博碩士論文 90521060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.12.161.151
姓名 葉尚府(Son-Fu Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速傳輸連結網路的分析和模擬
(Analysis and Simulation of High-Speed Interconnects Using Moment-Matching Technique)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 匯流排上的時間延遲及交談失真的偵錯設計技巧
★ 適用於自動測試機台的時間產生器★ 混波測試匯流排的量測學
★ 高速連結之時序與資料回復★ 基於IEEE 1057之類比數位轉換器量測技術
★ 應用於高畫質電視之載波回復電路架構★ 單晶片測試機之前端驅動電路設計
★ 系統晶片類比數位轉換器測試之數位信號處理程式庫★ A 2.5V,0.35um,2.5Gbps 傳送接收器設計
★ 內建式類比數位/數位類比轉換器線性度之自我測試★ 高準確度及低成本之電壓量測技術
★ 應用於ATSC VSB時脈回復之全數位延遲線迴路★ 適用於晶片間通訊之高速傳輸介面
★ 內建式類比數位轉換器之自我校正方法★ 高速序列傳輸之量測技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們首先簡短討論影響高速傳輸訊號的一些雜散效應如振盪、訊號延遲、失真、反射及串音干擾,並且介紹一些EDA 軟體如Ansoft Q3D Extractor、Hspice,提出一套分析方法,將封裝架 (package)做更細微的切割,並使用適當的傳輸線模型 (Transmission Line model)來做模擬,使其適用於探討封裝架構對高速數位訊號的影響。
其次,「參數匹配法」(moment matching technique)被使用來加快模擬的速度.但在「參數匹配法」中,會因為傳輸線的長度而產生一些準確度的問題。本論文針對「參數匹配法」提供一個新的傳輸線模型來縮短整個估算法執行的過程,除此之外,我們也利用了數學的證明來驗證新的傳輸線模型確實能解決準確度的問題。我們分別以0.3m和0.5m的單條傳輸線為例。在0.3m的例子中,若RMS error要求為小於0.0046V,新的傳輸線模型只需6個極點和1個頻率展開點,而舊的傳輸線模型需要11個及點和11個頻率展開點。若以相同的極點數來看(6個) ,舊的傳輸線模型的RMS error為0.0165V,新的傳輸線模型的RMS error為0.0042V。在0.5m的例子中,若RMS error要求為小於0.0027V,新的傳輸線模型只需5個極點和1個頻率展開點,而舊的傳輸線模型需要19個及點和17個頻率展開點。若以相同的極點數來看(5個) ,舊的傳輸線模型的RMS error為0.0371V,新的傳輸線模型的RMS error為0.0027V
摘要(英) In this thesis, we first introduce some electrical design automation (EDA) tool such as Ansoft Q3D Extractor and propose a new analytic method, which divide the package into small component and use W-element distributed model for the simulation. This method is suitable to explore the influence of package on high-speed digital signal.
Second, moment matching technique (MMT) is used to improve the simulation efficiency. But there are some problems in MMT. When the length of lossy transmission line increases, the accuracy will deteriorate. In this thesis, we propose a new distributed transmission line model for MMT to shorten the complicated process. Besides, we also prove it in mathematics. For the case with 0.3m transmission line, to a demand on RMS error of less than 0.0046V, one method (modified MMT) needs only 6 poles and 1 hop while the original MMT requires 11 poles and 11 hops. For the same number poles (6 poles), the error of MMT is 0.0165V and modified MMT is 0.0042V. For the case with 0.5m transmission line, to a demand on RMS error of less than 0.0027V, one method (modified MMT) needs only 5 poles and 1 hop while the original MMT requires 19 poles and 17 hops. For the same number poles (5 poles), the error of MMT is 0.0371V and modified MMT is 0.0027V.
