博碩士論文 110521173 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.119.125.240
姓名 蘇昱嘉(Yu-Chia Su)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於 Ku 頻段瓦特級功率放大器模組暨 Ka 頻 段 CMOS 無切換器輻射接收機之研製
(Design of a Watt-level Power Amplifier Module for Ku-band and a Switchless Radiometer Receiver in CMOS Process for Ka-band)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-5以後開放)
摘要(中) 在本論文中展示了多個微波及毫米波電路,包含一個以 Rogers4003C-FR4 混合的四
層印刷電路板(PCB)製程實現的 Ku 頻段瓦特級功率放大器模組、一個使用穩懋 E-mode
GaAs 0.15-µm PIN-HEMT 製程的 Ka 頻段低雜訊放大器(LNA)、一個使用台積電 90 奈
米 CMOS 製程的 Ka 頻段低雜訊放大器(LNA)、以及一個使用台積電 90 奈米 CMOS 製
程的無切換器輻射接收機。
在第二章中,設計了一個以 Rogers4003C-FR4 混合的四層印刷電路板(PCB)製程
實現的 Ku 頻段瓦特級功率放大器模組。此功率放大器模組實現了最高 25 dB 的小訊號
增益,3-dB 頻寬範圍為 14.3 至 18.7 GHz。該功率放大器模組還實現了 2 dBm 的輸入 1-
dB 增益壓縮點、最高 12.3%的功率附加效率(PAE)以及 32 dBm 的輸出飽和功率。此
外,本章還提出了使用單偏壓技術的功率放大器模組,以化簡系統的複雜性。採用單偏
壓的功率放大器模組在小訊號及大訊號特性上能保持與原始多偏壓設計性能近乎相同。
在第三章中,提出了一個使用穩懋 E-mode GaAs 0.15-µm PIN-HEMT 製程並採用電
阻-電感-電容回授技術的 Ka 頻段低雜訊放大器。通過使用疊接結構和電阻-電感-電容回
授技術,在保持高增益和寬頻的同時,解決了疊接架構穩定度的問題。此低雜訊放大器
在 31.2 GHz 頻率下有最高的小訊號增益 22.9 dB,並在 29 GHz 的頻率下實現了最低的
雜訊指數 2.7 dB。此低雜訊放大器還實現了-5 dBm 的輸入三階截點(IP3)和 17 dBm 的
輸出三階截點(IP3)。整體電路晶片面積為 1.05 mm2。
在第四章中,提出了一個使用台積電 90 奈米 CMOS 製程且基於電流再利用架構及
變壓器耦合的 Ka 頻段低雜訊放大器,並採用了正偏壓基體偏壓技術。使用互感係數為
0.3 的中心抽頭變壓器來提高小訊號增益,此變壓器用於第一級電路的汲極和第二級電
路的源極。該低雜訊放大器在 25.3 GHz 頻率下實現了最高 12 dB 的小訊號增益,3-dB
頻寬範圍為 22.7 至 30.7 GHz。該雜訊放大器在 25 GHz 頻率下實現了最低 3.5 dB 的雜
訊指數。此外,正偏壓基體偏壓技術被用來提升低雜訊放大器的線性度,並且實現了 5.1
ii
dBm 的輸入三階截斷點(IIP3)和 17.3 dBm 的輸出三階截斷點(OIP3)。此低雜訊放大
器的整體電路晶片面積為 0.49 mm2。
在第五章中,提出了一個使用台積電 90 奈米 CMOS 製程的無切換器輻射接收機。
此輻射接收機由兩級切換式低雜訊放大器、主動式巴倫和平方律功率偵測器組成。兩級
低雜訊放大器作為 SPDT 開關運作,但消除了傳統切換器所造成的高損耗的特性。由於
平方律功率偵測器需要差動輸入,因此使用主動式巴倫提供一個相位差 180 度的輸入訊
號。平方律功率偵測器採用差動結構,相較於單端結構可獲得更高的響應度。兩級低雜
訊放大器在 30.3 GHz 頻率下實現了最高 17.3 dB 的小訊號增益,並在 30 GHz 頻率下實
現了最低 4.3 dB 的雜訊指數。輻射接收機在 30 GHz 頻率下實現了最高 1.6 MV/W 的響
應度和最低 1.3 fW/√Hz 的雜訊等效功率。此外,輻射接收機可以解調輸入 30 GHz 且開
關速度高達 2 GHz 的訊號。整體輻射接收機的晶片面積為 1.24 mm2。
摘要(英) Several microwave and millimeter-wave circuits including a watt-level Ku-band power
amplifier module in Rogers4003C-FR4 based four-layer printed circuit board (PCB) process, a
Ka-band low noise amplifier (LNA) in E-mode GaAs 0.15-µm PIN-HEMT monolithic process,
a Ka-band low noise amplifier (LNA) in 90-nm CMOS process, a switchless radiometer
receiver in 90-nm CMOS process are presented in this thesis.
