博碩士論文 108684603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.136.19.124
姓名 陳德輝(Duc-Huy Tran)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 從資料到模型:了解異質性水文地質模型在地球水文學研究中的重要性
(From Data to Models: Understanding the Importance of Heterogeneous Hydrogeological Models in Geohydrology Studies)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
★ 台灣西南部因地下水開發與構造活動引致地層下陷之研究★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example
★ 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討★ 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵
★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan
★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation
★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例
★ Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan★ 結合異質性地質模型與水-熱數值模式探討台灣宜蘭礁溪溫泉水資源管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 在複雜的沖積扇含水層系統中,建立良善的異質性水文地質模型,可有效的進行地下水管理與緩解地層下陷問題,對於水文地質學、工程地質學和環境科學領域至關重要。本研究旨在闡明從鑽探資料到建立異質性水文地質模型對水文地質學的影響,目標在解決三個挑戰:(1) 量化水文地質模型不確定性對局部尺度地下水流和地層下陷模擬的影響;(2) 評估鑽孔密度對盆地尺度三維異質性水文地質空間分布特性與地質模型建構的影響;(3) 發展異質性水文地質模型下之地下水和地層下陷的非耦合模型,以量化流域尺度的地層下陷問題。本研究利用大量鑽孔資料,採用一維連續馬可夫鏈方法、spMC套件和地質統計方法來產生水文地質模型。使用地下水模擬系統(groundwater modeling system, GMS)軟體搭配TPROGS、MODFLOW和SUB套件,可模擬暫態地下水流並模擬地層下陷。透過蒙地卡羅模擬法進行模擬與評估,以確定變量的結果和不確定性。
在局部尺度中,本研究結果強調了水文地質模型的不確定性對地下水流和地層下陷模擬的重要性的顯著影響。研究中也探討了邊界條件對模擬結果的影響,給定數值的邊界條件增強了不同模型中地下水流的穩定性並減少了不確定性。在盆地尺度中,研究結果強調,較高的鑽孔密度會產生更詳細和複雜的水文地質模型,從而增強地質不連續性的代表性。相反,較低的鑽井密度會導致較連續和均勻的水文地質模型,可能會過度簡化水文地質的複雜性,但足以進行較大尺度的水資源評估。本研究強調了鑽孔密度在降低模型不確定性和提高水文地質模型可靠性方面的關鍵作用。 此外,本研究亦發展了地下水流和地層下陷的非耦合模型,透過率定和驗證步驟,使此模型的結果顯示出很高的可信度。模擬顯示,淺層地下水抽取顯著影響深部的含水層,特別是在台灣高鐵沿線,顯著導致地層下陷。 結果顯示,淺層的抽水活動引致6%至35%深層壓縮,其量值取決於局部的水文地質特徵和抽水行為。
本研究深入探討了影響地下水流和地層下陷的行為,強調了水文地質模型不確定性、鑽孔密度和地下水抽水在水文地質學研究中的重要性。這些發現對於面臨嚴重地下水缺乏和人為影響地區的地下水管理、環境影響和地層下陷評估具有重要意義。未來的研究應整合其他自然因素,例如水文循環的變化,以進一步改善對地層下陷和地下水資源管理的理解和緩解策略。
摘要(英) In the complex aquifer systems of the Choushui River Alluvial Fan, Taiwan, effective groundwater management and land subsidence mitigation are crucial in the fields of geohydraulic, engineering geology, and environmental science. This study aims to clarify the impact of heterogeneous hydrogeological models on geohydrology, spanning from data to modeling. Our objectives address three primary challenges: (1) quantifying the influence of uncertainty of heterogeneous hydrogeological model on local-scale simulations of groundwater flow and land subsidence; (2) assessing the impact of borehole density on the construction and effectiveness of three-dimensional heterogeneous hydrogeological models in the basin scale; and (3) developing an uncoupled-model for groundwater and compaction that quantifies land subsidence at a basin scale. This study utilizes extensive borehole data, employing the one-dimensional (1D) continuous-lag Markov chain, the spMC package, and geostatistical methods to generate realistic hydrogeological model realizations. The Groundwater Modeling System (GMS) software, integrated with the TPROGS, MODFLOW, and SUB packages, enables simulations of transient groundwater flows and models land subsidence. These models are evaluated through Monte Carlo simulations to ascertain the variability and uncertainty of the results.
