博碩士論文 108353027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.222.164.66
姓名 黃浩彰(Hao-Jhang Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 大功率散熱鰭片之熱傳分析
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 電力電子產品不斷追求高功率密度設計,但並非每個產品都能使用水冷
散熱。在實際應用中,信賴性、維修便利性以及客戶需求等因素都需要考量。
因此,對氣冷散熱器進行優化在實務設計中是必要的。此外,對於大功率機
種,重量和成本也往往是設計需求中的重要考量因素。本研究針對固定體積
下的散熱鰭片進行分析。研究對象的整體高度為90mm,總寬度為204mm,
長度為90mm。單一熱源的發熱量為720W,共有兩個熱源。該散熱模組使
用兩顆9038 風扇。在有限的空間下,通過優化散熱片的幾何參數和散熱鰭
片的傾角特徵進行設計。結果顯示,在有熱管的前提下,改變散熱片底部厚
度對特性影響不顯著。而在鰭片間距固定的情況下,增加散熱片厚度對特性
的改善有顯著幫助。在可變鰭片的條件下,鰭片間距與鰭片厚度的比值在2
到3 之間時,可達到最佳設計效果。前置傾角對風扇壓降的改善較為顯著,
在45 度傾角條件下,特性接近於無傾角情況。後置傾角容易增加系統壓降,
進而影響風扇整體流量,對特性無顯著幫助。中置傾角會稍微增加部分壓降,
但有助於改善散熱片溫升。優化之結果約可改善57%重量並維持相同特性。
摘要(英) Power electronic products continuously strive for high power density designs;
however, not every product can employ liquid cooling solutions. In practical
applications, factors such as reliability, ease of maintenance, and customer
requirements must be considered. Therefore, optimizing air-cooled heat sinks is
necessary from a practical standpoint. Additionally, for high-power models,
weight and cost are often critical design considerations. This study heat sinks
within fixed dimensions. The overall height is 90mm, the total width is 204mm,
and the length is 90mm. Each heat source generates 720W, with two heat sources
in. The heat dissipation module with two 9038 fans. Within the limited space, the
heat sink design is optimized by adjusting the geometric parameters and
inclination angles of the fins. The results show that with heat pipes, changing the
base thickness of the heat sinks has no significant impact on performance. When
the fin spacing is fixed, increasing the thickness of the heat sinks significantly
improves performance. Under conditions with variable fins, the optimal ratio of
fin spacing to fin thickness is between 2 and 3. The pre-angled fins significantly
improve the fan pressure drop, with characteristics close to those of non-angled
fins at a 45-degree angle. The post-angled fins tend to increase the system pressure
4
drop, thereby affecting the overall airflow of the fan, and provide no significant
benefit to performance. The mid-angled fins slightly increase the pressure drop
but are expected to improve the temperature rise of the heat sinks. The optimized
parameters proposed in this study improve performance by approximately
57%.and keep the same temperature.
關鍵字(中) ★ 強制對流 關鍵字(英) ★ thermal analysis
★ Heat Sink
論文目次 摘 要 ....................................................... 2
ABSTRACT ..................................................... 3
誌 謝 ....................................................... 5
目 錄 ....................................................... 6
圖目錄 ....................................................... 8
表目錄 ...................................................... 11
第一章 緒論 .................................................. 1
1-1 研究動機與目的 ......................................................................................... 1
1-2 文獻回顧 ..................................................................................................... 3
第二章 研究方法 ............................................. 16
2-1 數值方法 .............................................. 16
2-2 研究流程 .............................................. 17
2-3 物理模型 .............................................. 18
2-4 模擬條件 .............................................. 20
2-3 網格獨立性 ............................................ 27
第三章 模擬結果與討論 ....................................... 29
3-1 散熱片幾何討論 ........................................ 29
3-2 鰭片傾斜角度討論 ...................................... 36
3-2.1 前置傾角 ......................................... 36
3-2.2 中置傾角 ......................................... 37
3-2.3 後置傾角 ......................................... 39
第四章 實驗設備與方法 ....................................... 42
4-1 實驗規劃 .............................................. 42
4-2 實驗設備 .............................................. 43
4-3 實驗步驟 .............................................. 47
第五章 結果與討論 ........................................... 51
5-1 實驗結果 ............................................... 51
5-2 模擬與實驗結果比較 .................................... 54
5-3 結論 .................................................. 55
第六章 參考文獻 ............................................. 56
參考文獻 [1] C. Qian, A. M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang,
“Thermal management on IGBT power electronic devices and modules”,
IEEE Access, vol. 6, pp.12868-12884, 2018.
