參考文獻 |
[1] C. -H. Lee, A. Sutono, S. Han and J. Laskar, “A compact LTCC Ku-band transmitter
module with integrated filter for satellite communication applications,” in 2001 IEEE
MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ,
USA, 2001, pp. 945-948.
[2] R. -Y. Huang, Y. -C. Su and H. -Y. Chang, “Design of a six-stage W-band low-noise
amplifier using a 90-nm CMOS technology,” in 2024 IEEE 24th Topical Meeting on
Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 2024,
pp. 106-109.
[3] Chang-Ho Lee et al., “A compact LTCC-based Ku-band transmitter module,” IEEE
Transactions on Advanced Packaging, vol. 25, no. 3, pp. 374-384, Aug. 2002.
[4] C. -M. Hsu, Y. Wang and H. Wang, “A 14-91 GHz distributed amplifier in 65-nm CMOS,”
in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong,
2020, pp. 1009-1011.
[5] C. -N. Chen, Y. Chen, Y. Wang, T. -Y. Kuo and H. Wang, “38-GHz CMOS linearized
receiver with IM3 suppression, P1 dB/IP3/RR3 enhancements, and mitigation of QAM
constellation diagram distortion in 5G MMW systems,” IEEE Transactions on Microwave
Theory and Techniques, vol. 68, no. 7, pp. 2779-2795, July 2020.
[6] Shuyun Zhang, P. Bretchko, J. Mokoro, and R. McMorrow, “A novel power amplifier
module for quad-band wireless handset applications,” in IEEE Radio Frequency
Integrated Circuits (RFIC) Symposium, Philadelphia, USA, 2003, pp. 129-132.
[7] Chien-Cheng Lin and Yu-Cheng Hsu, “Single-chip dual-band WLAN power amplifier
using InGaP/GaAs HBT,” in 13th GAAS Symposium, Paris, France, 2005, pp. 489-492.
[8] C. -C. Lai, Y. -C. Hsu, and C. -C. Chen, “Triple-mode five-band power amplifier LTCC
module for WLAN/GPRS/WCDMA applications,” in 2006 European Microwave
Conference, Manchester, UK, 2006, pp. 1486-1489.
[9] Seong-Sik Myoung, Sang-Hoon Cheon, Jae-Woo Park, Jin-Sang Jang, Moon-Ho Dong,
and Jong-Gwan Yook, “InGaP/GaAs HBT power amplifier based on flexible printed
circuit board,” in 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 2006, pp.
1747-1750.
[10] Z. Wang et al., “A Q-Band self-biased LNA in 0.1-μm GaAs pHEMT technology,” in 2019
12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies
(UCMMT), London, UK, 2019, pp. 1-4.
[11] Y. Li and S. Mou, “A Ku-band self-biased bidirectional amplifier in 0.25 μm PHEMT
technology,” in 2020 IEEE International Conference on Computer and Communications
(ICCC), Chengdu, China, 2020, pp. 1166-1170.
299
[12] S. Ichikawa et al., “A gate bias free power MMIC module for Ka-band high-speed wireless
applications,” in 2000 European Microwave Conference, Paris, France, 2000, pp. 1-4.
[13] A. Sain and K. L. Melde, “Impact of ground via placement in grounded coplanar
waveguide interconnects,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 6, no. 1, pp. 136-144, Jan. 2016.
[14] Ghione and C. U. Naldi, “Coplanar waveguides for MMIC applications: Effect of upper
shielding, conductor backing, finite extent ground planes, and lint-to-line coupling,” IEEE
Trans. Microw. Theory Techn., vol.35, no.3, pp. 260-267, Mar. 1987.
[15] R. A. Pucel, “Design considerations for monolithic microwave circuits,” IEEE
Transactions on Microwave Theory and Techniques, vol. 29, no. 6, pp. 513-534, Jun. 1981.
[16] J. W. McDaniel, “Simulation guidelines for wideband ground backed coplanar waveguide
transmission lines,” in 2019 IEEE 20th Wireless and Microwave Technology Conference
(WAMICON), Cocoa Beach, FL, USA, 2019, pp. 1-5.
