博碩士論文 111323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.144.252.203
姓名 劉承德(Cheng-De Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高導電 高硬度 鋁 銀 銅 金屬薄膜 之 研 製
(The Development of the High-Conductivity High-Hardness AlAgCu Thin Film)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 隨著3C商品與工業4.0的進步,帶動連接器產業的發展,越來越多研究開始導向以較低的價格提升連接器的效能,傳統連接端子為了增加與外層結合性,先鍍一層純鎳作為基底後,再鍍一層純金膜,這樣一來,由於鎳與金的價格昂貴,整體的成本也會不斷上升,因此使國內外連接器廠轉而開發及研究不同的鍍膜材料,以取代金與鎳。連接端子經常用於機器之間的連接,操作時端子與端子間須具備耐衝擊、耐插拔、低電阻、耐高溫、耐濕、耐腐蝕等特性,對於機械性質、電器性質及環境性質的要求極為重要,因此如何提升端子材料性質為研發上探討的核心項目之一。
非晶質結構相比於一般結晶結構,提供了材料較高的硬度與耐磨耗性能,且因不具有晶界之特點,表現出極強的抗氧化及耐腐蝕特性,若應用於薄膜上將能有效應用作為端子材料。本研究開發鋁-銀-銅(Al -Ag -Cu)基金屬薄膜,嘗試取代昂貴的純金和純鎳薄膜,並利用直流磁控濺鍍法將合金以非晶質結構之形式鍍覆於玻璃基板上,來研究其機械性質及導電度。
實驗結果顯示以直流磁控濺鍍法可以成功將鋁-銀-銅(Al-Ag-Cu)基以非晶質合金結構形式鍍覆於玻璃基板上,鍍膜後之鋁-銀-銅(Al-Ag-Cu)基非晶質合金結構能維持非晶態,薄膜的電阻率量測結果顯示,在經過快速退火熱處理後,Al46Ag35Cu19非晶態薄膜的電阻率將降低至低至98 μΩ∙cm,而Al70Ag15Cu15複合結構則降於39 μΩ∙cm。與純銅的42 μΩ∙cm及純鎳的141 μΩ∙cm相比,有領先的趨勢。透過奈米壓痕分析,Al52Ag31Cu17非晶態薄膜硬度最高到達了6.11GPa之硬度與111.83GPa之楊氏模數,而Al65Ag15Cu20複合結構到達了3.75GPa之硬度與95.37之楊氏模數。非晶質膜的硬度相比於純金膜高出了4倍之多。本研究證明了此方案的可行性,AlAgCu金屬薄膜具有極大的潛力。
摘要(英) With the advancement of 3C products and Industry 4.0, the connector industry has also been growing. More and more research is focusing on improving the performance of connectors at a lower cost now. Traditionally, terminals connector enhance their bonding with the outer layer by first coating with a layer of pure nickel as a base, followed by a layer of pure gold. However, since the prices of nickel and gold are very high, the overall cost continually increases. As a result, domestic and international connector manufacturers are turning to the development and research of alternative coating materials to replace the nickel and gold parts. In commercial, terminals connector must possess characteristics such as impact resistance, durability under repeated insertion and removal, low electrical resistance, high-temperature resistance and moisture resistance. Consequently, improving the mechanical, electrical, and environmental properties of terminals connector are the core topics.
This study try to develop the aluminum-silver-copper (Al-Ag-Cu) amorphous alloys and use this amorphous alloys to fabricate a thin film to replace the expensive pure gold and pure nickel films. In this study the alloy is coated onto glass substrates to form an amorphous structure film by using DC magnetron sputtering, and then investigate the mechanical properties, electrical conductivity, and corrosion resistance of these thin film.
Compared with conventional crystalline structures, amorphous structure possess higher hardness and wear resistance. Additionally, due to the absence of grain boundaries, they exhibit extremely strong oxidation resistance and corrosion resistance. When applied to thin films, these properties can effectively address existing issues.
The results show that the aluminum-silver-copper (Al-Ag-Cu) based alloy can be successfully deposited onto glass substrates using DC magnetron sputtering. XRD results show that after the deposition the Al-Ag-Cu based alloy retains its amorphous structure.