[2] Z. Khattak, H. M. Ali, “Air cooled heat sink geometries subjected to forced
flow: A critical review”, International Journal of Heat and Mass Transfer,
vol. 130, pp. 141-161, 2019.
[3] B. B Kanbur, C. Wu, S. Fan, W. Tong, F. Duan, “Two-phase liquid
immersion data center cooling system: Experimental performance and
thermos economic analysis”, International Journal of Refrigeration, vol.
118, pp. 290-301, 2020.
[4] D. B. Tuckerman, R.F. W. Pease, “High-performance heat sinking for
VLSI”, IEEE Electron Device Letters, vol. 2, Issues 5, pp. 126-129,1981.
[5] X. Li, J. Chen,” Microembossed copper microchannel heat sink for highdensity
cooling in electronics”, Micro & Nano Letters, vol. 14(12), pp.
1258-1262, 2019.
[6] S.G. Kandlikar, C.N. Hayner II, “Liquid cooled cold plates for industrial
high-power electronic devices - Thermal design and manufacturing
considerations”, Heat Transfer Engineering, vol. 30, pp. 918-930, 2009.
[7] 張芷瑄, “高功率模組水冷散熱器熱流設計與分析研究” (碩士論文).
國立陽明交通大學機械工程學系, 2022.
[8] M. Iyengar, A. Bar-Cohen, “Design for manufacturability of SISE parallel
plate forced convection heat sinks”, ITHERM 2000, The Seventh
57
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (Cat. No.00CH37069), pp. 141-148, Las Vegas, NV,
USA, 2000.
[9] R. E. Simon, “Estimating the effect of flow bypass on parallel plate-fin heat
sink performance”, Electronic Cooling, 2004. Retrieved from
https://www.electronics-cooling.com/2004/02/estimating-the-effect-offlow-
bypass-on-parallel-plate-fin-heat-sink-performance/
[10] H. Y. Li, M. H. Chiang, “Effects of shield on thermal-fluid performance
of vapor chamber heat sink”, International Journal of Heat and Mass
Transfer, vol. 54(7-8), pp. 1410-1419, 2011
[11] H. Jonsson, B. Palm, “Thermal and hydraulic performance of plate fin
and strip fin heat sinks under varying bypass conditions”, ITherm′98. Sixth
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems, pp. 98-103, Seattle, WA, USA, 1998.
[12] X. Yu, J. F. Feng, Q. Wang, “Development of a plate-pin fin heat sink and
its performance comparisons with a plate fin heat sink”, Applied Thermal
Engineering, vol. 25(2-3), pp. 173-182, 2005.
[13] H. E. Ahmed, “Optimization of thermal design of ribbed flat-plate fin
heat sink”, Applied Thermal Engineering, vol. 102, pp. 1422-1432, 2016.
[14] H. Y. Li, C. L. Chen, S. M. Chao, G. F. Liang, “Enhancing heat transfer
in a plate-fin heat sink using delta winglet vortex generators”, International
Journal of Heat and Mass Transfer, vol. 67, pp. 666-677, 2013.
[15] 吳信昌”具渦流產生器之散熱鰭片實驗研究”(碩士論文). 國立中央
大學機械工程學系, 2008.
