimone, A. Testa, L. D. Tornello, G. Scelba, and M. Cacciato, "Rotor position error compensation in sensorless synchronous reluctance motor drives," IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4442-4452, Apr. 2021.
[54] H. Parveen, U. Sharma, and B. Singh, "Battery supported solar water pumping system with adaptive feed-forward current estimation," IEEE Transactions on Energy Conversion, vol. 37, no. 3, pp. 1623-1633, Sep. 2022.
[55] 簡佑宸:〈利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制〉。碩士論文,電機工程學系,國立中央大學,民國112年。
[56] F. J. Lin and P. H. Chou, "Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network," IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 178-193, Jan. 2008.
[57] F. J. Lin and R. J. Wai, "Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive," IEEE Transactions on Fuzzy systems, vol. 9, no. 1, pp. 102-115, Feb. 2001.
[58] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, "Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 141-150, Jan. 2021.
[59] J. J. E. Slotine, and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall 1991.
[60] 孫子翔:〈利用多項式派翠類神經網路於高效能同步磁阻馬達位置驅動系統之智慧型步階回歸控制〉。碩士論文,電機工程學系,國立中央大學,民國112年。
[61] J. Zekic, "Modeling and analysis of SynRM for hybrid electric vehicle application," 2016.
[62] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang, "Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control," IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7465-7479, Jul. 2019.
[63] J. Wei, J. Chen, P. Liu, and B. Zhou, "The optimized triloop control strategy of integrated motor-drive and battery-charging system based on the split-field-winding doubly salient electromagnetic machine in driving mode," IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1769-1779, Feb. 2020.
[64] P. Kumar and T. Isha, "FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor," CES Transactions on Electrical Machines and Systems, vol. 3, no. 3, pp. 309-315, Sep. 2019.
[65] A. K. Singh, P. Kumar, C. U. Reddy, and K. Prabhakar, "Simulation of direct torque control of induction motor using simulink, simplorer and maxwell software," in 2015 IEEE International Transportation Electrification Conference (ITEC), pp. 1-6, 2015.
[66] 洪崇祐:〈利用遞迴式勒壤得模糊類神經網路於永磁輔助同步磁阻馬達驅動系統之智慧型計算轉矩控制〉。碩士論文,電機工程學系,國立中央大學,民國111年。
[67] "ANSYS, Module 01: Basics Introduction to ANSYS maxwell, ANSYS, Inc, 2016."
[68] A. Rihar, P. Zajec, and D. Vončina, "Cosimulation of ansys simplerer and MATLAB/Simulink," in 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), pp. 313-317, 2017.
[69] L. Di Leonardo, M. Popescu, M. Tursini, and M. Villani, "Finite elements model co-simulation of an induction motor drive for traction application," in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 1059-1065. 2019.
[70] K. Sun, H. Torresan, and T. Summers, "Modelling and Control of Multi-phase PMSM in ANSYS and PLECS," in 2021 31st Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, 2021.
[71] H. H. Bao, W. Zhang, Y. Yang, and Y. Chen, "Calculation and analysis of IGBT power loss in drive system for EV," in 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 276-277, Nov. 2015.
[72] Z. Peng, L. Chai, and Y. Sheng, "Co-simulation modeling and fault diagnosis of closed-loop squirrel-cage motor systems," in 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 718-722, Jun. 2017.
[73] H. Klee and R. Allen, Simulation of dynamic systems with MATLAB® and Simulink®. Crc Press, 2018.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明