參考文獻 |
[1] R. Dilli, Analysis of 5G wireless systems in FR1 and FR2 frequency
bands, 2nd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), pp. 767
772, Mar. 2020.
[2] G. Amendola, L. Boccia, F. Centurelli, P. Chevalier, A. Fonte,
S. Karman, S. Levantino, A. Mazzanti, C. Mustacchio, A. Pallotta, I. Petricli, C. Samori, F. Tesolin, P. Tommasino, A. Traversa,
and A. Triletti, SiGe BiCMOS building blocks for E- and Dband backhauling front-ends, in Europ. Microw. Integr. Circuits
Conf.(EuMIC), 2022, pp. 113116.
[3] N. Ebrahimi, K. Sarabandi, and J. Buckwalter, A 71-76/81-86
GHz, E-band,16-element phased-array transceiver module with image selection architecture for low evm variation, in Radio Freq.
Integr. Circuits Symp. (RFIC), 2020, pp. 9598.
[4] G. Amendola, L. Boccia, F. Centurelli, W. Ciccognani, E. Limiti,
C. Mustacchio, P. Tommasino, and A. Triletti, Characterizationoriented design of E-band variable-gain ampliers in BiCMOS technology, in Microw. Mediterr. Symp. (MMS), 2022, pp. 14.
[5] A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, A low-power
linear SiGe BiCMOS low-noise amplier for millimeter-wave active
imaging, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp.
103105, 2010.
[6] H. Friis, Noise gures of radio receivers, Proceedings of the IRE,
vol. 32, no. 7, pp. 419422, 1944.
[7] M. Ahn, B. S. Kim, C.-H. Lee, and J. Laskar, A high power
CMOS switch using substrate body switching in multistack structure, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.
682684, Sep. 2007.
[8] B. Razavi, Design of Analog CMOS Integrated Circuits. McGrawHill, 2001.
[9] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and
H. Wang, Design and analysis for a miniature CMOS SPDT
switch using body-oating technique to improve power performance, IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp.
3139, Jan. 2006.
[10] M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi,
C. Cetintepe, and R. B. Staszewski, A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS, IEEE Trans. Circuits Syst. II
Express Briefs, vol. 65, no. 10, pp. 14601464, 2018.
[11] D. Lee and C. Nguyen, Dual Q/V -band SiGe BiCMOS low noise
ampliers using q-enhanced metamaterial transmission lines, IEEE
Trans. Circuits Syst. II Express Briefs, vol. 68, no. 3, pp. 898902,
2021.
[12] K. Wang and H. Zhang, A 22-to-47 GHz 2-stage LNA with 22.2 dB
peak gain by using coupled l-type interstage matching inductors,
IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 67, no. 12, pp. 4607
4617, 2020.
[13] F. Ellinger, 26-42 GHz SOI CMOS low noise amplier, IEEE J.
of Solid-State Circuits, vol. 39, no. 3, pp. 522528, 2004.
[14] X. Liang, L. Sun, D. Pang, and S. Wu, Design of Ka band low
noise amplier based on 65nm CMOS technology, in 2021 International Applied Computational Electromagnetics Society (ACESChina) Symposium, 2021, pp. 12.
[15] M. Liu, D. Pang, S. Wu, Y. Kuai, and L. Sun, A 3240 GHz
low-noise amplier for Ka-band phased array radar system in 65-
nm CMOS technology, in 2021 13th International Symposium on
Antennas, Propagation and EM Theory (ISAPE), vol. Volume1,
2021, pp. 0103.
[16] H.-C. Yeh and H. Wang, A miniature Q-band CMOS LNA with
quadruple-cascode topology, in 2011 IEEE MTT-S International
Microwave Symposium, 2011, pp. 14.
[17] J.-H. Tsai, W.-C. Chen, T.-P. Wang, T.-W. Huang, and H. Wang,
A miniature Q-band low noise amplier using 0.13-μm CMOS
technology, IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6,
pp. 327329, 2006.
[18] B.-J. Huang, K.-Y. Lin, and H. Wang, Millimeter-wave low power
and miniature CMOS multicascode low-noise ampliers with noise reduction topology, IEEE Trans. Microw. Theory Techn., vol. 57,
no. 12, pp. 30493059, 2009.
[19] B.-J. Huang, H. Wang, and K.-Y. Lin, A miniature Q-band CMOS
LNA with triple-cascode topology, in 2009 IEEE MTT-S International Microwave Symposium Digest, 2009, pp. 677680.
[20] B. Bae, E. Kim, S. Kim, and J. Han, Dual-band CMOS low-noise
amplier employing transformer-based band-switchable load for 5G
NR FR2 applications, IEEE Microw. Wirel. Compon. Lett., vol. 33,
no. 3, pp. 319322, 2023.
[21] S. Chen, R. Zhang, C. Shi, Y. Shi, and Z. Lai, A Q-band CMOS
LNA with common source topology based on algorithmic design
methodologies, in 2014 12th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), 2014, pp.