[16] D. Copeland, “Optimization of parallel plate heatsinks for forced
convection”, Sixteenth Annual IEEE Semiconductor Thermal
Measurement and Management Symposium, San Jose, CA, USA, pp. 266-
272, 2000.
[17] J. R. Culham, Y. S. Muzychka,” Optimization of plate fin heat sinks using
entropy generation minimization”, IEEE Transactions on Components and
Packaging Technologies, vol. 24(2), pp. 159-165, 2001.
[18] C. J. Shih, G. C. Liu,” Optimal design methodology of plate-fin heat
sinks for electronic cooling using entropy generation strategy”, IEEE
Transactions on Components and Packaging Technologies, vol. 27(3), pp.
551-559, 2004.
[19] S. C. Lin, F. S. Chuang, C. A. Chou, “Experimental study of the heat sink
assembly with oblique straight fins”, Experimental Thermal and Fluid
Science, vol. 29(5), pp. 591-600, 2005.
[20] D. K. Kim, “Thermal optimization of branched-fin heat sinks subject to
a parallel flow”, International Journal of Heat and Mass Transfer, vol. 77,
pp. 278-287, 2014.
[21] C. H. Huang, Y. H. Chen, H. Y. Li, ” An impingement heat sink module
design problem in determining optimal non-uniform fin widths”,
International Journal of Heat and Mass Transfer, vol. 67, pp. 992-1006,
2013.
[22] C. H. Chen, C. C. Wang, “A novel trapezoid fin pattern applicable for aircooled
heat sink” Heat and Mass Transfer, vol. 51, pp. 1631-1637, 2014.
[23] H. L. Chen, C. C. Wang, “Analytical analysis and experimental
verification of interleaved parallelogram heat sink”, Applied Thermal
Engineering, vol. 112, pp. 739-747, 2017.
[24] N. Mansouri, A. Zaghlol, C. Weasner, “Force convection performance of
the heat sink with embedded heat pipes comparing two embedding
technologies for heat pipe”, 19th IEEE Intersociety Conference on Thermal
and Thermomechanical Phenomena in Electronic Systems (ITherm),
Orlando, FL, USA, pp. 8-14, 2020.
[25] Mansouri, N., Weasner, C., & Zaghlol, A. (2018). Characterization of a
heat sink with embedded heat pipe with variable heat dissipating
source placement for power electronics applications. In 2018 17th
IEEE Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm) (pp. 311-317). San Diego,
CA, USA.
[26] Wang, B., et al. (2021). Air-cooling system optimization for IGBT
modules in MMC using embedded O-shaped heat pipes. IEEE Journal of
Emerging and Selected Topics in Power Electronics, 9(4), 3992-4003.
[27] Numerical basis of CAD-embedded CFD. (n.d.). Retrieved from
https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded
_cfd_whitepaper.pdf
[28] Wolfspeed Power Module Thermal Interface Material Application
User Guide. Retrieved from
https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_PRD60
07933_Power_Module_TIM_Application_User_Guide.pdf
[29] Sharifi, Y. (2020). Thermal transport investigation of SiC power
semiconductor modules (Master′s thesis, Department of Electrical
Engineering, Chalmers University of Technology). Gothenburg,
Sweden.
[30] Measurement Method and Usage of Thermal Resistance RthJC.
Retrieved from
https://fscdn.rohm.com/en/products/databook/applinote/discrete/
common/rthjc_measurement_and_usage_an-e.pdf
[31] Sarvar, F., Whalley, D. C., & Conway, P. P. (2006). Thermal interface
materials - A review of the state of the art. In 2006 1st Electronic System
integration Technology Conference (pp. 1292-1302). Dresden, Germany.
[32] Improving fan system performance: A sourcebook for industry.
(n.d.). Retrieved from
https://www.nrel.gov/docs/fy03osti/29166.pdf
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明