[17] Analog Device Corporation, “GaAs pHEMT MMIC 2-watt power amplifier,”
HMC6981LS6 datasheet, 2015.
[18] A. Rao, S. Sawant, E. Bogatin and M. Piket-May, “Impact of copper pour on crosstalk:
measurement and simulation correlation,” in 2021 IEEE 30th Conference on Electrical
Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 2021, pp.
1-3.
[19] Texas Instruments, “-16.5-V, 1-A, negative linear regulator in space enhanced plastic,”
TPS7H1210-SEP data sheet, Nov.2021.
[20] Y. Yang, Q. Zhang, C. Xu and E. Chen, “Design of ultra-wideband power amplifier module,”
in 2021 IEEE 15th International Conference on Electronic Measurement & Instruments
(ICEMI), Nanjing, China, 2021, pp. 132-136.
[21] Y. Wang, C.-C. Chiong, J.-K. Nai, H. Wang, “A high gain broadband LNA in GaAs 0.15-
μm pHEMT process using inductive feedback gain compensation for radio astronomy
applications,” in 2015 IEEE International Symposium on Radio-Frequency Integration
Technology (RFIT), Sendai, Japan, 2015, pp. 79-81.
[22] S.-H. Lai, “Design of radiometer receiver using GaAs & CMOS process and power
amplifier using GaN process,” M.S. thesis, Dept. of Elect. Eng., National Central
University, Jhongli, Taiwan, 2021.
[23] J. Hu and K. Ma, “A 1–40-GHz LNA MMIC using multiple bandwidth extension
techniques,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 336-
338, May 2019.
[24] L. -Y. Lee, Y. Wang and H. Wang, “A 25-31 GHz LNA in GaAs 0.15-μm pHEMT,” in 2021
IEEE International Symposium on Radio-Frequency Integration Technology (RFIT),
Hualien, Taiwan, 2021, pp. 1-3.
300
[25] P. -W. Wu, J. -W. Yei, Z. -H. Fu, Y. -T. Chang and K. -Y. Lin, “A wideband GaAs pHEMT
LNA multi-band 5G mmW communication,” in 2023 Asia-Pacific Microwave Conference
(APMC), Taipei, Taiwan, 2023, pp. 348-350.
[26] Y. -M. Chen, Y. Wang, C. -C. Chiong and H. Wang, “A 21.5-50 GHz low noise amplifier
in 0.15-μm GaAs pHEMT process for radio astronomical receiver system,” in 2021 IEEE
Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 2021, pp. 7-9.
[27] Y. -T. Chou, C. -C. Chiong and H. Wang, “A Q-band LNA with 55.7% bandwidth for radio
astronomy applications in 0.15-μm GaAs pHEMT process,” in 2016 IEEE International
Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016, pp.
1-3.
[28] S. -H. Chang, C. -C. Chiong, K. -Y. Kao and H. Wang, “A Q-band amplifier with low noise
figure and medium output power capability for ALMA band-1 receiver,” in 2017 IEEE
Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 2017, pp. 755-
758.
[29] X. Yan, J. Zhang, H. Luo, S. -P. Gao, and Y. Guo, “A compact 1.0–12.5-GHz LNA MMIC
with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT
technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no.
4, pp. 1450-1462, April 2023.
[30] J. Hu, K. Ma, S. Mou, and F. Meng, “A seven-octave broadband LNA MMIC using
bandwidth extension techniques and improved active load,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, Oct. 2018.
[31] Z. Liu, C. C. Boon, X. Yu, C. Li, K. Yang, and Y. Liang, “A 0.061-mm² 1–11-GHz noisecanceling low-noise amplifier employing active feedforward with simultaneous current
and noise reduction,” IEEE Transactions on Microwave Theory and Techniques, vol. 69,
no. 6, pp. 3093-3106, June 2021.
[32] H. -T. Kim et al., “A 28-GHz CMOS direct conversion transceiver with packaged 2 × 4
antenna array for 5G cellular system,” IEEE Journal of Solid-State Circuits, vol. 53, no. 5,
pp. 1245-1259.