In the local scale, our findings highlight the significant impact of hydrogeological model uncertainty on the reliability of simulations for groundwater flow and land subsidence. We also explore the effects of boundary conditions on simulation outcomes, noting that assumed boundary conditions enhance the stability of groundwater flow across different models and reduce uncertainty. At the basin scale, findings highlight that higher borehole densities produce more detailed and complex hydrogeological models, enhancing the representation of geological discontinuities. Conversely, lower densities result in more continuous and uniform patterns, potentially oversimplifying subsurface complexities, yet sufficient for expansive assessments. This study emphasizes the critical role of borehole density in reducing model uncertainty and enhancing the reliability of hydrogeological model. Furthermore, an uncoupled-model for groundwater and compaction was well developed with the calibration and verification. Results from the model have demonstrated high credibility. The simulations reveal that shallow groundwater pumping significantly impacts deeper hydrogeological layer, notably along the Taiwan High-Speed Rail, contributing markedly to land subsidence. It shows that pumping activities within shallow layers account for 6% to 35% of deep compression, with variations dependent on specific hydrogeological characteristics and pumping behaviors.
In conclusion, this research provides deep insights into the dynamics affecting groundwater flow and land subsidence, emphasizing the essential roles of uncertainty of hydrogeological model, borehole density, and groundwater pumping practices in the geohydrology study. The implications of these findings are significant for groundwater management, environmental assessments, and land subsidence evaluations in regions facing severe hydrogeological and anthropogenic changes. Future research should integrate additional natural factors, such as variations in the hydrological cycle, to further refine the understanding and mitigation strategies for land subsidence and groundwater resource management.
關鍵字(中) ★ 水文地質模型不確定性
★ 空間鑽孔密度
★ 馬可夫鏈模型,蒙地卡羅模擬
★ 地下水流模擬
★ 地層下陷模擬
★ 濁水溪沖積扇
關鍵字(英) ★ Hydrogeological model uncertainty
★ spatial borehole density
★ Markov chain model, Monte Carlo simulation
★ groundwater flow simulation
★ land subsidence simulation
★ Choushui River Alluvial Fan
論文目次 摘 要 i
Abstract iii
Acknowledgments v
List of Contents vi
List of Figures vi
List of Tables ix
List of Abbreviations and Symbols x
CHAPTER 1. Introduction 1
1.1 Literature review 1
1.2 Problem statements 7
1.3 Research objectives 8
1.4 Outline of the research 8
CHAPTER 2. Background 11
2.1 Geography 11
2.2 Geology and hydrogeology 13
2.3 Hydrology and groundwater resources 16
2.4 BH data 21
2.5 Current subsidence situation in Taiwan 24
2.6 Land subsidence monitoring systems 27
CHAPTER 3. Methodology 29
3.1 URS of boreholes 29
3.2 Transition probability/Markov approach 31
3.2.1 Volumetric proportions 32
3.2.2 Mean length 33
3.2.3 Juxtapositional tendencies 34
3.3 Governing equations 35
3.3.1 Governing equation of groundwater flow 35
3.3.2 Governing equation of aquifer-system compaction 35
CHAPTER 4. Uncertainty of Stochastic HHMs in Groundwater Flow and Land Subsidence Simulations on the Local Scale 37
4.1 Numerical model implementation 37
4.1.1 Grid setting 37
4.1.2 Boundary conditions 37
4.1.3 Parameters and source and sink settings 38
4.2 Geostatistical characteristics analysis 40
4.3 Generation of HHMs 50
4.4 Results of groundwater flow and land subsidence models 53
4.4.1 Groundwater flow simulation 53
4.4.2 Land subsidence simulation 55
4.5 Sensitivity analyses on perturbation of parameter and boundary condition 61
4.5.1 Parameter perturbation 61
4.5.2 Boundary condition perturbation 62
CHAPTER 5. The Influence of Spatial Borehole Density on the Estimation of Geostatistical Properties and the Construction of HHMs 65
5.1 Result of URS of boreholes 65
5.2 Numerical model implementation for grid setting 71
5.3 Geostatistical characteristics analysis 72
5.4 HHMs affected by borehole density 76
5.5 Uncertainty of HHMs 82
CHAPTER 6. Using a HHM to Quantify the Deep Compression due to Shallow Groundwater Pumping 88
6.1 Data collection 88
6.1.1 BH and geophysical data 89
6.1.2 Hydrology 91
6.1.3 Land subsidence 95
6.2 Construction of HHM 97
6.2.1 Geostatistical characteristics analysis 97
6.2.2 Generation of HHMs and representative one 98
6.3 Numerical model implementation 104
6.3.1 Grid setting 104
6.3.2 Boundary conditions 104
6.3.3 Parameters and source and sink settings 105
6.4 Results of groundwater flow and land subsidence models 106
6.4.1 Groundwater flow simulation 106
6.4.2 Land subsidence simulation 113
CHAPTER 7. Conclusions and Suggestions 121
7.1 Conclusions 121
7.2 Suggestions for future research 124
REFERENCE 126
Appendix 140
參考文獻 [1] Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985-1990. doi:https://doi.org/10.1126/science.1067123
[2] Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater modeling: simulation of flow and advective transport: Academic press.
