博碩士論文 110353011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.144.25.248
姓名 吳豈洋(Chi-Yang Wu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 具顆粒阻尼器引擎轉軸振動抑制的實驗研究
(Experimental study on vibration suppression of engine shafts with particle damper)
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 當旋轉機械系統內部的轉動件具有不平衡質量時,在轉動過程中會引起振動,
長久下造成機械系統產生噪音損害與降低使用壽命。本研究將顆粒阻尼器應用於
引擎轉軸來校正動平衡狀態,同時顆粒阻尼器中顆粒與壁面間的碰撞與摩擦抑制
旋轉機械系統的振動,達到動平衡校正兼具抑制振動的效果,為探討顆粒阻尼器對
抑制振動的效益,實驗中設計等效質量無顆粒阻尼器引擎轉軸與具顆粒阻尼器引
擎轉軸,在兩者皆達到動平衡校正至ISO1940 動平衡規格G2.5 等級以下,且達相
近的動平衡允許值後,比較等效質量無顆粒阻尼器引擎轉軸與具顆粒阻尼器引擎
轉軸的動態反應,探討工作轉速、負載扭矩與顆粒粒徑對引擎轉軸動態反應的影響,
其中分析的動態反應物理量包含時域訊號中加速度的方均根值、頻域訊號中的功
率譜密度與單位質量的動能。
研究結果顯示: (1)在頻域訊號的比較中,各轉速下功率譜密度與單位質量的
動能的一倍頻率中,具顆粒阻尼器引擎轉軸相較於等效質量無顆粒阻尼器引擎轉
軸皆來得低,說明具顆粒阻尼器引擎轉軸兼具動平衡校正與抑制振動的效果; (2)
透過振動訊號分析,觀察工作轉速與負載扭矩對引擎轉軸動態行為的影響,在低轉
速及低扭矩、高轉速及高扭矩的組合中,各粒徑顆粒阻尼器引擎轉軸相較等效質量
無顆粒阻尼器引擎轉軸的振動降幅比具有顯著的減振效果,但φ4 mm 顆粒阻尼器
引擎轉軸在高轉速及高扭矩的組合中,減振效果呈現降低的趨勢; (3)透過振動訊
號分析,觀察顆粒粒徑對引擎轉軸的影響,探討的粒徑包含φ2 mm、φ3 mm 與φ4
mm,其中φ2 mm 顆粒阻尼器引擎轉軸具有最穩定且顯著的抑振表現; (4)通過本
實驗驗證,在顆粒阻尼器中填充適當粒徑的顆粒,並做好動平衡校正,可有效降低
引擎轉軸的振動。
摘要(英) When the rotating parts inside the rotating mechanical system have an unbalanced
mass, vibration will be caused during the rotation process, leading to noise damage and
reducing service life of the mechanical system in the long run. In this study, a particle
damper is applied to the engine shaft to correct the dynamic balance state. At the same
time, the collision and friction between the particles and the wall in the particle damper
suppress the vibration of the rotating mechanical system, achieving the effect of dynamic
balance correction and vibration suppression. To explore the effectiveness of particle
damper in suppressing vibrations, the engine shafts designed with equivalent mass
without particle dampers and the engine shafts with particle dampers both achieved
dynamic balance correction to the G2.5 level in ISO1940 dynamic balance specification,
attaining similar dynamic balance allowances. After dynamic balance, the dynamic
response of the two kinds of engine shafts were compared, and the effects of operating
speed, load torque and particle size on the dynamic response of the engine shaft were
systematically explored. The dynamic physical properties include the root mean square
value of the acceleration in the time domain signal, the power spectral density and energy
in the frequency domain signal.
The research findings are summarized below: (1) In the comparison excitation
frequency of frequency domain signals, at each speed, the power spectral density and
energy of the engine shaft with particle dampers are lower than those in the engine shaft
with equivalent mass without particle dampers, showing that the particle damper provides
the effect of vibration suppression; (2) At low speed with low torque and high speed with
high torque, the engine shaft with particle dampers relative to the engine shaft with
equivalent mass without particle damper has a significant vibration reduction effect.
However, at low speed with low torque, the vibration reduction effect of particle damper
with 4 mm particles shows a decreasing trend; (3) The effect of particle size was explored
and three kinds of particle diameters (2 mm, 3 mm and 4 mm) were used. The particle
damper with 2 mm particles exhibits the most stable and significant performance in
vibration suppression; (4) Through experimental validation, by using particles of
appropriate particle size and conducting dynamic balance correction, the particle dampers
can reduce the vibration of the engine shaft effectively.