Rapid thermal annealing at 400℃was performed after deposition, and the resistivity of thin film were measured. The resistivity of the Al46Ag35Cu19 amorphous film reduces to as low as 98 μΩ∙cm, while the Al70Ag15Cu15 composite structure reduces to 39 μΩ∙cm. Compared with pure copper at 42 μΩ∙cm and pure nickel at 141 μΩ∙cm, these results show a promising trend. Through nano-indentation analysis, it was found that the Al52Ag31Cu17 amorphous film achieved a maximum hardness of 6.11 GPa and a Young′s modulus of 111.83 GPa. Meanwhile, the Al65Ag15Cu20 composite structure reached a hardness of 3.75 GPa and a Young′s modulus of 95.37 GPa.
The hardness of the amorphous film is four times higher than that of pure gold film. This study demonstrates the feasibility of this approach, showing that AlAgCu metal thin films have great potential.
關鍵字(中) ★ 非晶質合金
★ 薄膜
★ 機械性質
★ 連接器
★ 耐候
關鍵字(英) ★ amorphous alloy
★ film
★ mechanical properties
★ connector
★ weather resistance
論文目次 摘要 i
ABSTRACT ii
致謝 iv
總目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 非晶質合金之概述 3
2-2 非晶質合金發展之歷程 4
2-3 非晶質合金之設計 6
2-3-1 歸納法則 6
2-4 非晶質合金之製作 7
2-5 非晶質合金之熱力學性質 9
2-5-1 非晶質合金之Tg、Trg、ΔTx 10
2-5-2 γ 值與 γm值 11
2-6 非晶質合金之性質 12
2-6-1 機械性質 12
2-6-2 電磁性質 13
2-6-3 耐腐蝕性 14
2-6-4 抗菌性 14
2-7 非晶質合金薄膜 14
2-7-1 濺鍍法製作金屬玻璃薄膜(sputtering) [64] 15
2-7-2 直流濺鍍(DC sputtering deposition)與射頻濺鍍(RF sputtering deposition) 15
2-7-3 偏壓輔助鍍法(bias) 16
2-7-4 非晶質薄膜應用 16
2-8 薄膜之成長原理[69,70] 17
第三章 實驗方法與步驟 27
3-1 玻璃基板之準備 27
3-2 靶材之製成與準備 27
3-2-1 成分計算與配置 27
3-2-2 傾倒式高週波真空感應熔煉法 28
3-3 AlAgCu金屬薄膜的製作 29
3-3-1 直流磁控濺鍍(DC sputtering) 29
3-3-2 快速退火熱處理(rapid thermal annealing, RTA) 29
3-4 非晶質合金性質分析 30
3-4-1 薄膜厚度分析 30
3-4-2 熱性質分析 30
3-4-3 四點探針分析 (Four-Point Probes) 31
3-5 機械性質分析 31
3-5-1 奈米壓痕測試 31
3-6 微觀結構分析 32
3-6-1 低掠角X光繞射分析(DIXRD) 32
3-6-2 原子力顯微鏡分析(AFM) 33
3-6-3 能量散射光譜儀(EDS) 34
3-6-4 掃描式電子顯微鏡(SEM) 34
第四章 結果與討論 46
4-1 成分分析 46
4-2 薄膜結構分析 47
4-3 熱性值分析 47
4-4 晶體尺寸分析 48
4-5 表面粗糙度分析 49
4-6 厚度分析 49
4-7 導電度分析 50
4-8 薄膜硬度分析 51
第五章 結論 78
第六章 參考文獻 79
參考文獻 [1] M. Antler, “Survey of contact fretting in electrical connectors”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 8, 1985, pp. 8-87.
[2] T. Manninen, K. Kanervo, A. Revuelta, J. Larkiola, A.S. Korhonen, “Plastic deformation of solderless press-fit connectors”, Materials Science and Engineering: A, vol. 461, 2007, pp. 633.
[3] M. J. Cordill, P. Kreiml, C. Mitterer, “Materials Engineering for Flexible Metallic Thin Film Applications”, Materials, vol. 15, 2022, pp. 926.
