參考文獻 |
[1] C. Qian, A. M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang,
“Thermal management on IGBT power electronic devices and modules”,
IEEE Access, vol. 6, pp.12868-12884, 2018.
[2] Z. Khattak, H. M. Ali, “Air cooled heat sink geometries subjected to forced
flow: A critical review”, International Journal of Heat and Mass Transfer,
vol. 130, pp. 141-161, 2019.
[3] B. B Kanbur, C. Wu, S. Fan, W. Tong, F. Duan, “Two-phase liquid
immersion data center cooling system: Experimental performance and
thermos economic analysis”, International Journal of Refrigeration, vol.
118, pp. 290-301, 2020.
[4] D. B. Tuckerman, R.F. W. Pease, “High-performance heat sinking for
VLSI”, IEEE Electron Device Letters, vol. 2, Issues 5, pp. 126-129,1981.
[5] X. Li, J. Chen,” Microembossed copper microchannel heat sink for highdensity
cooling in electronics”, Micro & Nano Letters, vol. 14(12), pp.
1258-1262, 2019.
[6] S.G. Kandlikar, C.N. Hayner II, “Liquid cooled cold plates for industrial
high-power electronic devices - Thermal design and manufacturing
considerations”, Heat Transfer Engineering, vol. 30, pp. 918-930, 2009.
[7] 張芷瑄, “高功率模組水冷散熱器熱流設計與分析研究” (碩士論文).
國立陽明交通大學機械工程學系, 2022.
[8] M. Iyengar, A. Bar-Cohen, “Design for manufacturability of SISE parallel
plate forced convection heat sinks”, ITHERM 2000, The Seventh
57
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (Cat. No.00CH37069), pp. 141-148, Las Vegas, NV,
USA, 2000.
[9] R. E. Simon, “Estimating the effect of flow bypass on parallel plate-fin heat
sink performance”, Electronic Cooling, 2004. Retrieved from
https://www.electronics-cooling.com/2004/02/estimating-the-effect-offlow-
bypass-on-parallel-plate-fin-heat-sink-performance/
[10] H. Y. Li, M. H. Chiang, “Effects of shield on thermal-fluid performance
of vapor chamber heat sink”, International Journal of Heat and Mass
Transfer, vol. 54(7-8), pp. 1410-1419, 2011
[11] H. Jonsson, B. Palm, “Thermal and hydraulic performance of plate fin
and strip fin heat sinks under varying bypass conditions”, ITherm′98. Sixth
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems, pp. 98-103, Seattle, WA, USA, 1998.
[12] X. Yu, J. F. Feng, Q. Wang, “Development of a plate-pin fin heat sink and
its performance comparisons with a plate fin heat sink”, Applied Thermal
Engineering, vol. 25(2-3), pp. 173-182, 2005.
[13] H. E. Ahmed, “Optimization of thermal design of ribbed flat-plate fin
heat sink”, Applied Thermal Engineering, vol. 102, pp. 1422-1432, 2016.
[14] H. Y. Li, C. L. Chen, S. M. Chao, G. F. Liang, “Enhancing heat transfer
in a plate-fin heat sink using delta winglet vortex generators”, International
Journal of Heat and Mass Transfer, vol. 67, pp. 666-677, 2013.
[15] 吳信昌”具渦流產生器之散熱鰭片實驗研究”(碩士論文). 國立中央
大學機械工程學系, 2008.
[16] D. Copeland, “Optimization of parallel plate heatsinks for forced
convection”, Sixteenth Annual IEEE Semiconductor Thermal
Measurement and Management Symposium, San Jose, CA, USA, pp. 266-
272, 2000.
[17] J. R. Culham, Y. S. Muzychka,” Optimization of plate fin heat sinks using
entropy generation minimization”, IEEE Transactions on Components and
Packaging Technologies, vol. 24(2), pp. 159-165, 2001.
[18] C. J. Shih, G. C. Liu,” Optimal design methodology of plate-fin heat
sinks for electronic cooling using entropy generation strategy”, IEEE
Transactions on Components and Packaging Technologies, vol. 27(3), pp.
551-559, 2004.
[19] S. C. Lin, F. S. Chuang, C. A. Chou, “Experimental study of the heat sink
assembly with oblique straight fins”, Experimental Thermal and Fluid
Science, vol. 29(5), pp. 591-600, 2005.
[20] D. K. Kim, “Thermal optimization of branched-fin heat sinks subject to
a parallel flow”, International Journal of Heat and Mass Transfer, vol. 77,
pp. 278-287, 2014.
[21] C. H. Huang, Y. H. Chen, H. Y. Li, ” An impingement heat sink module
design problem in determining optimal non-uniform fin widths”,
International Journal of Heat and Mass Transfer, vol. 67, pp. 992-1006,
2013.
[22] C. H. Chen, C. C. Wang, “A novel trapezoid fin pattern applicable for aircooled
heat sink” Heat and Mass Transfer, vol. 51, pp. 1631-1637, 2014.
[23] H. L. Chen, C. C. Wang, “Analytical analysis and experimental
verification of interleaved parallelogram heat sink”, Applied Thermal
Engineering, vol. 112, pp. 739-747, 2017.
[24] N. Mansouri, A. Zaghlol, C. Weasner, “Force convection performance of
the heat sink with embedded heat pipes comparing two embedding
technologies for heat pipe”, 19th IEEE Intersociety Conference on Thermal
and Thermomechanical Phenomena in Electronic Systems (ITherm),
Orlando, FL, USA, pp. 8-14, 2020.
[25] Mansouri, N., Weasner, C., & Zaghlol, A. (2018). Characterization of a
heat sink with embedded heat pipe with variable heat dissipating
source placement for power electronics applications. In 2018 17th
IEEE Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm) (pp. 311-317). San Diego,
CA, USA.
[26] Wang, B., et al. (2021). Air-cooling system optimization for IGBT
modules in MMC using embedded O-shaped heat pipes. IEEE Journal of
Emerging and Selected Topics in Power Electronics, 9(4), 3992-4003.
[27] Numerical basis of CAD-embedded CFD. (n.d.). Retrieved from
https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded
_cfd_whitepaper.pdf
[28] Wolfspeed Power Module Thermal Interface Material Application
User Guide. Retrieved from
https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_PRD60
07933_Power_Module_TIM_Application_User_Guide.pdf
[29] Sharifi, Y. (2020). Thermal transport investigation of SiC power
semiconductor modules (Master′s thesis, Department of Electrical
Engineering, Chalmers University of Technology). Gothenburg,
Sweden.
[30] Measurement Method and Usage of Thermal Resistance RthJC.
Retrieved from
https://fscdn.rohm.com/en/products/databook/applinote/discrete/
common/rthjc_measurement_and_usage_an-e.pdf
[31] Sarvar, F., Whalley, D. C., & Conway, P. P. (2006). Thermal interface
materials - A review of the state of the art. In 2006 1st Electronic System
integration Technology Conference (pp. 1292-1302). Dresden, Germany.
[32] Improving fan system performance: A sourcebook for industry.
(n.d.). Retrieved from
https://www.nrel.gov/docs/fy03osti/29166.pdf |