關鍵字(中) ★ 傳輸線
★ 信號完整性
關鍵字(英) ★ signal integrity
★ transmission line
論文目次 Contents
Contents ……………………. ii
List of Tables …… iv
List of Figures …… v
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. The Definition of High-Speed 3
1.3. Thesis Organization 4
Chapter 2 The Analysis Methodology for High-Speed System 5
2.1. High-Speed Interconnect Effects 6
2.1.1. Attenuation 6
2.1.2. Propagation Delay 6
2.1.3. Reflection 7
2.1.4. Crosstalk 9
2.2. EM Simulator and Transmission Line Model 11
2.2.1. Maxwell Q3D Extractor 11
2.2.2. Transmission Line model 12
2.3. High-Speed System Analysis 13
2.3.1. W-element 13
2.3.2. Partition technology 14
2.3.3. Simulation technology 16
2.3.4. Accuracy 18
Chapter 3 Asymptotic Waveform Evaluation 25
3.1. Moment-Matching Technique Flow 26
3.2. Modified Nodal Analysis Matrix (MNA) 28
3.3. Computation of Moments 32
3.4. Padé Approximation 35
3.5. Limitations of Single Expansion MMT Algorithms 37
3.6. Complex Frequency Hopping 38
3.7. Interface to Circuit Simulators 40
3.8. Experimental Results and Comparisons 41
Chapter 4 Modified Moment Matching Technique 49
4.1. The Pole Number and Propagation Delay 50
4.2. Modified Moment Matching Technique 57
4.3. Mathematical Proof 61
4.4. Simulation Result and Comparison 64
Chapter 5 Conclusion 75
Appendix ………… 76
Bibliography ….. 78
參考文獻 [1] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI. Reading, MA:Addison-Wesley, 1990
[2] H. W. Jhonson and M. Grahaml, High-Speed Digital Design. Englewood Cliffs, NJ: Prentice-Hall, 1993
[3] M. Nakhla and R. Achar, High-Speed Circuit and Interconnect Analysis. Multimedia Learning Course, OT: Omniz Global Knowledge Corporation (www.omniz.com), 2001
[4] R. K. Poon, Computer Circuits Electrical Design. Englewood Cliffs, NJ: Prentic-Hall, 1995
[5] W. W. M. Dai, Guest Editor, “Special issue on simulation, modeling, and electrical design of high-speed and high-density interconnects.” IEEE Trans. Circuits Syst., vol. 39, pp. 857-982, Nov. 1992
[6] M. Nakhla and A. Ushida, Guest Editors, “Special issue on modeling and simulation of high-speed interconnects,” IEEE Trans. Circuits Syst., vol. 47, pp. 239-305, Apr. 2000
[7] E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis. Boston, MA: Kluwer, 1993
[8] A. Deustsch, “Electrical characteristics of interconnections for high-performance systems,” Proc. IEEE, vol. 86, pp. 315-355, Feb. 1998
[9] R. Goyal, “Managing signal integrity,” IEEE Spectr., pp. 54-62, Mar. 1994
[10] J. B. Faria, Multiconductor Transmission Line Structures. New York: Wiley, 1993
[11] T. L. Quarles, “The SPICE3 implementation guide.” Univ. California, Berkeley, Tech. Rep., ERL-M89/44, 1989
[12] K. Singhal and J. Vlach, “Computation of time domain response by numerical inversion of the Laplace transform.” J. Franklin Inst., vol.299, no.2, pp. 157-166, Feb. 1975.
[13] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 352-366, Apr. 1990.
[14] L. T. Pillage , “ Asymptotic waveform evaluation for timing analysis,” Res. Rep. No. CMUCAD-89-34, Carnegie-Mellon University.