[4] S. Krumbein, “Parts, corrosion through porous gold plate”, IEEE Transactions on Parts, Materials and Packaging, vol.5, 1969, pp. 5-89.
[5] Y. Okinaka and M. Hoshino, “Some recent topics in gold plating for electronics applications”, Gold Bull, vol. 31, 1998, pp. 3-13.
[6] M. Antler, “Electrical effects of fretting connector contact materials: a review”, Wear, vol. 106, 1985, pp. 5-33.
[7] M. Antler, M. Drozdowicz, C. A. Haque, “Connector contact materials: effect of environment on clad palladium, palladium-silver alloys, and gold electrodeposits”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.4, 1981, pp. 4-482.
[8] S. D. Ponja, S. Sathasivam, I. P. Parkin, C. J. Carmalt, “Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition”, Scientific Reports, vol. 10, 2020, pp. 1-7.
[9] Y. T. Lin, Y. L. Chung, Z. K. Wang, J. C. Huang, “Ag-Mg-Al metallic glassy and intermetallic thin films for electric contact Applications”, Intermetallics, vol. 57, 2015, pp. 133-138.
[10] K. R. Son, S. H. Hong, M. J. Yu, T. G. Kim, “Thermally stable and conductive nickel-incorporated gallium oxide thin-film electrode for efficient Ga-N microscale light-emitting diode arrays”, Applied Surface Science, vol. 604, 2022, pp. 154-560.
[11] E. M. Bock, J. H. Whitley, “Proceedings of the 20th annual holm seminar on electric contacts”, IEEE, 1974, pp. 128.
[12] T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, vol. 110, 2016, pp. 188-195.
[13] A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95, 2004, pp. 4815-4822.
[14] 吳學陞,新興材料-塊狀非晶質合金金屬材料,工業材料,第149期,1999年。
[15] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp. 279-306.
[16] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp181-195.
[17] G. P. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar, G. L. Goswami, “Structure relaxation in metallic glasses”, Materials Science and Engineering: A, vol. 304-306, 2001, pp. 499-504.
[18] J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physic, vol. 19, 1934, pp. 37-39.
[19] A. Brenner, D. E. Couch, E. K. Williams, “Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt”, Journal of Research of the National Bureau of Standards, vol. 44, 1950, pp.109-111.
[20] W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[21] D. Turnbull, “Phase Changes”, Journal of Physics A, vol. 3, 1956, pp.225-306.
[22] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics A, vol. 35, 1974, pp. 1-10.
[23] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Journal of Physics C, vol. 7, 1966, pp. 159.
[24] H. A. Davies, “The formation of metallic glass”, Journal of Physics C, vol. 17, 1976, pp. 159-173.
[25] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp. 1237-1238.
[26] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, vol. 6, 1976, pp. 921-923.
[27] M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[28] A. Inoue, T. Zhang and T. Masumoto, “Al-La-Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, vol. 30, 1989, pp. 965-972.
[29] T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, vol. 32, 1991, pp. 1005-1010.
[30] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, vol. 32, 1991, pp. 609-616.
[31] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, vol. 36, 1995, pp. 866-875.
[32] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[33] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp. 181-195.
[34] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904.
[35] H. W. Chen, K. C. Hsu, Y. C. Chan, J. G. Duh, J. W. Lee, J. S. C. Jang, G. J. Chen, “Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass”, Thin Solid Films, vol. 561, 2014, pp. 98-101.
[36] P. T. Chiang, G. J Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, “Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, vol.2, 2010, pp. 12-20.
[37] Y. Z. Chang, P. H. Tsai, J. B. Li, H. C. Lin, J. S. C. Jang, C. Li, G. J. Chen, Y. C. Chen, J. P. Chu, P. K. Liaw, “Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy”, Thin Solid Films, vol. 544, 2013, pp. 331-334.
[38] P. H. Tsai, T. H. Li, K. T. Hsu, J. H. Ke, J. S. C. Jang, J. P. Chu, “Coating thickness effect of metallic glass thin film on the fatigue-properties improvement of 7075 aluminum alloy”, Thin Solid Films, vol. 677, 2019, pp. 68-72.