關鍵字(中) ★ 引擎轉軸
★ 動平衡校正
★ 顆粒阻尼器
★ 雙面平衡法
★ 振動抑制
★ 顆粒粒徑效益
關鍵字(英) ★ Engine shaft
★ Dynamic balance correction
★ Particle damper
★ Double plane balance method
★ Vibration suppression
★ Particle Size effect
論文目次 摘要 .................................................................................................................................... I
ABSTRACT ..................................................................................................................... II
謝誌 ................................................................................................................................. III
目錄 ................................................................................................................................. IV
圖目錄 ............................................................................................................................. VI
表目錄 ............................................................................................................................. XI
符號對照表 ................................................................................................................... XV
第一章 緒論 ..................................................................................................................... 1
1-1 研究背景 ................................................................................................................ 1
1-2 文獻回顧 ................................................................................................................ 2
1-3 研究動機與目的 .................................................................................................... 6
第二章 引擎轉軸實驗建置與量測方法 ......................................................................... 7
2-1 引擎轉軸實驗建置 ................................................................................................ 7
2-2 動平衡方法 .......................................................................................................... 14
2-2-1 動平衡校正原理 .......................................................................................... 14
2-2-2 影響係數法 .................................................................................................. 16
2-2-3 動平衡G-rule 規範 ...................................................................................... 17
2-3 振動量測與訊號轉換原理 .................................................................................. 20
第三章 動平衡校正與振動訊號參數 ........................................................................... 22
3-1 動平衡校正實驗架構 .......................................................................................... 22
3-2 動平衡校正實驗參數 .......................................................................................... 23
V
3-3 動平衡校正實驗結果 .......................................................................................... 24
3-4 振動模態與諧波頻率 .......................................................................................... 33
3-5 振動量測參數與數據處理 .................................................................................. 35
第四章 振動量測實驗結果與討論 ............................................................................... 39
4-1 振動量測訊號分析 .............................................................................................. 39
4-2 負載扭矩對抑振效果的影響 .............................................................................. 65
4-3 工作轉速對抑振效果的影響 .............................................................................. 73
4-4 顆粒粒徑對抑振效果的影響 .............................................................................. 81
4-5 應用參數對抑振效果的總結 .............................................................................. 97
第五章 結論 ................................................................................................................. 103
參考文獻 ....................................................................................................................... 105
作者介紹 ....................................................................................................................... 108
參考文獻 [1] F. Hymans, "Dynamic Balancing of Rotating Parts," SAE Transactions, pp. 113-
140, 1917.
[2] L. Li, S. Cao, J. Li, R. Nie, and L. Hou, "Review of rotor balancing methods,"
Machines, vol. 9, no. 5, p. 89, 2021.
[3] T. P. Goodman, "A least-squares method for computing balance corrections,"
Journal of Engineering for Industry, vol. 86, no. 3, pp. 273-277, 1964.
[4] J. W. Lund and J. Tonnesen, "Analysis and experiments on multi-plane balancing
of a flexible rotor," 1972.
[5] S. Zhang, Z. Gu, and Z. Zhang, "Dynamic balancing method for the singlethreaded,
fixed-pitch screw rotor," Vacuum, vol. 90, pp. 44-49, 2013.
[6] H. Zhang, J. Wu, F. Xie, A. Chen, and Y. Li, "Dynamic behaviors of the
crankshafts in single-cylinder and twin-cylinder rotary compressors,"
International journal of refrigeration, vol. 47, pp. 36-45, 2014.
[7] Y.-H. Chung, C.-W. Yu, B.-R. Wen, and Y.-L. Chen, "Automatic adjustment
method for rotor dynamic balance system," in 2020 International Symposium on
Computer, Consumer and Control (IS3C), 2020: IEEE, pp. 61-64.
[8] D. ISO, "Mechanical vibration—Balance quality requirements for rotors in a
constant (rigid) state—Part 1: Specification and verification of balance
tolerances," ISO 1940-1: 2003, 2003.
[9] M. Saeki, "Analytical study of multi-particle damping," Journal of Sound and
vibration, vol. 281, no. 3-5, pp. 1133-1144, 2005.
[10] S. C. Dragomir, M. Sinnott, E. S. Semercigil, and Ö. F. Turan, "Energy dissipation
characteristics of particle sloshing in a rotating cylinder," Journal of Sound and
Vibration, vol. 331, no. 5, pp. 963-973, 2012.