[3] Bajni, G., Apuani, T., & Beretta, G. P. (2019). Hydro-geotechnical modelling of subsidence in the Como urban area. Engineering Geology, 257, 105144.
[4] Calderhead, A. I., Therrien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Advances in water resources, 34(1), 83-97.
[5] Cao, Z., Wang, Y., & Li, D. (2016). Quantification of prior knowledge in geotechnical site characterization. Engineering Geology, 203, 107-116.
[6] Cao, Z., Wang, Y., & Li, D. (2017). Probabilistic approaches for geotechnical site characterization and slope stability analysis: Springer.
[7] Carle, S., & Fogg, G. (2020). Integration of Soft Data Into Geostatistical Simulation of Categorical Variables. Frontiers in Earth Science, 8, 565707.
[8] Carle, S. F. (1997). Integration of geologic interpretation into geostatistical simulation. Retrieved from
[9] Carle, S. F. (1999). T-PROGS: Transition probability geostatistical software. University of California, Davis, CA, 84.
[10] Carle, S. F., Esser, B. K., & Moran, J. E. (2006). High-resolution simulation of basin-scale nitrate transport considering aquifer system heterogeneity. Geosphere, 2(4), 195-209.
[11] Carle, S. F., & Fogg, G. E. (1996). Transition probability-based indicator geostatistics. Mathematical Geology, 28(4), 453-476.
[12] Carle, S. F., & Fogg, G. E. (1997). Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Mathematical Geology, 29(7), 891-918.
[13] Carle, S. F., Labolle, E. M., Weissmann, G. S., Van Brocklin, D., & Fogg, G. E. (1998). Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. Hydrogeologic models of sedimentary aquifers, concepts in hydrogeology environmental geology, 1, 147-170.
[14] Cassiani, G., & Zoccatelli, C. (2000). Subsidence risk in Venice and nearby areas, Italy, owing to offshore gas fields; a stochastic analysis. Environmental & Engineering Geoscience, 6(2), 115-128.
[15] Chappell, J., & Shackleton, N. J. (1986). Oxygen isotopes and sea level. Nature, 324(6093), 137-140.
[16] Chen, C.-H., Wang, C.-H., Hsu, Y.-J., Yu, S.-B., & Kuo, L.-C. (2010). Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Engineering Geology, 115(1-2), 122-131.
[17] Chen, C.-T., Kuo, C.-H., Lin, C.-M., Huang, J.-Y., & Wen, K.-L. (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 106498. doi:https://doi.org/10.1016/j.enggeo.2021.106498
[18] Chen, K.-H., Hwang, C., Tanaka, Y., & Chang, P.-Y. (2023). Gravity estimation of groundwater mass balance of sandy aquifers in the land subsidence-hit region of Yunlin County, Taiwan. Engineering Geology, 107021.
[19] Chiang, C., Lai, T., Lai, T., Huang, C., Fei, L., Hou, C., . . . Chou, S. (1999). Hydrogeological Survey Report of Chosui River Watershed. Central Geological Survey: Taipei, Taiwan, 129.
[20] Colombo, I., Nobile, F., Porta, G., Scotti, A., & Tamellini, L. (2018). Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins. Computer Methods in Applied Mechanics and Engineering, 328, 122-146.
[21] Deng, Z., Ke, Y., Gong, H., Li, X., & Li, Z. (2017). Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model. GIScience Remote Sensing, 54(6), 797-818.
[22] Eivazy, H., Esmaieli, K., & Jean, R. (2017). Modelling geomechanical heterogeneity of rock masses using direct and indirect geostatistical conditional simulation methods. Rock Mechanics and Rock Engineering, 50(12), 3175-3195.