[39] 胡庭墉,鎂基金屬玻璃薄膜對鎂合金ZK60基材之機械性質與抗腐蝕性提升之研究(碩士論文),2021年。
[40] P. C. Wong, R. Y. Wang, L. S. Lu, W. R. Wang, J. S. C. Jang, J. L. Wu, T. Y. Su, L. H. Chang, “Two-Step Approach Using Degradable Magnesium to Inhibit Surface Biofilm and Subsequently Kill Planktonic Bacteria”, biomedicines, vol. 9, 2021, pp. 1677.
[41] Y. S. Chu, P. C. Wong, J. S. C. Jang, C. H. Chen, S. H. Wu, “Combining Mg-Zn-Ca Bulk Metallic Glass with a Mesoporous Silica Nanocomposite for Bone Tissue Engineering”, pharmaceutics, vol. 14, 2022, pp. 1078
[42] P. C. Wong, S. M. Song, P. H. Tsai, M. J. Maqnun, W. R. Wang, J. L. Wu, J. S. C. Jang, “Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications”, materials, vol. 15, 2022, pp.1887
[43] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, vol. 87, 2005, pp. 181-195.
[44] R. W. Cahn, P. Hassen and E.J. Kramer, “Materials Science and Technology”, Weinheim;New York : VCH, vol. 9, 1991, pp. 90-92.
[45] W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, vol. 22, 1973, pp. 531-580.
[46] K. L. Chapra, “Thin film phenomena”, McGraw-Hill, ISBN 978-0070107991, 1969, pp. 850-852.
[47] 隋孟軒,添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究(碩士論文),2015年。
[48] Z. Zhang, F. Wu, G. He, J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, vol. 23, 2007, pp. 747-767.
[49] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,1996年。
[50] P. C. Wong, P. H. Tsai, T. H. Li, C. K. Cheng, J. S. C. Jang, J. C. Huang “Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials”, Journal of Alloys and Compounds, vol.699, 2017, pp. 914-920.
[51] A. Pekerand, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, vol. 63, 1993, pp. 2342-2344.
[52] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[53] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[54] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[55] 顧宜,複合材料,新文京開發出版公司,1992年。
[56] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[57] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp. 2243-2267.
[58] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[59] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1977, pp. 407-415.
[60] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[61] A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[62] 陳憲緯,鋯-銅基非晶質薄膜製備與抗菌性質研究(碩士論文),2010年。
[63] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S. C. Jang, Y. Gao, P. K. Liaw, “Thin-film metallic glasses for substrate fatigue-property improvements”, Thin Solid Films, vol. 561, 2014, pp. 2-27.
[64] A. Khlyustova, Y. Cheng, R. Yang, “Vapor-deposited functional polymer thin films in biological applications”, Journal of Materials Chemistry B, vol. 8, 2020, pp. 6588
[65] 李正中,薄膜光學與鍍膜技術第二版,藝軒圖書文具有限公司,2001年。
[66] P. H. Tsai, J. B. Li, Y. Z. Chang, H. C. Lin, J. S. C. Jang, J. P. Chu, J. W. Lee, P. K. Liaw, “Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating”, Thin Solid Films, vol. 561, 2014, pp. 28-32.
[67] J. S. C. Jang, P. H. Tsai, A. Z. Shiao, T. H. Li, C. Y. Chen, J. P. Chu, J. G. Duh, M. J. Chen, S. H. Chang, W. C. Huang, “Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film”, Intermetallics, vol. 65, 2015, pp. 56-60.
[68] P. H. Tsai, A. C. Xiao, J. B. Li, J. S. C. Jang, J. P. Chu, J. C. Huang, “Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance”, Journal of Alloys and Compounds, vol.586, 2014, vol. 94-98.
[69] B. Chapman, “Glow discharge processes : sputtering and plasma etching”, ISBN 978-0-471-07828-9, 1980.
[70] M. Ohring, “The Materials Science of Thin Film”, Academic Press, ISBN 12-524990-1, 1992, pp. 197.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明