In Chapter 2, a Ku-band watt-level power amplifier module is designed in a Rogers4003CFR4 based four-layer printed circuit board (PCB) process. The power amplifier module
achieves a maximum small-signal gain of 25 dB with a 3-dB bandwidth ranging from 14.3 to
18.7 GHz. The power amplifier module also achieves an input P1dB of 2 dBm, a peak PAE of
12.3 %, and an output saturated power of 32 dBm. Additionally, the power amplifier module
using the single-bias technique is proposed to reduce the complexity in this Chapter. The power
amplifier module using a single-bias technique maintains approximately the same performance
compared with the power amplifier module with multiple biases.
In Chapter 3, a Ka-band LNA with R-L-C feedback technique in WIN E-mode GaAs 0.15-
µm PIN-HEMT process is presented. By employing cascode structure and the R-L-C feedback
technique, the circuit maintains high gain and wider bandwidth while addressing stability issues.
The LNA achieves a maximum small-signal gain of 22.9 dB at a frequency of 31.2 GHz, and it
achieves a minimum noise figure of 2.7 dB at a frequency of 29 GHz. The LNA also achieves
an input IP3 of -5 dBm, and an output IP3 of 17 dBm. The total chip size of the LNA is 1.05
mm2
.
In Chapter 4, a Ka-band current-reused-transformer-based LNA with forward bodybiasing technique in TSMC GUTM 90-nm CMOS process is presented. A center-tapped
transformer with a mutual coefficient of 0.3 is used to improve small-signal gain and is realized
iv
at the drain in the first stage and the source in the second stage. The LNA achieves a maximum
small-signal gain of 12 dB at a frequency of 25.3 GHz with a 3-dB bandwidth from 22.7 to 30.7
GHz. The LNA achieves a minimum noise figure of 3.5 dB at a frequency of 25 GHz.
Additionally, the forward-body biasing technique is employed to enhance the linearity of the
Ka-band LNA, achieving an input IP3 of 5.1 dBm and an output IP3 of 17.3 dBm at a frequency
of 30 GHz. The total chip size of the LNA is 0.49 mm2
.
In Chapter 5, a switchless radiometer receiver in TSMC GUTM 90-nm CMOS process is
presented. The radiometer consists of a two-stage LNA, an active balun, and a square-law power
detector. The two-stage LNA, acts as a SPDT switch, but eliminates the lossy characteristics of
switches. An active balun is employed due to the requirement of a differential input of the
square-law power detector. The square-law power detector adopts differential structure, which
can achieve higher responsivity compared to the single structure. The two-stage LNA achieves
a maximum small-signal gain of 17.3 dB at a frequency of 30.3 GHz and a minimum noise
figure of 4.3dB at a frequency of 30 GHz in both the signal and the reference path. The
radiometer receiver achieves a maximum responsivity of 1.6 MV/W and a minimum noise
equivalent power of 1.3 fW/√Hz at a frequency of 30 GHz. Additionally, the radiometer receiver
can demodulate a 30 GHz input signal with a switching speed of up to 2 GHz. The total chip
size of the radiometer receiver is 1.24 mm2
.
