參考文獻 |
[1] UNDP Sustainable Energy Hub, Energy transition, Retrieved Juun 15, 2024, from https://www.undp.org/energy/our-work-areas/energy-transition
[2] 行政院國家永續發展委員會, 臺灣2050淨零排放路徑, Retrieved Juun 15, 2024, from https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path
[3]國家發展委員會, 十二項關鍵戰略, Retrieved Juun 15, 2024, from https://www.ndc.gov.tw/Content_List.aspx?n=733396F648BE2845
[4] 經濟部能源局, 能源轉型白皮書, Retrieved Juun 15, 2024, from https://energywhitepaper.tw/#/whitepaper
[5] 能源及減碳辦公室, 綠能科技產業創新推動方案, Retrieved Juun 15, 2024, from https://www.ey.gov.tw/achievement/212C54ECAD28A29E
[6] Yi Fan Junye Wang, Hualin Wang. Techno-economic challenges of fuel cell commercialization. Engineering, 4:352–360, 2018.
[7] 財團法人台灣經濟研究院。全國性氫能發展之整體規劃期末報告書。
[8] Matthew M Mench. Fuel Cell Engines. John Wiley & Sons, Nashville, TN, 2008.
[9] Siew Hwa Chan Lixin Fan, Zhengkai Tu. Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 7:8421–8446, 2021.
[10] Junye Wang, Hualin Wang, and Yi Fan. Techno-economic challenges of fuel cell commercialization. Engineering, 4:352–360, 05 2018.
[11] Ahmet Kusoglu and Adam Z. Weber. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev., 117(3):987–1104, FEB 8 2017.
[12] RH; Jensen JO; Bjerrum NJ Li, QF; He. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °c. CHEMISTRY OF MATERIALS, 15:4896–4915, 2003.
[13] D.B. Ingham K.J. Hughes L Ma S.M. Lyth M. Pourkashanian F.C. Lee, M.S. Ismail. Alternative architectures and materials for pemfc gas diffusion layers: A review and outlook. Renewable and Sustainable Energy Reviews, 166:112640, 2022.
[14] Xuefeng Ren, Qianyuan Lv, Lifen Liu, Bihe Liu, Yiran Wang, Anmin Liu, and Gang Wu. Current progress of pt and pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels, 4(1):15–30, 2020.
[15] Rizwan Haider, Yichan Wen, Zi-Feng Ma, David P. Wilkinson, Lei Zhang, Xianxia Yuan, Shuqin Song, and Jiujuin Zhang. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev., 50:1138–1187, 2021.
[16] Leonard Bonville, Jasna Jankovic, Aubrey Tang, Louis Crisci. An overview of bipolar plates in proton exchange membrane fuel cells. J. Renewable Sustainable Energy, 13:022701, 2021.
[17] T. Velumani, K. B. Chul R. Velayutham P. Shivakumar S. Sundaram M. Marappan, K. Palaniswamy. Performance studies of proton exchange membrane fuel cells with different flow field designs – review. Chem. Rec., 21:663, 2021.
[18] W.-G. Drossel S. Porstmann, T. Wannemacher. A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends. Journal of Manufacturing Processes, 60:366–383, 2020.
[19] Huang J., Li Z., and Zhang J. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer. Front. Energy, 11:334–364, 2017.
[20] Shiqing Liu, Shu Yuan, Yuwei Liang, Huiyuan Li, Zhiling Xu, Qian Xu, Jiewei Yin, Shuiyun Shen, Xiaohui Yan, and Junliang Zhang. Engineering the catalyst layers towards enhanced local oxygen transport of low-pt proton exchange membrane fuel cells: Materials, designs, and methods. International Journal of Hydrogen Energy, 48(11):4389–4417, 2023.
[21] Xiaojing Cheng, Shuiyun Shen, Guanghua Wei, Chao Wang, Liuxuan Luo, and Junliang Zhang. Perspectives on challenges and achievements in local oxygen transport of low pt proton exchange membrane fuel cells. Advanced Materials Technologies, 7(8):2200228, 2022.
