參考文獻 |
[1] M. Antler, “Survey of contact fretting in electrical connectors”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 8, 1985, pp. 8-87.
[2] T. Manninen, K. Kanervo, A. Revuelta, J. Larkiola, A.S. Korhonen, “Plastic deformation of solderless press-fit connectors”, Materials Science and Engineering: A, vol. 461, 2007, pp. 633.
[3] M. J. Cordill, P. Kreiml, C. Mitterer, “Materials Engineering for Flexible Metallic Thin Film Applications”, Materials, vol. 15, 2022, pp. 926.
[4] S. Krumbein, “Parts, corrosion through porous gold plate”, IEEE Transactions on Parts, Materials and Packaging, vol.5, 1969, pp. 5-89.
[5] Y. Okinaka and M. Hoshino, “Some recent topics in gold plating for electronics applications”, Gold Bull, vol. 31, 1998, pp. 3-13.
[6] M. Antler, “Electrical effects of fretting connector contact materials: a review”, Wear, vol. 106, 1985, pp. 5-33.
[7] M. Antler, M. Drozdowicz, C. A. Haque, “Connector contact materials: effect of environment on clad palladium, palladium-silver alloys, and gold electrodeposits”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.4, 1981, pp. 4-482.
[8] S. D. Ponja, S. Sathasivam, I. P. Parkin, C. J. Carmalt, “Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition”, Scientific Reports, vol. 10, 2020, pp. 1-7.
[9] Y. T. Lin, Y. L. Chung, Z. K. Wang, J. C. Huang, “Ag-Mg-Al metallic glassy and intermetallic thin films for electric contact Applications”, Intermetallics, vol. 57, 2015, pp. 133-138.
[10] K. R. Son, S. H. Hong, M. J. Yu, T. G. Kim, “Thermally stable and conductive nickel-incorporated gallium oxide thin-film electrode for efficient Ga-N microscale light-emitting diode arrays”, Applied Surface Science, vol. 604, 2022, pp. 154-560.
[11] E. M. Bock, J. H. Whitley, “Proceedings of the 20th annual holm seminar on electric contacts”, IEEE, 1974, pp. 128.
[12] T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, vol. 110, 2016, pp. 188-195.
[13] A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95, 2004, pp. 4815-4822.
[14] 吳學陞,新興材料-塊狀非晶質合金金屬材料,工業材料,第149期,1999年。
[15] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp. 279-306.
[16] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp181-195.
[17] G. P. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar, G. L. Goswami, “Structure relaxation in metallic glasses”, Materials Science and Engineering: A, vol. 304-306, 2001, pp. 499-504.
[18] J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physic, vol. 19, 1934, pp. 37-39.
[19] A. Brenner, D. E. Couch, E. K. Williams, “Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt”, Journal of Research of the National Bureau of Standards, vol. 44, 1950, pp.109-111.
[20] W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[21] D. Turnbull, “Phase Changes”, Journal of Physics A, vol. 3, 1956, pp.225-306.
[22] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics A, vol. 35, 1974, pp. 1-10.
[23] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Journal of Physics C, vol. 7, 1966, pp. 159.
[24] H. A. Davies, “The formation of metallic glass”, Journal of Physics C, vol. 17, 1976, pp. 159-173.
[25] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp. 1237-1238.
[26] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, vol. 6, 1976, pp. 921-923.
[27] M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[28] A. Inoue, T. Zhang and T. Masumoto, “Al-La-Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, vol. 30, 1989, pp. 965-972.
[29] T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, vol. 32, 1991, pp. 1005-1010.
[30] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, vol. 32, 1991, pp. 609-616.
[31] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, vol. 36, 1995, pp. 866-875.
[32] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[33] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp. 181-195.
[34] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[35] H. W. Chen, K. C. Hsu, Y. C. Chan, J. G. Duh, J. W. Lee, J. S. C. Jang, G. J. Chen, “Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass”, Thin Solid Films, vol. 561, 2014, pp. 98-101.
[36] P. T. Chiang, G. J Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, “Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, vol.2, 2010, pp. 12-20.
[37] Y. Z. Chang, P. H. Tsai, J. B. Li, H. C. Lin, J. S. C. Jang, C. Li, G. J. Chen, Y. C. Chen, J. P. Chu, P. K. Liaw, “Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy”, Thin Solid Films, vol. 544, 2013, pp. 331-334.