關鍵字(中) ★ 毫米波
★ 功率放大器模組
★ 低雜訊放大器
★ 輻射接收機
★ 砷化鎵
★ 金屬氧化物半導體
關鍵字(英) ★ Millimeter-wave
★ Power Amplifier Module
★ Low Noise Amplifier
★ Radiometer Receiver
★ Gallium Arsenide
★ CMOS
論文目次 中文摘要 i
Abstract iii
誌謝 v
Content vi
List of Figures x
List of Tables xxxiv
Chapter 1 Introduction 1
1.1 Motivations and Backgrounds 1
1.2 Literature Survey 2
1.3 Contributions 3
1.3.1 A Ku-band Watt-Level Power Amplifier Module 4
1.3.2 A Ka-band Low Noise Amplifier using R-L-C Feedback technique 4
1.3.3 Ka-band current-reused Transformer-Based Low Noise Amplifier 6
1.3.4 Ka-band Radiometer Receiver 6
1.4 Organizations of The Thesis 7
Chapter 2 Design of a Ku-band Watt-Level GaAs Power Amplifier Module Using Single-bias Technique 9
2.1 Introduction 9
2.2 Commercial IC HMC6981LS6 9
2.3 Rogers4003C and FR4 Compound Four-layer PCB Process 9
2.4 Design and Implementation of Power Amplifier Module 10
2.4.1 RF Characteristics Design and Considerations 10
2.4.2 Implementation of Ku-band Power Amplifier Module 18
2.5 Measurement Results of Power Amplifier Module 27
2.6 DC Bias Conversion of the Power Amplifier Module 37
2.7 Measurement Results of Single-bias Power Amplifier Module 38
2.8 Performance Summary and Discussions 45
Chapter 3 A Ka-band Low Noise Amplifier Using R-L-C Feedback Technique in E-Mode 0.15-µm GaAs PIN-HEMT Process 46
3.1 Introduction 46
3.2 WIN E-Mode GaAs 0.15-µm PIN-HEMT Monolithic Process 46
3.3 Ka-band LNA Design 49
3.3.1 Common Source and Cascode 49
3.3.2 Bias and Device Selection 53
3.3.3 R-L-C Feedback Technique 64
3.3.4 Implementation of Ka-band Low Noise Amplifier 66
3.4 Measurement Results of Ka-band LNA 91
3.5 Debug and Analysis of the Circuit 100
3.5.1 Test-kits and Devices 100
3.5.2 ADS Momentum EM Simulation 120
3.5.3 Monte Carlo Simulation 123
3.5.4 Re-simulation Results of the Ka-band LNA 125
3.6 Performances Summary and Discussions 132
Chapter 4 Design of a Ka-band Current-Reused Low Noise Amplifier with Body-forward Biasing Technique 134
4.1 Introduction 134
4.2 TSMC 90-nm GUTM CMOS Process 134
4.3 Ka-band Current-reused-TF-based LNA design 135
4.3.1 Linearity Improvement Techniques 135
4.3.2 Bias and Device Selection 141
4.3.3 Implementation of Ka-band current-reused-TF-based LNA 147
4.4 Measurement results of current-reused LNA 172
4.5 Debug and Analysis of the Circuit 182
4.5.1 De-embedding in SONNET EM-simulation 182
4.5.2 Parasitic Extraction (PEX) of the Devices 188
4.5.3 Re-simulation Results of the Ka-band LNA 197
4.6 Performances Summary and Discussions 201
Chapter 5 Design of a Ka-band Switchless Radiometer Receiver for Imaging Sensing Application 203
5.1 Introduction 203
5.1.1 Parameters of the Radiometer Receiver 204
5.2 TSMC 90-nm GUTM CMOS Process 205
5.3 Ka-band Radiometer Receiver Design and Implementation 205
5.3.1 Ka-band R-C Feedback LNA 206
5.3.2 Ka-band R-C feedback parallel LNA 211
5.3.3 Ka-band Current-reused TF-based LNA 216
5.3.4 Simulation of Two-Stage LNA 220
5.3.5 Active Balun and Square-Law Power Detector 226
5.3.6 Simulation Results of Radiometer Receiver 243
5.4 Measurement Results of Ka-band Radiometer Receiver 251
5.4.1 Measurement Results of Two-stage Low Noise Amplifier 251
5.4.2 Active balun and Square-Law Power Detector 263
5.4.3 Radiometer Receiver 270
5.5 Debug and Analysis of the Circuit 278
5.5.1 Two-stage LNAs 278
5.5.2 Active balun with Square-Law Power Detector 285
5.5.3 Radiometer Receiver 290
5.6 Performances Summary and Discussions 294
Chapter 6 Conclusions and Future works 296
Reference 298
參考文獻 [1] C. -H. Lee, A. Sutono, S. Han and J. Laskar, “A compact LTCC Ku-band transmitter
module with integrated filter for satellite communication applications,” in 2001 IEEE
MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ,
USA, 2001, pp. 945-948.