[23] Elfeki, A. M. (2006). Prediction of contaminant plumes (shapes, spatial moments and macrodispersion) in aquifers with insufficient geological information. Journal of Hydraulic Research, 44(6), 841-856.
[24] Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1-15.
[25] Erban, L. E., Gorelick, S. M., Zebker, H. A., & Fendorf, S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences, 110(34), 13751-13756. doi:https://doi.org/10.1073/pnas.1300503110
[26] Feyen, L., & Caers, J. (2006). Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in water resources, 29(6), 912-929.
[27] Fleckenstein, J. H., Niswonger, R. G., & Fogg, G. E. (2006). River‐aquifer interactions, geologic heterogeneity, and low‐flow management. Groundwater, 44(6), 837-852.
[28] Foged, N., Marker, P. A., Christansen, A., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.-S., & Auken, E. (2014). Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion. Hydrology and Earth System Sciences, 18(11), 4349-4362.
[29] Freeze, R. A., & Cherry, J. A. (1979). Groundwater: Prentice-Hall, Englewood Cliffs, New Jersey.
[30] Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology journal, 19(8), 1459-1486. doi:https://doi.org/10.1007/s10040-011-0775-5
[31] Galloway, D. L., Hudnut, K. W., Ingebritsen, S., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585. doi:https://doi.org/10.1029/98WR01285
[32] Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182): US Geological Survey.
[33] Gambolati, G., Teatini, P., & Ferronato, M. (2006). Anthropogenic land subsidence. Encyclopedia of Hydrological Sciences. doi:https://doi.org/10.1002/0470848944.hsa164b
[34] Gelhar, L. W. (1993). Stochastic Subsurface Hydrology: Prentice-Hall.
[35] Gong, W., Zhao, C., Juang, C. H., Tang, H., Wang, H., Hu, X. J. C., & Geotechnics. (2020). Stratigraphic uncertainty modelling with random field approach. Computers and Geotechnics, 125, 103681.
[36] Hansen, A., Gunderman, D., He, X., & Refsgaard, J. (2014). Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations. Journal of Hydrology, 519, 225-237.
[37] Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). Modflow-2000, the US Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Retrieved from
[38] He, X., Højberg, A. L., Jørgensen, F., & Refsgaard, J. C. (2015). Assessing hydrological model predictive uncertainty using stochastically generated geological models. Hydrological Processes, 29(19), 4293-4311.
[39] He, X., Koch, J., Sonnenborg, T. O., Jørgensen, F., Schamper, C., & Refsgaard, J. C. (2014). Transition probability‐based stochastic geological modeling using airborne geophysical data and borehole data. Water Resources Research, 50(4), 3147-3169.
[40] He, X., Sonnenborg, T., Jørgensen, F., Høyer, A.-S., Møller, R. R., & Jensen, K. (2013). Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrology earth system sciences, 17(8), 3245-3260.
[41] Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., . . . Shujun, Y. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34-36.
[42] Hoffmann, J., Leake, S. A., Galloway, D. L., & Wilson, A. M. (2003). MODFLOW-2000 ground-water model--User guide to the subsidence and aquifer-system compaction (SUB) package.
[43] Højberg, A., & Refsgaard, J. (2005). Model uncertainty–parameter uncertainty versus conceptual models. Water Science Technology, 52(6), 177-186.
[44] Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., . . . Chen, Y.-G. (2005). Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geoscience, 337(13), 1184-1193. doi:https://doi.org/10.1016/j.crte.2005.05.012
[45] Hsieh, C.-S., Shih, T.-Y., Hu, J.-C., Tung, H., Huang, M.-H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural hazards, 58(3), 1311-1332. doi:https://doi.org/10.1007/s11069-011-9734-7
[46] Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology journal, 15(5), 903-913. doi:https://doi.org/10.1007/s10040-006-0137-x
[47] Hung, W.-C., Hwang, C., Chang, C.-P., Yen, J.-Y., Liu, C.-H., & Yang, W.-H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548. doi:https://doi.org/10.1007/s12665-009-0139-9
[48] Hung, W.-C., Hwang, C., Liou, J.-C., Lin, Y.-S., & Yang, H.-L. (2012). Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology, 147, 78-90.
[49] Hung, W.-C., Hwang, C., Sneed, M., Chen, Y. A., Chu, C. H., & Lin, S. H. (2021). Measuring and interpreting multilayer aquifer-system compactions for a sustainable groundwater-system development. Water Resources Research, 57(4). doi:https://doi.org/10.1029/2020WR028194
[50] Hwang, C., Hung, W.-C., & Liu, C.-H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural hazards, 47(1), 1-16.