13.
[22] G. Gonzalez, Microwave Transistor Ampliers (2nd ed.): Analysis
and Design. Prentice-Hall, 1996.
[23] L. Gao and G. M. Rebeiz, A 24-43 GHz LNA with 3.1-3.7 dB noise
gure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI, in 2019 IEEE Radio Frequency Integrated
Circuits Symposium (RFIC), 2019, pp. 239242.
[24] Y.-M. Chen, Y. Wang, C.-C. Chiong, and H. Wang, A 21.5-50 Ghz
low noise amplier in 0.15-μm GaAs pHEMT process for radio as
tronomical receiver system, in 2021 IEEE Asia-Pacic Microwave
Conference (APMC), 2021, pp. 79.
[25] L.-J. Huang, Y.-S. Wang, and H. Wang, Design of a compact Qband low noise amplier in 0.15-μm GaAs pHEMT process, in
2023 Asia-Pacic Microwave Conference (APMC), 2023, pp. 16
18.
[26] S. Lee, W. Seo, S. Kim, B. Ko, S. Lee, M.-S. Kim, and J. Kim,
A concurrent 26/48 GHz low-noise amplier with an optimal dualband noise matching method using GaAs 0.15 μm pHEMT, IEEE
Trans. Circuits Syst. II Express Briefs, vol. 71, no. 3, pp. 10961100,
2024.
[27] Y.-H. Yu, W.-H. Hsu, and Y.-J. E. Chen, A Ka-band low noise amplier using forward combining technique, IEEE Microw. Wireless
Compon. Lett., vol. 20, no. 12, pp. 672674, 2010.
[28] L. Yang, L.-A. Yang, T. Rong, Y. Li, Z. Jin, and Y. Hao, Codesign of K a-band integrated GaAs pin diodes limiter and low noise
amplier, IEEE Access, vol. 7, pp. 88 27588 281, 2019.
[29] X. Yan, H. Luo, J. Zhang, S.-P. Gao, and Y. Guo, A 9-to-42-GHz
high-gain low-noise amplier using coupled interstage feedback in
0.15-μm GaAs pHEMT technology, IEEE Trans. Circuits Syst. I:
Regul. Pap., vol. 70, no. 4, pp. 14761488, 2023.
[30] Z. Wang, D. Hou, P. Zhou, H. Li, Z. Li, J. Chen, and W. Hong, A
Ka-Band switchable LNA with 2.4-dB NF employing a varactor
based tunable network, IEEE Microw. Wireless Compon. Lett.,
vol. 31, no. 4, pp. 385388, 2021.
[31] C. Zhao, D. Duan, Y. Xiong, H. Liu, Y. Yu, Y. Wu, and K. Kang, A
K-/Ka-band broadband low-noise amplier based on the multiple
resonant frequency technique, IEEE Trans. Circuits Syst. I: Regul.
Pap., vol. 69, no. 8, pp. 32023211, 2022.
[32] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue, A wideband cmos
lna using transformer-based input matching and pole-tuning technique, IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp.
33353347, 2021.
[33] R. A. Shaheen, T. Rahkonen, and A. Pärssinen, Millimeter-wave
frequency recongurable low noise ampliers for 5G, IEEE Trans.
Circuits Syst. II Express Briefs, vol. 68, no. 2, pp. 642646, 2021.
[34] Q. Tian and D. Zhao, A Q-band low-noise amplier in 40-nm
CMOS for Q/V-band satellite communications, in 2022 IEEE International Conference on Integrated Circuits, Technologies and
Applications (ICTA), 2022, pp. 2627.
[35] J. Fu, M. G. Bardeh, J. Paramesh, and K. Entesari, A millimeterwave concurrent LNA in 22-nm CMOS FDSOI for 5G applications,
IEEE Trans. Microw. Theory Techn., vol. 71, no. 3, pp. 10311043,
2023.
[36] B.-W. Min and G. M. Rebeiz, ka-band SiGe HBT low phase imbalance dierential 3-bit variable gain LNA, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 272274, 2008.
[37] H. B. Ahn, H.-G. Ji, Y. Choi, S. Lee, D. M. Kang, and J. Han,
2531 GHz GaN-based LNA MMIC employing hybrid-matching
topology for 5G base station applications, IEEE Microw. Wireless
Compon. Lett., vol. 33, no. 1, pp. 4750, 2023.
[38] X. Tong, L. Zhang, P. Zheng, S. Zhang, J. Xu, and R. Wang, An
1856-GHz wideband GaN low-noise amplier with 2.24.4-dB noise
gure, IEEE Microw. Wireless Compon. Lett., vol. 30, no. 12, pp.
11531156, 2020.
[39] A. Bessemoulin, J. Tarazi, M. G. McCulloch, and S. J. Mahon,
0.1-µm GaAs pHEMT W-band low noise amplier MMIC using
coplanar waveguide technology, in Aust. Microw. Symp. (AMS),
2014, pp. 12.