[2] R. -Y. Huang, Y. -C. Su and H. -Y. Chang, “Design of a six-stage W-band low-noise
amplifier using a 90-nm CMOS technology,” in 2024 IEEE 24th Topical Meeting on
Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 2024,
pp. 106-109.
[3] Chang-Ho Lee et al., “A compact LTCC-based Ku-band transmitter module,” IEEE
Transactions on Advanced Packaging, vol. 25, no. 3, pp. 374-384, Aug. 2002.
[4] C. -M. Hsu, Y. Wang and H. Wang, “A 14-91 GHz distributed amplifier in 65-nm CMOS,”
in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong,
2020, pp. 1009-1011.
[5] C. -N. Chen, Y. Chen, Y. Wang, T. -Y. Kuo and H. Wang, “38-GHz CMOS linearized
receiver with IM3 suppression, P1 dB/IP3/RR3 enhancements, and mitigation of QAM
constellation diagram distortion in 5G MMW systems,” IEEE Transactions on Microwave
Theory and Techniques, vol. 68, no. 7, pp. 2779-2795, July 2020.
[6] Shuyun Zhang, P. Bretchko, J. Mokoro, and R. McMorrow, “A novel power amplifier
module for quad-band wireless handset applications,” in IEEE Radio Frequency
Integrated Circuits (RFIC) Symposium, Philadelphia, USA, 2003, pp. 129-132.
[7] Chien-Cheng Lin and Yu-Cheng Hsu, “Single-chip dual-band WLAN power amplifier
using InGaP/GaAs HBT,” in 13th GAAS Symposium, Paris, France, 2005, pp. 489-492.
[8] C. -C. Lai, Y. -C. Hsu, and C. -C. Chen, “Triple-mode five-band power amplifier LTCC
module for WLAN/GPRS/WCDMA applications,” in 2006 European Microwave
Conference, Manchester, UK, 2006, pp. 1486-1489.
[9] Seong-Sik Myoung, Sang-Hoon Cheon, Jae-Woo Park, Jin-Sang Jang, Moon-Ho Dong,
and Jong-Gwan Yook, “InGaP/GaAs HBT power amplifier based on flexible printed
circuit board,” in 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 2006, pp.
1747-1750.
[10] Z. Wang et al., “A Q-Band self-biased LNA in 0.1-μm GaAs pHEMT technology,” in 2019
12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies
(UCMMT), London, UK, 2019, pp. 1-4.
[11] Y. Li and S. Mou, “A Ku-band self-biased bidirectional amplifier in 0.25 μm PHEMT
technology,” in 2020 IEEE International Conference on Computer and Communications
(ICCC), Chengdu, China, 2020, pp. 1166-1170.
299
[12] S. Ichikawa et al., “A gate bias free power MMIC module for Ka-band high-speed wireless
applications,” in 2000 European Microwave Conference, Paris, France, 2000, pp. 1-4.
[13] A. Sain and K. L. Melde, “Impact of ground via placement in grounded coplanar
waveguide interconnects,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 6, no. 1, pp. 136-144, Jan. 2016.
[14] Ghione and C. U. Naldi, “Coplanar waveguides for MMIC applications: Effect of upper
shielding, conductor backing, finite extent ground planes, and lint-to-line coupling,” IEEE
Trans. Microw. Theory Techn., vol.35, no.3, pp. 260-267, Mar. 1987.
[15] R. A. Pucel, “Design considerations for monolithic microwave circuits,” IEEE
Transactions on Microwave Theory and Techniques, vol. 29, no. 6, pp. 513-534, Jun. 1981.
[16] J. W. McDaniel, “Simulation guidelines for wideband ground backed coplanar waveguide
transmission lines,” in 2019 IEEE 20th Wireless and Microwave Technology Conference
(WAMICON), Cocoa Beach, FL, USA, 2019, pp. 1-5.