[22] Kei Sakai, Kazuyuki Sato, Tetsuya Mashio, Atsushi Ohma, Koichi Yamaguchi, and Kazuhiko Shinohara. Analysis of reactant gas transport in catalyst layers; effect of pt-loadings. ECS Transactions, 25(1):1193, sep 2009.
[23] Takahisa Suzuki, Kenji Kudo, and Yu Morimoto. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. Journal of Power Sources, 222:379–389, 2013.
[24] P. Gazdzicki, J. Mitzel, A. M. Dreizler, M. Schulze, and K. A. Friedrich. Impact of platinum loading on performance and degradation of polymer electrolyte fuel cell electrodes studied in a rainbow stack. Fuel Cells, 18(3):270–278, 2018.
[25] Ting Wei Huang, Hamza Qayyum, Guan Ren Lin, Szu Yuan Chen, and Chung Jen Tseng. Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel cells with pulsed laser deposition. J. Phys. D, 49:255601, 2016.
[26] Chia-Chun Lang, Ching-Hsien Lin, Hao-Hsuan Chen, Chung-Jen Tseng, and Szu yuan Chen. Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing. Int. J. Hydrogen Energy, 46(68):33948–33956, 2021.
[27] Hamza Qayyum, Chung-Jen Tseng, Ting-Wei Huang, and Szu-yuan Chen. Pulsed laser deposition of platinum nanoparticles as a catalyst for high-performance PEM fuel cells. Catalysts, 6(11):180, NOV 2016.
[28] Mark K. Debe. Nanostructured thin film electrocatalysts for pem fuel cells - a tutorial on the fundamental characteristics and practical properties of nstf catalysts. ECS Transactions, 45(2):47, apr 2012.
[29] Mark K Debe. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486:43–51, 2012.
[30] N Cunningham, E Irissou, M Lefèvre, M C Denis, D. Guay, and J P Dodelet. Pemfc anode with very low pt loadings using pulsed laser deposition. Electrochem. Solid-State Lett., 6:A125–A128, 2003.
[31] Waldemar Mróz, Bogusław Budner, Wojciech Tokarz, Piotr Piela, and Michael L Korwin Pawlowski. Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells. J. Power Sources, 273:885–893, 2015.
[32] Jericha Iglesia, Chia-Chun Lang, Yen-Mu Chen, Szu-Yuan Chen, and Chung-Jen Tseng. Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer. J. Power Sources, 436(226886):226886, 2019.
[33] Segeun Jang, Yun Sik Kang, Dohoon Kim, Subin Park, Changwook Seol, Sungchul Lee, Sang Moon Kim, and Sung Jong Yoo. Multiscale architectured membranes, electrodes, and transport layers for next-generation polymer electrolyte membrane fuel cells. Advanced Materials, 35(43):2204902, 2023.
[34] Matthias Klingele, Matthias Breitwieser, Roland Zengerle, and Simon Thiele. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. J. Mater. Chem. A, 3:11239–11245, JUL 2015.
[35] Matthias Klingele, Benjamin Britton, Steven Holdcroft, Roland Zengerle, Simon Thiele, Severin Vierrath, Matthias Breitwieser. The reasons for the high power density of fuel cells fabricated with directly deposited membranes. Journal of Power Sources, 326:170–175, 2016.
[36] Matthias Klingele, Armin Hartmann, Johannes Erben, Hyeongrae Cho, Jochen Kerres, Roland Zengerle, Simon Thiele, Matthias Breitwieser, Carolin Klose. Simple fabrication of 12 µm thin nanocomposite fuel cell membranes by direct electrospinning and printing. Journal of Power Sources, 337:137–144, 2017.
[37] Peng Ren, Pucheng Pei, Yuehua Li, Ziyao Wu, Dongfang Chen, and Shangwei Huang. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci., 80:100859, SEP 2020.
[38] Gasteiger H. WolfVielstich, ArnoldLamm. Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Nashville, TN, 2009.