[51] Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D. L., . . . Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific reports, 6(1), 1-12. doi:https://doi.org/10.1038/srep28160
[52] Jacob, C. E. (1940). On the flow of water in an elastic artesian aquifer. Eos, Transactions American Geophysical Union, 21(2), 574-586.
[53] Johnson, A. I. (1967). Specific yield: compilation of specific yields for various materials: US Government Printing Office.
[54] Jones, C. E., An, K., Blom, R. G., Kent, J. D., Ivins, E. R., & Bekaert, D. (2016). Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 121(5), 3867-3887. doi:https://doi.org/10.1002/2015JB012636
[55] Jørgensen, F., Høyer, A.-S., Sandersen, P. B., He, X., & Foged, N. (2015). Combining 3D geological modelling techniques to address variations in geology, data type and density–An example from Southern Denmark. Computers and Geosciences, 81, 53-63.
[56] Juang, C. H., Zhang, J., Shen, M., & Hu, J. (2019). Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering Geology, 249, 148-161.
[57] Keaton, J. R. (2013). Engineering Geology: Fundamental Input or Random Variable? In Foundation Engineering in the Face of Uncertainty: Honoring Fred H. Kulhawy (pp. 232-253).
[58] Koltermann, C. E., & Gorelick, S. M. (1996). Heterogeneity in sedimentary deposits: A review of structure‐imitating, process‐imitating, and descriptive approaches. Water Resources Research, 32(9), 2617-2658.
[59] Krumbein, W. (1968). STATISTICAL MODELS IN SEDIMENTOLOGY 1. Sedimentology, 10(1), 7-23.
[60] Krumbein, W. C., & Dacey, M. F. (1969). Markov chains and embedded Markov chains in geology. Journal of the International Association for Mathematical Geology, 1(1), 79-96.
[61] Kuo, C.-H., Chen, C.-T., Lin, C.-M., Wen, K.-L., Huang, J.-Y., & Chang, S.-C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, 128, 27-41. doi:https://doi.org/10.1016/j.jseaes.2016.07.012
[62] Leake, S. (1990). Interbed storage changes and compaction in models of regional groundwater flow. Water Resources Research, 26(9), 1939-1950.
[63] Lee, S.-Y., Carle, S. F., & Fogg, G. E. (2007). Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation. Advances in water resources, 30(9), 1914-1932.
[64] Leeder, M. R. (1982). Sedimentology: process and product: Springer Science & Business Media.
[65] Leighton, D. A., & Phillips, S. P. (2003). Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California. Water-Resources Investigations Report, 4016.
[66] Lelliott, M., Cave, M., & Wealthall, G. (2009). A structured approach to the measurement of uncertainty in 3D geological models. Quarterly Journal of Engineering Geology and Hydrogeology.
[67] Li, Z., Wang, X., Wang, H., & Liang, R. Y. (2016). Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Engineering Geology, 201, 106-122.
[68] Lin, L., Lin, H., Ke, A., & Chou, T. (1992). Petroleum potential of the pre-Miocene formations in the Chianan Plain, Taiwan. Petroleum Geology of Taiwan, 27, 177-197.
[69] Lin, P.-L., Hsu, K.-C., Lin, C.-W., & Hwung, H.-H. (2015). Modeling compaction of multi-layer-aquifer system due to groundwater withdrawal. Engineering Geology, 187, 143-155.
[70] Liu, C.-H., Pan, Y.-W., Liao, J.-J., Huang, C.-T., & Ouyang, S. (2004a). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166.
[71] Liu, C.-H., Pan, Y.-W., Liao, J.-J., & Hung, W.-C. (2004b). Estimating coefficients of volume compressibility from compression of strata and piezometric changes in a multiaquifer system in west Taiwan. Engineering Geology, 75(1), 33-47.
[72] Liu, C.-W., Jang, C.-S., & Chen, S.-C. (2002). Three-dimensional spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Environmental Geology, 43, 48-56.
[73] Liu, C.-W., Lin, W.-S., Shang, C., & Liu, S.-H. (2001). The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environmental Geology, 40(4), 518-527.