[17] Analog Device Corporation, “GaAs pHEMT MMIC 2-watt power amplifier,”
HMC6981LS6 datasheet, 2015.
[18] A. Rao, S. Sawant, E. Bogatin and M. Piket-May, “Impact of copper pour on crosstalk:
measurement and simulation correlation,” in 2021 IEEE 30th Conference on Electrical
Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 2021, pp.
1-3.
[19] Texas Instruments, “-16.5-V, 1-A, negative linear regulator in space enhanced plastic,”
TPS7H1210-SEP data sheet, Nov.2021.
[20] Y. Yang, Q. Zhang, C. Xu and E. Chen, “Design of ultra-wideband power amplifier module,”
in 2021 IEEE 15th International Conference on Electronic Measurement & Instruments
(ICEMI), Nanjing, China, 2021, pp. 132-136.
[21] Y. Wang, C.-C. Chiong, J.-K. Nai, H. Wang, “A high gain broadband LNA in GaAs 0.15-
μm pHEMT process using inductive feedback gain compensation for radio astronomy
applications,” in 2015 IEEE International Symposium on Radio-Frequency Integration
Technology (RFIT), Sendai, Japan, 2015, pp. 79-81.
[22] S.-H. Lai, “Design of radiometer receiver using GaAs & CMOS process and power
amplifier using GaN process,” M.S. thesis, Dept. of Elect. Eng., National Central
University, Jhongli, Taiwan, 2021.
[23] J. Hu and K. Ma, “A 1–40-GHz LNA MMIC using multiple bandwidth extension
techniques,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 336-
338, May 2019.
[24] L. -Y. Lee, Y. Wang and H. Wang, “A 25-31 GHz LNA in GaAs 0.15-μm pHEMT,” in 2021
IEEE International Symposium on Radio-Frequency Integration Technology (RFIT),
Hualien, Taiwan, 2021, pp. 1-3.
300
[25] P. -W. Wu, J. -W. Yei, Z. -H. Fu, Y. -T. Chang and K. -Y. Lin, “A wideband GaAs pHEMT
LNA multi-band 5G mmW communication,” in 2023 Asia-Pacific Microwave Conference
(APMC), Taipei, Taiwan, 2023, pp. 348-350.
[26] Y. -M. Chen, Y. Wang, C. -C. Chiong and H. Wang, “A 21.5-50 GHz low noise amplifier
in 0.15-μm GaAs pHEMT process for radio astronomical receiver system,” in 2021 IEEE
Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 2021, pp. 7-9.
[27] Y. -T. Chou, C. -C. Chiong and H. Wang, “A Q-band LNA with 55.7% bandwidth for radio
astronomy applications in 0.15-μm GaAs pHEMT process,” in 2016 IEEE International
Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016, pp.
1-3.
[28] S. -H. Chang, C. -C. Chiong, K. -Y. Kao and H. Wang, “A Q-band amplifier with low noise
figure and medium output power capability for ALMA band-1 receiver,” in 2017 IEEE
Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 2017, pp. 755-
758.
[29] X. Yan, J. Zhang, H. Luo, S. -P. Gao, and Y. Guo, “A compact 1.0–12.5-GHz LNA MMIC
with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT
technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no.
4, pp. 1450-1462, April 2023.
[30] J. Hu, K. Ma, S. Mou, and F. Meng, “A seven-octave broadband LNA MMIC using
bandwidth extension techniques and improved active load,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, Oct. 2018.
[31] Z. Liu, C. C. Boon, X. Yu, C. Li, K. Yang, and Y. Liang, “A 0.061-mm² 1–11-GHz noisecanceling low-noise amplifier employing active feedforward with simultaneous current
and noise reduction,” IEEE Transactions on Microwave Theory and Techniques, vol. 69,
no. 6, pp. 3093-3106, June 2021.
[32] H. -T. Kim et al., “A 28-GHz CMOS direct conversion transceiver with packaged 2 × 4
antenna array for 5G cellular system,” IEEE Journal of Solid-State Circuits, vol. 53, no. 5,
pp. 1245-1259.