[40] A. Leuther, M. Ohlrogge, L. Czornomaz, T. Merkle, F. Bernhardt,
and A. Tessmann, 80 nm InGaAs MOSFET W-band low noise
amplier, in IEEE MTT-S Int. Microw. Symp. (IMS), 2017, pp.
11331136.
[41] P.-H. Huang, C.-S. Chiu, G.-W. Huang, K.-M. Chen, and L.-K. Wu,
A low-power low-noise W-band LNA in 90-nm CMOS process with
source degeneration technique, IEEE Microw. Wireless Compon.
Lett., vol. 34, no. 1, pp. 6971, 2024.
[42] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H. Tsai, and H. Wang,
An E-band high-performance variable gain low noise amplier for wireless communications in 90-nm CMOS process, IEEE Microw.
Wireless Compon. Lett., vol. 32, no. 9, pp. 10951098, 2022.
[43] D. Pan, Z. Duan, S. Chakraborty, L. Sun, and P. Gui, A 6090-GHz
CMOS double-neutralized LNA technology with 6.3-dB NF and 10
dBm P1dB, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 7,
pp. 489491, 2019.
[44] S. Li, T. Chi, D. Jung, T.-Y. Huang, M.-Y. Huang, and H. Wang,
4.2 an E-band high-linearity antenna-LNA front-end with 4.8dB
NF and 2.2 dBm IIP3 exploiting multi-feed on-antenna noisecanceling and gm-boosting, in 2020 IEEE International Solid-State
Circuits Conference - (ISSCC), 2020, pp. 13.
[45] Y. Zhang, Z. Wei, X. Tang, L. Zhang, and F. Huang, A 76.592.6
GHz CMOS LNA using two-port kq-product theory for transformer
design, IEEE Microw. Wireless Compon. Lett., vol. 32, no. 10, pp.
11871190, 2022.
[46] D. Pepe and D. Zito, 32 dB gain 28 nm bulk CMOS W-band LNA,
IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, pp. 5557,
2015.
[47] L. Qiu, J. Liu, Q. Dong, Z. Lv, K. Zhao, S. Wang, Y.-C. Kuan,
Q. J. Gu, X. Yu, C. Song, and Z. Xu, Ultralow power E-band
low-noise amplier with three-stacked current-sharing amplication
stages in 28-nm CMOS, IEEE Microw. Wireless Compon. Lett.,
vol. 32, no. 6, pp. 732735, 2022.
[48] D. Karaca, M. Varonen, D. Parveg, A. Vahdati, and K. A. I. Halonen, A 53117 GHz LNA in 28-nm FD-SOI CMOS, IEEE Microw.
Wireless Compon. Lett., vol. 27, no. 2, pp. 171173, 2017.
[49] L. Gao, E. Wagner, and G. M. Rebeiz, Design of E- and W-band
low-noise ampliers in 22-nm CMOS FD-SOI, IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 132143, 2020.
[50] A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, A low-power
linear SiGe BiCMOS low-noise amplier for millimeter-wave active
imaging, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp.
103105, 2010.
[51] E. Vardarli, P. Sakalas, and M. Schröter, A 5.9 mW E-/W-band
SiGe-HBT LNA with 48 Ghz 3-dB bandwidth and 4.5-dB noise
gure, IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp.
14511454, 2022.
[52] K. Smirnova, C. Bohn, M. Kaynak, and A. C. Ulusoy, UltralowPower W-band low-noise amplier design in 130-nm SiGe BiCMOS, IEEE Microw. Wireless Compon. Lett., vol. 33, no. 8, pp.
11711174, 2023.
[53] A. A. Nawaz, J. D. Albrecht, and A. Ça§r Ulusoy, A Ka/V bandswitchable LNA with 2.8/3.4 dB noise gure, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 10, pp. 662664, 2019.
[54] E. Vardarli, P. Sakalas, and M. Schröter, A 5.9 mW E-/W-band
SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5-dB noise
gure, IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp.
14511454, 2022.
[55] X. Tong, P. Zheng, and L. Zhang, Low-noise ampliers using 100-
nm gate length GaN-on-silicon process in W-band, IEEE Microw.
Wireless Compon. Lett., vol. 30, no. 10, pp. 957960, 2020.
[56] K. W. Kobayashi and V. Kumar, A broadband 70110-GHz E-/Wband LNA using a 90-nm t-gate GaN HEMT technology, IEEE
Microw. Wireless Compon. Lett., vol. 31, no. 7, pp. 885888, 2021.
[57] F. Thome, P. Brückner, S. Leone, and R. Quay, A wideband E-
/W-band low-noise amplier MMIC in a 70-nm gate-length GaN
HEMT technology, IEEE Trans. Microw. Theory Techn., vol. 70,
no. 2, pp. 13671376, 2022. |