[33] M. Fujishima, M. Motoyoshi, K. Katayama, K. Takano, N. Ono and R. Fujimoto, “98 mW
10 Gbps wireless transceiver chipset with D-Band CMOS circuits,” IEEE Journal of SolidState Circuits, vol. 48, no. 10, pp. 2273-2284.
[34] F. Zhu et al., “A low-power low-cost 45-GHz OOK transceiver system in 90-nm CMOS
for multi-Gb/s transmission,” IEEE Transactions on Microwave Theory and Techniques,
vol. 62, no. 9, pp. 2105-2117.
[35] A. B. Ozdol, H. Kandis, A. Burak, T. A. Ozkan, M. Kaynak and Y. Gurbuz, “A high
linearity 6 GHz LNA in 130 nm SiGe technology,” in 2022 17th European Microwave
Integrated Circuits Conference (EuMIC), Milan, Italy, 2022, pp. 68-71.
301
[36] W. L. Chan, J. R. Long, M. Spirito and J. J. Pekarik, “A 60GHz-band 2×2 phased-array
transmitter in 65nm CMOS,” in 2010 IEEE International Solid-State Circuits Conference
(ISSCC), San Francisco, CA, USA, 2010, pp. 42-43.
[37] A. Jha, J. Zheng, C. Masse, P. Hurwitz and S. Chaudhry, “A 0.6dB NF, 12dBm IIP3, 4.6-
6GHz LNA in 0.13μm floating-body SOI CMOS,” in 2020 IEEE 63rd International
Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 2020,
pp. 121-124.
[38] Kwangseok Han et al., “Complete high-frequency thermal noise modeling of short-channel
MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 3, pp. 726-735.
[39] K. -H. Liang, C. -H. Lin, H. -Y. Chang and Y. -J. Chan, “A new linearization technique for
CMOS RF mixer using third-order transconductance cancellation,” IEEE Microwave and
Wireless Components Letters, vol. 18, no. 5, pp. 350-352, May 2008.
[40] O. El-Aassar and G. M. Rebeiz, “Design of low-power sub-2.4 dB mean NF 5G LNAs
using forward body bias in 22 nm FDSOI,” IEEE Transactions on Microwave Theory and
Techniques, vol. 68, no. 10, pp. 4445-4454.
[41] B. Razavi, “Design of analog CMOS integrated circuits,” 2005.
[42] R. -M. Weng, C. -Y. Liu and P. -C. Lin, “A low-power full-band low-noise amplifier for
ultra-wideband receivers,” IEEE Transactions on Microwave Theory and Techniques, vol.
58, no. 8, pp. 2077-2083, Aug. 2010.
[43] Y. Yu, H. Liu, Y. Wu and K. Kang, “A 54.4–90 GHz low-noise amplifier in 65-nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2892-2904, Nov. 2017.
[44] H. Chen, H. Zhu, L. Wu, W. Che and Q. Xue, “A wideband CMOS LNA using transformerbased input matching and pole-tuning technique,” IEEE Transactions on Microwave
Theory and Techniques, vol. 69, no. 7, pp. 3335-3347, July 2021.
[45] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, “A wideband variable gain
LNA with high OIP3 for 5G using 40-nm bulk CMOS,” IEEE Microwave and Wireless
Components Letters, vol. 28, no. 1, pp. 64-66.
[46] J. -F. Chang and Y. -S. Lin, “A 13.7-mW 21–29-GHz CMOS LNA with 21.6-dB gain and
2.74-dB NF for 28-GHz 5G systems,” IEEE Microwave and Wireless Components Letters,
vol. 32, no. 2, pp. 137-140.
[47] H. Chen, L. Wu, W. Che, Q. Xue and H. Zhu, “A wideband LNA based on current-reused
CS-CS topology and Gm-boosting technique for 5G application,” in 2019 IEEE AsiaPacific Microwave Conference (APMC), Singapore, 2019, pp. 1158-1160.
[48] P. Qin and Q. Xue, “Compact wideband LNA with gain and input matching bandwidth
extensions by transformer,” IEEE Microwave and Wireless Components Letters, vol. 27,
no. 7, pp. 657-659.