[74] Liu, Y., Li, J., Fasullo, J., & Galloway, D. L. (2020). Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Scientific reports, 10(1), 1-11. doi:https://doi.org/10.1038/s41598-020-74696-4
[75] Lu, C.-Y., Hu, J.-C., Chan, Y.-C., Su, Y.-F., & Chang, C.-H. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote sensing, 12(20), 3315. doi:https://doi.org/10.3390/rs12203315
[76] McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model: US Geological Survey.
[77] Meckel, T., ten Brink, U. S., & Williams, S. J. (2006). Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophysical Research Letters, 33(11). doi:https://doi.org/10.1029/2006GL026300
[78] Meirovitz, C. D. (2010). Influence of American River incised valley fill on Sacramento County hydrogeology. University of California, Davis,
[79] Miall, A. D. (1973). Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20(3), 347-364.
[80] Minderhoud, P., Erkens, G., Pham, V., Bui, V. T., Erban, L., Kooi, H., & Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters, 12(6), 064006. doi:https://doi.org/10.1088/1748-9326/aa7146
[81] Nilsson, B., Højberg, A., Refsgaard, J., & Troldborg, L. (2007). Uncertainty in geological and hydrogeological data. Hydrology Earth System Sciences, 11(5), 1551-1561.
[82] Phien-Wej, N., Giao, P., & Nutalaya, P. (2006). Land subsidence in bangkok, Thailand. Engineering Geology, 82(4), 187-201.
[83] Poland, J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal.
[84] Qi, X.-H., Li, D.-Q., Phoon, K.-K., Cao, Z.-J., & Tang, X.-S. (2016). Simulation of geologic uncertainty using coupled Markov chain. Engineering Geology, 207, 129-140.
[85] Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in water resources, 36, 36-50.
[86] Rushton, K. R., & Redshaw, S. C. (1979). Seepage and groundwater flow: Numerical analysis by analog and digital methods: John Wiley & Sons Incorporated.
[87] Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA Journal of the American Water Resources Association, 37(5), 1169-1188.
[88] Sartore, L. (2013). spMC: Modelling Spatial Random Fields with Continuous Lag Markov Chains. R Journal, 5(2), 16.
[89] Sartore, L., Fabbri, P., & Gaetan, C. (2016). spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains. Computers & Geosciences, 94, 40-47.
[90] Shi, C., & Wang, Y. (2021a). Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost. Journal of Geotechnical and Geoenvironmental Engineering, 147(9), 04021082.
[91] Shi, C., & Wang, Y. (2021b). Nonparametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics. Canadian Geotechnical Journal, 58(2), 261-280.
[92] Slatt, R. M. (2013). Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers: Elsevier.
[93] Smith, R. G., Knight, R., Chen, J., Reeves, J., Zebker, H., Farr, T., & Liu, Z. (2017). Estimating the permanent loss of groundwater storage in the southern S an J oaquin V alley, C alifornia. Water Resources Research, 53(3), 2133-2148.
[94] Taiwan, G. S. M. M. A. (1999). The Investigation of Hydrogeology in the Choshui River Alluvial Fan, Taiwan.
[95] Taiwan, W. R. A. (2006). Installation and Data Analysis for Land Subsidence Monitoring Wells and GPS Permanent Stations in Yunlin.
[96] Taiwan, W. R. A. (2011). The research and assessment of groundwater pumping mechanism in the land subsidence region of Yun-Lin.
[97] Taiwan, W. R. A. (2016). Hydrogeological Parameters Identification through Analysis of Groundwater Fluctuation and Geological Data Inspection - A Case Study of Pingtung Plain.
[98] Taiwan, W. R. A. (2017). Trail Implementation plan for Water Use Survey and Analysis of available Groundwater yield.
[99] Taiwan, W. R. A. (2020). Construction of 400m extensometer and monitoring data value-added application in Yunlin area.
[100] Taiwan, W. R. A. (2021a). Compressibility parameter investigation and field data analysis for deep strata in Yunlin area.
[101] Taiwan, W. R. A. (2021b). Monitoring and Analyzing Land Subsidence of Changhua and Yunlin Area in 2021.
[102] Taiwan, W. R. A. (2021c). Study on Vertical Deformation in Deep Soil Layers and Intergration of Landsubsidence Research Projects.
[103] Taiwan, W. R. A. (2022). Evaluating the Impact Factors on Vertical Displacement of Deep Soil Layers and Intergration of Land Subsidence Mitigation Measures.