[33] M. Fujishima, M. Motoyoshi, K. Katayama, K. Takano, N. Ono and R. Fujimoto, “98 mW
10 Gbps wireless transceiver chipset with D-Band CMOS circuits,” IEEE Journal of SolidState Circuits, vol. 48, no. 10, pp. 2273-2284.
[34] F. Zhu et al., “A low-power low-cost 45-GHz OOK transceiver system in 90-nm CMOS
for multi-Gb/s transmission,” IEEE Transactions on Microwave Theory and Techniques,
vol. 62, no. 9, pp. 2105-2117.
[35] A. B. Ozdol, H. Kandis, A. Burak, T. A. Ozkan, M. Kaynak and Y. Gurbuz, “A high
linearity 6 GHz LNA in 130 nm SiGe technology,” in 2022 17th European Microwave
Integrated Circuits Conference (EuMIC), Milan, Italy, 2022, pp. 68-71.
301
[36] W. L. Chan, J. R. Long, M. Spirito and J. J. Pekarik, “A 60GHz-band 2×2 phased-array
transmitter in 65nm CMOS,” in 2010 IEEE International Solid-State Circuits Conference
(ISSCC), San Francisco, CA, USA, 2010, pp. 42-43.
[37] A. Jha, J. Zheng, C. Masse, P. Hurwitz and S. Chaudhry, “A 0.6dB NF, 12dBm IIP3, 4.6-
6GHz LNA in 0.13μm floating-body SOI CMOS,” in 2020 IEEE 63rd International
Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 2020,
pp. 121-124.
[38] Kwangseok Han et al., “Complete high-frequency thermal noise modeling of short-channel
MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 3, pp. 726-735.
[39] K. -H. Liang, C. -H. Lin, H. -Y. Chang and Y. -J. Chan, “A new linearization technique for
CMOS RF mixer using third-order transconductance cancellation,” IEEE Microwave and
Wireless Components Letters, vol. 18, no. 5, pp. 350-352, May 2008.
[40] O. El-Aassar and G. M. Rebeiz, “Design of low-power sub-2.4 dB mean NF 5G LNAs
using forward body bias in 22 nm FDSOI,” IEEE Transactions on Microwave Theory and
Techniques, vol. 68, no. 10, pp. 4445-4454.
[41] B. Razavi, “Design of analog CMOS integrated circuits,” 2005.
[42] R. -M. Weng, C. -Y. Liu and P. -C. Lin, “A low-power full-band low-noise amplifier for
ultra-wideband receivers,” IEEE Transactions on Microwave Theory and Techniques, vol.
58, no. 8, pp. 2077-2083, Aug. 2010.
[43] Y. Yu, H. Liu, Y. Wu and K. Kang, “A 54.4–90 GHz low-noise amplifier in 65-nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2892-2904, Nov. 2017.
[44] H. Chen, H. Zhu, L. Wu, W. Che and Q. Xue, “A wideband CMOS LNA using transformerbased input matching and pole-tuning technique,” IEEE Transactions on Microwave
Theory and Techniques, vol. 69, no. 7, pp. 3335-3347, July 2021.
[45] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, “A wideband variable gain
LNA with high OIP3 for 5G using 40-nm bulk CMOS,” IEEE Microwave and Wireless
Components Letters, vol. 28, no. 1, pp. 64-66.
[46] J. -F. Chang and Y. -S. Lin, “A 13.7-mW 21–29-GHz CMOS LNA with 21.6-dB gain and
2.74-dB NF for 28-GHz 5G systems,” IEEE Microwave and Wireless Components Letters,
vol. 32, no. 2, pp. 137-140.
[47] H. Chen, L. Wu, W. Che, Q. Xue and H. Zhu, “A wideband LNA based on current-reused
CS-CS topology and Gm-boosting technique for 5G application,” in 2019 IEEE AsiaPacific Microwave Conference (APMC), Singapore, 2019, pp. 1158-1160.
[48] P. Qin and Q. Xue, “Compact wideband LNA with gain and input matching bandwidth
extensions by transformer,” IEEE Microwave and Wireless Components Letters, vol. 27,
no. 7, pp. 657-659.