302
[49] Y. -S. Lin and K. -S. Lan, “22–33 GHz CMOS LNA using coupled-TL feedback and body
self-forward-bias for 28 GHz 5G system,” in 2022 IEEE Radio Frequency Integrated
Circuits Symposium (RFIC), Denver, CO, USA, 2022, pp. 227-230.
[50] R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for
security and surveillance,” IEEE Proc., vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[51] S. Oka et al., “Latest trends in millimeter-wave imaging technology,” Progress in
Electromagnetics Research Lett., vol. 1, pp. 197–204, 2008.
[52] M. R. Fetterman et al., “Simulation, acquisition and analysis of passive millimeter-wave
images in remote sensing applications,” Opt. Express, vol. 16, pp. 20503–20515, Dec.
2008.
[53] B. Xiaojun, “Silicon-based sub-THz radiometers for passive imaging,” in 2018 IEEE AsiaPacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand,
2018, pp. 169-170.
[54] C. -C. Chiong, D. -J. Huang, C. -C. Chuang, Y. -J. Hwang, M. -T. Chen and H. Wang,
“Cryogenic 8–18 GHz MMIC LNA using GaAs PHEMT,” in 2013 Asia-Pacific
Microwave Conference Proceedings (APMC), Seoul, Korea (South), 2013, pp. 261-263.
[55] C. -C. Chiong, W. -J. Tzeng, Y. -J. Hwang, W. -T. Wong, H. Wang and M. -T. Chen, “Design
and measurements of cryogenic MHEMT IF low noise amplifier for radio astronomical
receivers,” in 2009 European Microwave Integrated Circuits Conference (EuMIC), Rome,
Italy, 2009, pp. 1-4.
[56] G. Feng, X. Yi, F. Meng and C. C. Boon, “A W-band switch-less Dicke receiver for
millimeter-wave imaging in 65 nm CMOS,” IEEE Access, vol. 6, pp. 39233-39240.
[57] R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS sub-harmonic mixer based zero-IF
receiver with an improved active balun,” in 2009 IEEE Custom Integrated Circuits
Conference, San Jose, CA, USA, 2009, pp. 673-676.
[58] K. -L. Wu, K. -T. Lai, R. Hu and C. -Y. Chang, “DC-50GHz wideband phase-compensated
90nm-CMOS active balun design,” in 2015 Asia-Pacific Microwave Conference (APMC),
Nanjing, China, 2015, pp. 1-3.
[59] L. Gilreath, V. Jain and P. Heydari, “Design and analysis of a W-Band SiGe directdetection-based passive imaging receiver,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 10, pp. 2240-2252.
[60] L. Zhou, C. -C. Wang, Z. Chen and P. Heydari, “A W-band CMOS receiver chipset for
millimeter-wave radiometer systems,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2,
pp. 378-391.
[61] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, “K-Band SiGe system-on-chip radiometric
receiver for remote sensing of the atmosphere,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 12, pp. 3025-3035,
303
[62] R. Ben Yishay and D. Elad, “D-band Dicke-radiometer in 90 nm SiGe BiCMOS
technology,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu,
HI, USA, 2017, pp. 1957-1960.
[63] A. Tang et al., “A W-band 65nm CMOS/InP-hybrid radiometer & passive imager,” in 2016
IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 2016,
pp. 1-3.
[64] A. Tomkins, P. Garcia and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm
bulk CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 1981-1991, Oct.
2010, doi: 10.1109/JSSC.2010.2058150
[65] Q. J. Gu, Z. Xu, A. Tang and M. -C. Frank Chang, “A D-band passive imager in 65 nm
CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 263-265,
May 2012.
[66] D. E. Mera, R. A. R. Solís, L. Reyes, R. Armstrong, W. J. Hernandez and A. L. GuzmánMorales, “A power and performance study of compact L-band total power radiometers for
UAV remote sensing based in the processing on ZYNQ and ARM architectures,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15,
pp. 1103-1113, 2022.
[67] F. Caster II, L. Gilreath, S. Pan, Z. Wang, F. Capolino and P. Heydari, “Design and analysis
of a W-band 9-element imaging array receiver using spatial-overlapping super-pixels in
silicon,” IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1317-1332, June 2014. |