[39] R E Rosli, A B Sulong, W R W Daud, M A Zulkifley, T Husaini, M I Rosli, E H Majlan, and M A Haque. A review of high-temperature proton exchange membrane fuel cell (ht-pemfc) system. Int. J. Hydrogen Energy, 42(14):9293–9314, 2017.
[40] Qianwen Tang, Bing Li, Daijun Yang, Pingwen Ming, Cunman Zhang, and Yanbo Wang. Review of hydrogen crossover through the polymer electrolyte membrane. Int. J. Hydrog. Energy, 46(42):22040–22061, 2021.
[41] R. Eason. Pulsed laser deposition of thin films: applications-led growth of functional materials, first edition. John Wiley and Sons, Inc., 2006.
[42] Xiao-Zi Yuan, Haijiang Wang and Hui Li. PEM FUEL CELL DIAGNOSTIC TOOLS. Taylor Francis Group, Boca Raton, US, 2012.
[43] Xiaoxi Yuan, Haijiang Wang, Jian Colin Sun, and Jiujiun Zhang. AC impedance technique in PEM fuel cell diagnosis-A review. Int. J. Hydrogen Energy, 32:4365–4380, 2007.
[44] Ivan Pivac, Boris Šimić, and Frano Barbir. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells. Journal of Power Sources, 365:240–248, 2017.
[45] Chao Wei, Shengnan Sun, Daniel Mandler, Xun Wang, Shi Zhang Qiao, and Zhichuan J. Xu. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev., 48:2518-2534, 2019.
[46] Qinggang He, Ahmet Kusoglu, Ivan T Lucas, Kyle Clark, Adam Z Weber, and Robert Kostecki. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes. J. Phys. Chem. B, 115(40):11650–11657, 2011.
[47] Daria Riabinina, Eric Irissou, Boris Le Drogoff, Mohamed Chaker, and Daniel Guay. Influence of pressure on the Pt nanoparticle growth modes during pulsed laser ablation. J. Appl. Phys., 108:034322, 2010.
[48] D. Bäuerle. Laser processing and chemistry, fourth edition. Springer, 2011.
[49] Alexandra Gelle, Tony Jin, Luis de la Garza, Gareth D. Price, Lucas V. Besteiro, and Audrey Moores. Applications of PlasnpIn-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev., 120(2):986–1041, JAN 22 2020.
[50] F. van Schalkwyk, G. Pattrick, J. Olivier, O. Conrad, and S. Blair. Development and scale up of enhanced ORR Pt-based catalysts for PEMFCs. Fuel Cells, 16(4):414–427, 2016.
[51] Junbo Hou, Min Yang, Changchun Ke, Guanghua Wei, and Junliang Zhang. Optimizing the structural design of a nanocomposite catalyst layer for PEM fuel cells for improving mass-specific power density. Nanoscale, 12(26):13858–13878, JUL 14 2020.
[52] Andrew J. Steinbach, Jeffrey S. Allen, Rodney L. Borup, Daniel S. Hussey, David L. Jacobson, Andrei Konov, Anthony Kwong, James MacDonald, Rangachary Mukundan, Matt J. Pejsa, Michael Roos, Anthony D. Santamaria, James M. Sieracki, Dusan Spernjak, Iryna V. Zenyuk, and Adam Z. Weber. Anode-design strategies for improved performance of polymer-electrolyte fuel cells with ultrathin electrodes. Joule, 2(7):1297–1312, JUL 18 2018.
[53] Feng-Ju Lai, Wei-Nien Su, Loka Subramanyam Sarma, Din-Goa Liu, Cheng-An Hsieh, Jyh-Fu Lee, and Bing-Joe Hwang. Chemical dealloying mechanism of bimetallic Pt-Co nanoparticles and enhancement of catalytic activity toward oxygen reduction. Chem. Eur. J., 16(15):4602–4611, 2010.
[54] Binghong Han, Christopher E. Carlton, Anusorn Kongkanand, Ratandeep S. Kukreja, Brian R. Theobald, Lin Gan, Rachel O’Malley, Peter Strasser, Frederick T. Wagner, and Yang Shao-Horn. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci., 8(1):258–266, 2015.