302
[49] Y. -S. Lin and K. -S. Lan, “22–33 GHz CMOS LNA using coupled-TL feedback and body
self-forward-bias for 28 GHz 5G system,” in 2022 IEEE Radio Frequency Integrated
Circuits Symposium (RFIC), Denver, CO, USA, 2022, pp. 227-230.
[50] R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for
security and surveillance,” IEEE Proc., vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[51] S. Oka et al., “Latest trends in millimeter-wave imaging technology,” Progress in
Electromagnetics Research Lett., vol. 1, pp. 197–204, 2008.
[52] M. R. Fetterman et al., “Simulation, acquisition and analysis of passive millimeter-wave
images in remote sensing applications,” Opt. Express, vol. 16, pp. 20503–20515, Dec.
2008.
[53] B. Xiaojun, “Silicon-based sub-THz radiometers for passive imaging,” in 2018 IEEE AsiaPacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand,
2018, pp. 169-170.
[54] C. -C. Chiong, D. -J. Huang, C. -C. Chuang, Y. -J. Hwang, M. -T. Chen and H. Wang,
“Cryogenic 8–18 GHz MMIC LNA using GaAs PHEMT,” in 2013 Asia-Pacific
Microwave Conference Proceedings (APMC), Seoul, Korea (South), 2013, pp. 261-263.
[55] C. -C. Chiong, W. -J. Tzeng, Y. -J. Hwang, W. -T. Wong, H. Wang and M. -T. Chen, “Design
and measurements of cryogenic MHEMT IF low noise amplifier for radio astronomical
receivers,” in 2009 European Microwave Integrated Circuits Conference (EuMIC), Rome,
Italy, 2009, pp. 1-4.
[56] G. Feng, X. Yi, F. Meng and C. C. Boon, “A W-band switch-less Dicke receiver for
millimeter-wave imaging in 65 nm CMOS,” IEEE Access, vol. 6, pp. 39233-39240.
[57] R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS sub-harmonic mixer based zero-IF
receiver with an improved active balun,” in 2009 IEEE Custom Integrated Circuits
Conference, San Jose, CA, USA, 2009, pp. 673-676.
[58] K. -L. Wu, K. -T. Lai, R. Hu and C. -Y. Chang, “DC-50GHz wideband phase-compensated
90nm-CMOS active balun design,” in 2015 Asia-Pacific Microwave Conference (APMC),
Nanjing, China, 2015, pp. 1-3.
[59] L. Gilreath, V. Jain and P. Heydari, “Design and analysis of a W-Band SiGe directdetection-based passive imaging receiver,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 10, pp. 2240-2252.
[60] L. Zhou, C. -C. Wang, Z. Chen and P. Heydari, “A W-band CMOS receiver chipset for
millimeter-wave radiometer systems,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2,
pp. 378-391.
[61] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, “K-Band SiGe system-on-chip radiometric
receiver for remote sensing of the atmosphere,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 12, pp. 3025-3035,
303
[62] R. Ben Yishay and D. Elad, “D-band Dicke-radiometer in 90 nm SiGe BiCMOS
technology,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu,
HI, USA, 2017, pp. 1957-1960.
[63] A. Tang et al., “A W-band 65nm CMOS/InP-hybrid radiometer & passive imager,” in 2016
IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 2016,
pp. 1-3.
[64] A. Tomkins, P. Garcia and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm
bulk CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 1981-1991, Oct.
2010, doi: 10.1109/JSSC.2010.2058150
[65] Q. J. Gu, Z. Xu, A. Tang and M. -C. Frank Chang, “A D-band passive imager in 65 nm
CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 5, pp. 263-265,
May 2012.
[66] D. E. Mera, R. A. R. Solís, L. Reyes, R. Armstrong, W. J. Hernandez and A. L. GuzmánMorales, “A power and performance study of compact L-band total power radiometers for
UAV remote sensing based in the processing on ZYNQ and ARM architectures,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15,
pp. 1103-1113, 2022.
[67] F. Caster II, L. Gilreath, S. Pan, Z. Wang, F. Capolino and P. Heydari, “Design and analysis
of a W-band 9-element imaging array receiver using spatial-overlapping super-pixels in
silicon,” IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1317-1332, June 2014.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明