[38] P. H. Tsai, T. H. Li, K. T. Hsu, J. H. Ke, J. S. C. Jang, J. P. Chu, “Coating thickness effect of metallic glass thin film on the fatigue-properties improvement of 7075 aluminum alloy”, Thin Solid Films, vol. 677, 2019, pp. 68-72.
[39] 胡庭墉,鎂基金屬玻璃薄膜對鎂合金ZK60基材之機械性質與抗腐蝕性提升之研究(碩士論文),2021年。
[40] P. C. Wong, R. Y. Wang, L. S. Lu, W. R. Wang, J. S. C. Jang, J. L. Wu, T. Y. Su, L. H. Chang, “Two-Step Approach Using Degradable Magnesium to Inhibit Surface Biofilm and Subsequently Kill Planktonic Bacteria”, biomedicines, vol. 9, 2021, pp. 1677.
[41] Y. S. Chu, P. C. Wong, J. S. C. Jang, C. H. Chen, S. H. Wu, “Combining Mg-Zn-Ca Bulk Metallic Glass with a Mesoporous Silica Nanocomposite for Bone Tissue Engineering”, pharmaceutics, vol. 14, 2022, pp. 1078
[42] P. C. Wong, S. M. Song, P. H. Tsai, M. J. Maqnun, W. R. Wang, J. L. Wu, J. S. C. Jang, “Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications”, materials, vol. 15, 2022, pp.1887
[43] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp. 181-195.
[44] R. W. Cahn, P. Hassen and E.J. Kramer, “Materials Science and Technology”, Weinheim;New York : VCH, vol. 9, 1991, pp. 90-92.
[45] W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, vol. 22, 1973, pp. 531-580.
[46] K. L. Chapra, “Thin film phenomena”, McGraw-Hill, ISBN 978-0070107991, 1969, pp. 850-852.
[47] 隋孟軒,添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究(碩士論文),2015年。
[48] Z. Zhang, F. Wu, G. He, J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, vol. 23, 2007, pp. 747-767.
[49] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,1996年。
[50] P. C. Wong, P. H. Tsai, T. H. Li, C. K. Cheng, J. S. C. Jang, J. C. Huang “Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials”, Journal of Alloys and Compounds, vol.699, 2017, pp. 914-920.
[51] A. Pekerand, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, vol. 63, 1993, pp. 2342-2344.
[52] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[53] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[54] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[55] 顧宜,複合材料,新文京開發出版公司,1992年。
[56] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[57] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp. 2243-2267.
[58] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[59] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1977, pp. 407-415.
[60] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[61] A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[62] 陳憲緯,鋯-銅基非晶質薄膜製備與抗菌性質研究(碩士論文),2010年。
[63] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S. C. Jang, Y. Gao, P. K. Liaw, “Thin-film metallic glasses for substrate fatigue-property improvements”, Thin Solid Films, vol. 561, 2014, pp. 2-27.
[64] A. Khlyustova, Y. Cheng, R. Yang, “Vapor-deposited functional polymer thin films in biological applications”, Journal of Materials Chemistry B, vol. 8, 2020, pp. 6588
[65] 李正中,薄膜光學與鍍膜技術第二版,藝軒圖書文具有限公司,2001年。
[66] P. H. Tsai, J. B. Li, Y. Z. Chang, H. C. Lin, J. S. C. Jang, J. P. Chu, J. W. Lee, P. K. Liaw, “Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating”, Thin Solid Films, vol. 561, 2014, pp. 28-32.
[67] J. S. C. Jang, P. H. Tsai, A. Z. Shiao, T. H. Li, C. Y. Chen, J. P. Chu, J. G. Duh, M. J. Chen, S. H. Chang, W. C. Huang, “Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film”, Intermetallics, vol. 65, 2015, pp. 56-60.
[68] P. H. Tsai, A. C. Xiao, J. B. Li, J. S. C. Jang, J. P. Chu, J. C. Huang, “Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance”, Journal of Alloys and Compounds, vol.586, 2014, vol. 94-98.
[69] B. Chapman, “Glow discharge processes : sputtering and plasma etching”, ISBN 978-0-471-07828-9, 1980.
[70] M. Ohring, “The Materials Science of Thin Film”, Academic Press, ISBN 12-524990-1, 1992, pp. 197. |