[55] Ivan Khalakhan, Mykhailo Vorokhta, Michal Vaclav, Bretislav Smid, Jaroslava Lavkova, Iva Matolinova, Roman Fiala, Nataliya Tsud, Tomas Skala, and Vladimir Matolin. In-situ electrochemical atomic force microscopy study of aging of magnetron sputtered Pt-Co nanalloy thin films during accelerated degradation test. Electrochim. Acta, 211:52–58, 2016.
[56] José M Doña Rodriguez, José Alberto Herrera Melián, and Jesus Pérez Peña. Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. J. Chem. Educ., 77:1195–1197, 2000.
[57] Sheng Dai, Jyh-Pin Chou, Kuan-Wen Wang, Yang-Yang Hsu, Al-Hue He, Xiaoqing Pan, and Tsan-Yao Chen. Platinum-ruthenium-
[58] KA Mauritz and RB Moore. State of understanding of Nafion. Chem. Rev., 104(10):4535–4585, OCT 2004.
[59] Klaus Schmidt-Rohr and Qiang Chen. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater., 7(1):75–83, JAN 2008.
[60] Heng Zhang, Lei Li, Martin Moeller, Xiaomin Zhu, Jaime J. Hernandez Rueda, Martin Rosenthal, and Dimitri A. Ivanov. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes. Adv. Mater., 25(26):3543–3548, JUL 12 2013.
[61] Pavel G. Khalatur and Alexei R. Khokhlov. Nonconventional scenarios of polymer self-assembly. Soft Matter, 9(46):10943–10954, 2013.
[62] Quentin Berrod, Sandrine Lyonnard, Armel Guillermo, Jacques Olivier, Bernhard Frick, Abdelatif Manseri, Bruno Ameduri, and Gerard Gebel. Nanostructure and Transport Properties of Proton Conducting Self-Assembled Perfluorinated Surfactants: A Bottom-Up Approach toward PFSA Fuel Cell Membranes. Macromolecules, 48(17):6166–6176, SEP 8 2015.
[63] Kourosh Malek, Tetsuya Mashio, and Michael Eikerling. Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis, 2(2):141–157, JUN 2011.
[64] Qinggang He, Ahmet Kusoglu, Ivan T. Lucas, Kyle Clark, Adam Z. Weber, and Robert Kostecki. Correlating humidity-dependent microscopically conductive surface area with transport phenomena in proton-exchange membranes. J. Phys. Chem. B, 115(40):11650–11657, OCT 13 2011.
[65] Jiwoo Choi, Je Hyeon Yeon, Seung Ho Yook, Sungsoo Shin, Jin Young Kim, Mansoo Choi, and Segeun Jang. Multifunctional Nafion/CeO2 dendritic structures for enhanced durability and performance of polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces, 13(1):806–815, JAN 13 2021.
[66] Abu Zafar Al Munsur, Bon-Hyuk Goo, Youngkwang Kim, Oh Joong Kwon, Sae Yane Paek, So Young Lee, Hyoung-Juhn Kim, and Tae-Hyun Kim. Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly(acrylic acid) and poly(vinyl alcohol). ACS Appl. Mater. Interfaces, 13(24):28188–28200, JUN 23 2021.
[67] Yao Lu Na Li Zhaoxia Hu Shouwen Chen Lili Liu, Yangyang Pu. Superacid sulfated sno2 doped with ceo2: A novel inorganic filler to simultaneously enhance conductivity and stabilities of proton exchange membrane. Journal of Membrane Science, 621:118972, 2021.
[68] Karen Chan and Michael Eikerling. Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers. Phys. Chem. Chem. Phys., 16:2106–2117, 2014.
[69] Xiang Deng, Chao Huang, Xiaodong Pei, Bin Hu, and Wei Zhon. Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: a review. Int. J. Hydrog. Energy, 47(3):1529–1542, 2022.
[70] Jun Huang, Zhe Li, and Jianbo Zhang. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front. Energy, 11:334–364, 2017. |