[15] X. Huang, “Pade approximation of linear(ized) circuit responses,” Ph.D. thesis, Carnegie Mellon Univ., Nov. 1990
[16] X. Huang, V. Raghavan, and R. A. Rohrer, AWEsim: “A program for the efficient analysis of linear(ized) circuits,” In Proc. IEEE Int’l Conf. Computer-Aided Des., Nov. 1990
[17] T. K. Tang and M. S. Nakhla, “Analysis of high-speed VLSI interconnects using the asymptotic waveform evaluation technique,” IEEE Trans. Computer-Aided Design, vol. 11, no. 3, Mar. 1992
[18] S. Lin and E. S. Kuh, “Transient simulation of lossy interconnect.” In Proc. 29th ACM/IEEE Des. Auto. Conf., June. 1992
[19] C. L. Ratzlaff, N. Gopal, and L. T. Pillage, “RICE: Rapid Interconnect Circuit Evaluator,” In Proc. 28th ACM/IEEE Design Automation Conf., June 1991.
[20] S. Kumashiro, R. Rohrer, and A. Strojwas, “A new efficient method for the transient simulation of 3D interconnect structures,” IEDM Tech. Dig., 1990
[21] C. T. Dikmen, M. M. Alaybeyi, S. Topcu, A. Atalar, E. Sezer, M. A. Tan, and R. A. Rohrer, “Piecewise linear Asymptotic Waveform Evaluation of transient simulation of electronic circuits.” In Proc. IEEE Int’l. Symp. Ckt. Sys., June 1991
[22] A. C. Cangellaris, S. Pasha, J. L. Prince, and M. Celik, “A new discrete time-domain model for passive model order reduction and macromodeling of high-speed interconnections.” IEEE Trans. Comp., Package., Manufact. Technol., pp. 356-364, Aug. 1999
[23] S.H. Hall, G.W. Hall, et al. , “High-Speed Digital System Design—A handbook of interconnect theory and design practices,” Wiley-Interscience Publication, 2000.
[24] A. E. Ruehli, “Equivalent circuit models for three dimensional multiconductor systems,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 216-224, Mar. 1974.
[25] P. K. Wolff and A. E. Ruehli, “Inductance computations for complex three dimensional geometries.” IEEE Trans. Circuits Syst., pp.16-19, 1981
[26] Star-HSPICE User’s Manual , Avant! Corporation, 2001.
[27] S. Kumashiro, R. A. Rohrer, and A. J. Strojwas, “Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures,” IEEE Trans. Computer-Aided Design, vol. 12, no. 7, pp. 988-996, 1993
[28] D. Xie and M. Nakhla, “Delay and crosstalk simulation of high speed VLSI interconnects with nonlinear terminations,” IEEE Trans. Computer-Aided Design, pp. 1798-1811, Nov. 1993.
[29] S. Y. Kim, N. Gopal, and L. T. Pillage, “Time-domain macromodels for VLSI interconnect analysis,” IEEE Trans. Computer-Aided Design, vol. 13, pp.1257-1270, Oct. 1994.
[30] T. Tang, M. Nakhla, and R. Griffith, “Analysis of lossy multiconductor transmission lines using the asymptotic waveform evaluation technique,” IEEE Trans. Microwave Theory Tech., vol. 39, Dec. 1991.
[31] E. Chiprout and M. Nakhla, “Analysis of interconnect networks using complex frequency hopping,” IEEE Trans. Computer-Aided Design, vol. 14, pp. 186-199, Feb. 1995.
[32] R. Sanaie, E. Chiprout, M. Nakhla, and Q. J. Zhang, “A fast method for frequency and time domain simulation of high-speed VLSI interconnects,” IEEE Trans. Microwave Theory Tech, vol. 42, pp. 2562-2571, Dec. 1994.
[33] C. W. Ho, A. E, Ruehli, and P. A. Brennan, “The modified nodal approach to network analysis,” IEEE Trans. Circuits Syst., vol. CAS-22, pp. 504-509, June 1975.
[34] R. Achar, M. S. Nakhla, “Simulation of high-speed interconnects,” Proceedings of the IEEE, vol. 89. pp. 693–728, May 2001.
[35] A. Gruodis and C. Chang, “Coupled lossy transmission line characterization and simulation,” IBM J. Res. Develop., vol. 25, pp. 25-41, Jan. 1981.
指導教授 蘇朝琴、劉建男
(Chau-Chin Su、Chien-Nan Liu)
審核日期 2003-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明