[11] Z. Xu, M. Y. Wang, and T. Chen, "An experimental study of particle damping for
beams and plates," J. Vib. Acoust., vol. 126, no. 1, pp. 141-148, 2004.
[12] Z. Lu, X. Lu, W. Lu, and S. F. Masri, "Experimental studies of the effects of
buffered particle dampers attached to a multi-degree-of-freedom system under
dynamic loads," Journal of Sound and Vibration, vol. 331, no. 9, pp. 2007-2022,
2012.
[13] Z. Lu, Y. Liao, and Z. Huang, "Stochastic response control of particle dampers
under random seismic excitation," Journal of Sound and Vibration, vol. 481, p.
115439, 2020.
[14] Z. Lu, X. Lu, and S. F. Masri, "Studies of the performance of particle dampers
under dynamic loads," Journal of Sound and Vibration, vol. 329, no. 26, pp. 5415-
5433, 2010.
[15] B. Yao and Q. Chen, "Investigation on zero-gravity behavior of particle dampers,"
Journal of Vibration and Control, vol. 21, no. 1, pp. 124-133, 2015.
[16] C. Wong, M. Daniel, and J. Rongong, "Energy dissipation prediction of particle
dampers," Journal of sound and vibration, vol. 319, no. 1-2, pp. 91-118, 2009.
[17] J. J. Moore et al., "A forced response analysis and application of impact dampers
to rotordynamic vibration suppression in a cryogenic environment," 1995.
[18] W. Q. Xiao and W. Li, "Experimental Research on Vibration Reduction and Life
Extension of Large Precision NC Machine Tool Based on Particle Damping,"
Applied Mechanics and Materials, vol. 543, pp. 299-302, 2014.
[19] Z. Lu, S. F. Masri, and X. Lu, "Studies of the performance of particle dampers
attached to a two-degrees-of-freedom system under random excitation," Journal
of Vibration and Control, vol. 17, no. 10, pp. 1454-1471, 2011.
[20] H. Panossian, "Structural damping enhancement via non-obstructive particle
damping technique," 1992.
[21] B. L. Fowler, E. M. Flint, and S. E. Olson, "Design methodology for particle
damping," in Smart Structures and Materials 2001: Damping and Isolation, 2001,
vol. 4331: SPIE, pp. 186-197.
[22] N. Ahmad, R. Ranganath, and A. Ghosal, "Modeling and experimental study of a
honeycomb beam filled with damping particles," Journal of Sound and Vibration,
vol. 391, pp. 20-34, 2017.
[23] J. Chen, Y. Wang, Y. Zhao, and Y. Feng, "Experimental research on design
parameters of basin tuned and particle damper for wind turbine tower on shaker,"
Structural Control and Health Monitoring, vol. 26, no. 11, p. e2440, 2019.
[24] W. Xiao, S. Yu, L. Liu, and F. Zhang, "Vibration reduction design of extension
housing for printed circuit board based on particle damping materials," Applied
Acoustics, vol. 168, p. 107434, 2020.
[25] W. Xiao, Z. Xu, H. Bian, and Z. Li, "Lightweight heavy-duty CNC horizontal
lathe based on particle damping materials," Mechanical Systems and Signal
Processing, vol. 147, p. 107127, 2021.
[26] W. Xiao, J. Li, T. Pan, X. Zhang, and Y. Huang, "Investigation into the influence
of particles′ friction coefficient on vibration suppression in gear transmission,"
Mechanism and Machine Theory, vol. 108, pp. 217-230, 2017.
[27] W. Xiao, Y. Huang, H. Jiang, H. Lin, and J. Li, "Energy dissipation mechanism
and experiment of particle dampers for gear transmission under centrifugal loads,"
Particuology, vol. 27, pp. 40-50, 2016.
[28] W. Xiao, J. Li, S. Wang, and X. Fang, "Study on vibration suppression based on
particle damping in centrifugal field of gear transmission," Journal of Sound and
Vibration, vol. 366, pp. 62-80, 2016.
[29] Y.-R. Wu, Y.-C. Chung, and I.-C. Wang, "Two-way coupled MBD–DEM
modeling and experimental validation for the dynamic response of mechanisms
containing damping particles," Mechanism and Machine Theory, vol. 159, p.
104257, 2021.
[30] Y.-C. Chung and Y.-R. Wu, "Dynamic modeling of a gear transmission system
containing damping particles using coupled multi-body dynamics and discrete
element method," Nonlinear Dynamics, vol. 98, pp. 129-149, 2019.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明