博碩士論文 110521006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.116.23.59
姓名 賴品叡(Pin-Ruei Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧反射面協助下多使用者多輸入多輸出正交分頻多重存取系統之通道估計
(Channel Estimation for Intelligent Reflecting Surface Aided Multi-user MIMO-OFDMA System)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 隨著現今無線通訊的進步,無論是存取點(access point, AP)還是站點(station, STA)都導致了天線需求量的急速增加。因此在多使用者的多輸入多輸出(MIMO)系統中,採取整體效能的優化是必要方法。通道估計便是協助效能優化的前提,它能夠有效協助我們得知通道內重要的參數,像是角度、增益以及延遲,而進一步去調整通道的能量消耗以及整體系統的涵蓋範圍。
智慧反射面(Intelligent reflecting surface, IRS)在無線通訊系統中扮演一個重要的腳色,因為它能夠提升整體通訊系統的涵蓋範圍、資料的吞吐量以及功率消耗。由於它是被動裝置,相較發送端及接收端,其內部的元件數量也較為龐大。
本論文描述一個針對多使用者的多輸入多輸出,且有IRS輔助的上行系統,採取針對該系統中重要參數的通道估計;同時對IRS內部反射元件進行分組(grouping)的處理,來降低原先較為龐大的運算量。我們創建的訓練資料會在發送端(STA)做傳輸,經過IRS反射後抵達接收端(AP),該筆資料會以三維形式來表達。我們利用張量(tensor)運算以及訊號的旋轉不變性(rotational invariance),來完成通道參數的估計。不同使用者會利用指定的訓練子載波(subcarrier)來做估計,以此來區分通道參數對應的使用者。在我們的模擬結果,在反射元件數量為64的情形中,我們採取兩種的分組方法:分成4組及分成16組,兩者的正歸化均方誤差(normalized mean square error, NMSE)分別為 3.2×〖10〗^(-3) 和 2.6×〖10〗^(-3),前者在乘法器的使用數量則是分別降低了24.2% 和19.5%。
摘要(英) Following with the advanced wireless communication, both the base station and user equipment cause the requirement of antennas increase extremely. Therefore, it is an essential step to improve the overall performance in a multiuser MIMO system. Channel estimation can help on leverage some significant parameters on channel, i.e., angle, path gain and delay, which have high relationship with performance.
Intelligent reflecting surface (IRS) has become a significant paradigm to create a favorable environment, which include improve the wireless communication coverage, throughput and energy efficiency. IRS is a kind of passive device, which means it doesn’t employee any transmit/receive radio frequency (RF) chain. It becomes a practically challenging task due to its massive number of passive elements.
In this thesis, we focus on an uplink channel estimation for an IRS-aided multiuser multiple-input multiple-output (MIMO) systems. We model the training signal from the user equipment to the base station via IRS as a third-order canonical polyadic tensor with a maximal tensor rank equal to the number of elements. We model different kinds of grouping schemes on elements. We extract the cascaded channel parameters by leveraging the characteristic of tensor computation and signal rotational invariance. In simulation part, we define the number of elements is 64 and there has two kinds of grouping method: 4 Groups and 16 Groups. Their performances on NMSE are 3.2×〖10〗^(-3) and 2.6×〖10〗^(-3), respectively. Focusing on the number of multiplications, the former case alleviates about 24.2% and 19.5% than the letter case, respectively.