[104] Tatone, B. S. (2009). Quantitative characterization of natural rock discontinuity roughness in-situ and in the laboratory. University of Toronto Toronto,
[105] Teatini, P., Strozzi, T., Tosi, L., Wegmüller, U., Werner, C., & Carbognin, L. (2007). Assessing short‐and long‐time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. Journal of Geophysical Research: Earth Surface, 112(F1). doi:https://doi.org/10.1029/2006JF000656
[106] Teatini, P., Tosi, L., & Strozzi, T. (2011). Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. Journal of Geophysical Research: Solid Earth, 116(B8). doi:https://doi.org/10.1029/2010JB008122
[107] Terzaghi, K. (1925). Principles of soil mechanics, IV—Settlement and consolidation of clay (Vol. 95).
[108] Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology: John Wiley & Sons.
[109] Törnqvist, T. E., Wallace, D. J., Storms, J. E., Wallinga, J., Van Dam, R. L., Blaauw, M., . . . Snijders, E. M. (2008). Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1(3), 173-176. doi:https://doi.org/10.1038/ngeo129
[110] Tran, D.-H., & Wang, S.-J. (2020). Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences, 382, 361-365. doi:https://doi.org/10.5194/piahs-382-361-2020
[111] Tran, D.-H., Wang, S.-J., & Nguyen, Q. C. (2022). Uncertainty of heterogeneous hydrogeological models in groundwater flow and land subsidence simulations–A case study in Huwei Town, Taiwan. Engineering Geology, 106543. doi:https://doi.org/10.1016/j.enggeo.2022.106543
[112] Troldborg, L. (2000). Effects of geological complexity on groundwater age prediction. 81(48), F435.
[113] Tsai, M.-S., & Hsu, K.-C. (2018). Identifying poromechanism and spatially varying parameters of aquifer compaction in Choushui River alluvial fan, Taiwan. Engineering Geology, 245, 20-32.
[114] Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. doi:https://doi.org/10.1016/j.tecto.2012.08.009
[115] Wang, S.-J., Hsu, K.-C., & Lee, C.-H. (2015a). A fusion model used in subsidence prediction in Taiwan. Proceedings of the International Association of Hydrological Sciences, 372, 463-469.
[116] Wang, S.-J., Lee, C.-H., & Hsu, K.-C. (2015b). A technique for quantifying groundwater pumping and land subsidence using a nonlinear stochastic poroelastic model. Environmental Earth Sciences, 73(12), 8111-8124. doi:https://doi.org/10.1007/s12665-014-3970-6
[117] Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y.-F., & Tseng, H.-W. (2021). Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water, 13(9), 1153.
[118] Wang, S.-J., Nguyen, Q. C., Lu, Y.-C., Doyoro, Y. G., & Tran, D.-H. (2022). Evaluation of geological model uncertainty caused by data sufficiency using groundwater flow and land subsidence modeling as example. Bulletin of Engineering Geology and the Environment, 81(8), 1-21.
[119] Wang, Y., & Cao, Z. (2013). Probabilistic characterization of Young′s modulus of soil using equivalent samples. Engineering Geology, 159, 106-118.
[120] Yeh, C.-H., Dong, J.-J., Khonevisan, S., Juang, C. H., Huang, W.-C., & Lu, Y.-C. (2021). The role of the geological uncertainty in a geotechnical design–A retrospective view of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology, 106233.
[121] Yeh, H.-F., Chang, J.-C., Huang, C.-C., & Chen, H.-Y. (2022). Spatial correlation of groundwater level with natural factors using geographically weighted regression model in the Choushui River Alluvial Fan, Taiwan. Frontiers in Earth Science, 10, 977611.
[122] Zhu, L., Franceschini, A., Gong, H., Ferronato, M., Dai, Z., Ke, Y., . . . Teatini, P. (2020). The 3‐D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing. Water Resources Research, 56(3), e2019WR027026.
[123] Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255.
[124] Zoccarato, C., Minderhoud, P. S., & Teatini, P. (2018). The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Scientific reports, 8(1), 1-12. doi:https://doi.org/10.1038/s41598-018-29734-7
[125] 江崇榮、林燕初、陳建良. (2011). 濁水溪沖積扇地下水位與地表高程互動之模式與應用. 地質, 30(2), 32-35.
[126] 洪秋香. (2010). 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢. (碩士), 國立中央大學, Retrieved from https://hdl.handle.net/11296/f28fdp
指導教授 王士榮(Shih-Jung Wang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明