關鍵字(中) ★ 智能反射面
★ 通道估計
★ 多使用者
★ 多輸入多輸出
★ 正交分頻多重存取
關鍵字(英) ★ intelligent reflecting surface
★ channel estimation
★ multi-user
★ MIMO
★ OFDMA
論文目次 摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 1
1.3 論文組織 2
第二章 智慧反射面輔助下之多使用者多輸入多輸出系統模型 3
2.1 多使用者多輸入多輸出系統 3
2.2 系統環境 4
2.3 正交分頻多重存取(Orthogonal Frequency Division Multiple Access, OFDMA) 6
2.4 通道參數設置 6
2.5 張量運算 8
2.5.1 張量外積運算(tensor outer product) 8
2.5.2 mode-n product 9
第三章 傳統智慧反射面輔助下通道估計演算法 10
3.1 最小平方法 10
3.2 波束搜尋 (Beam Search)[7] 14
3.3 兩段式通道估計 19
3.4 多使用者系統通道估計 23
3.5 相關文獻統整 29
第四章 所提出之多使用者多輸入多輸出通道估計方法 31
4.1 張量系統 31
4.2 格點分組(Lattice Grouping) 32
4.3 傳輸協議 35
4.4 演算法 37
4.4.1 張量折疊(Tensor Unfolding) 38
4.4.2 透過旋轉不變技術估計通道參數(Estimation of Signal Parameter via Rotational Invariance Technique,ESPRIT) 39
4.4.3 分段碼簿之估計結果合併及篩選 42
4.4.4 張量估計貢獻消除 43
4.4.5 IRS角度參數估計 45
4.4.6 路徑增益估計 46
4.5 演算法虛擬碼 47
第五章 效能表現與運算複雜度評估 52
5.1 套用其它文獻環境模擬比較 52
5.1.1 和波束搜尋演算法[7]比較 52
5.1.2 和TRICE演算法[8]比較 54
5.2 多使用者環境模擬 56
5.3 隨機角度套用在IRS參數之模擬結果 63
5.4 運算複雜度評估 67
第六章 結論 71
參考文獻 72
參考文獻 [1] Q. Wu, S. Zhang, B. Zheng, C. You and R. Zhang, "Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial," in IEEE Transactions on Communications, vol. 69, no. 5, pp. 3313-3351, May 2021.
[2] Y. Lin, S. Jin, M. Matthaiou and X. You, "Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems," in IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2320-2335, April 2022
[3] Y. Son, S. Kim, S. Byeon and S. Choi, "Symbol Timing Synchronization for Uplink Multi-User Transmission in IEEE 802.11ax WLAN," in IEEE Access, vol. 6, pp. 72962-72977, 2018
[4] W. Tang et al., “MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2683–2699, Nov. 2020.
[5] B. Zheng and R. Zhang, "Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization," in IEEE Wireless Communications Letters, vol. 9, no. 4, pp. 518-522, April 2020,
[6] S. Sun and H. Yan, "Channel Estimation for Reconfigurable Intelligent Surface-Assisted Wireless Communications Considering Doppler Effect," in IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 790-794, April 2021
[7] B. Ning, Z. Chen, W. Chen and Y. Du, "Channel Estimation and Transmission for Intelligent Reflecting Surface Assisted THz Communications," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-7
[8] K. Ardah, S. Gherekhloo, A. L. F. de Almeida and M. Haardt, "TRICE: A Channel Estimation Framework for RIS-Aided Millimeter-Wave MIMO Systems," in IEEE Signal Processing Letters, vol. 28, pp. 513-517, 2021
[9] Z. Wang, L. Liu and S. Cui, "Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications: Framework, Algorithms, and Analysis," in IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6607-6620, Oct. 2020
[10] Y. Wei, M. -M. Zhao, M. -J. Zhao and Y. Cai, "Channel Estimation for IRS-Aided Multiuser Communications With Reduced Error Propagation," in IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2725-2741, April 2022
[11] F. Wen, H. C. So and H. Wymeersch, "Tensor Decomposition-based Beamspace Esprit Algorithm for Multidimensional Harmonic Retrieval," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 4572-4576
[12] B. Zheng, C. You and R. Zhang, "Intelligent Reflecting Surface Assisted Multi-User OFDMA: Channel Estimation and Training Design," in IEEE Transactions on Wireless Communications, vol. 19, no. 12, pp. 8315-8329, Dec. 2020
[13] P. -Y. Tsai, Y. Chang and J. -L. Li, "Fast-Convergence Singular Value Decomposition for Tracking Time-Varying Channels in Massive Mimo Systems," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018, pp. 1085-1089
[14] T. L. Jensen and E. De Carvalho, “An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 5000–5004.
[15] S. Sun and H. Yan, “Channel estimation for reconfigurable intelligent surface-assisted wireless communications considering doppler effect,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 790–794, Apr. 2021.
[16] B. Zheng, C. You and R. Zhang, "Fast Channel Estimation for IRS-Assisted OFDM," in IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 580-584, March 2021
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明