參考文獻 |
[1] Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985-1990. doi:https://doi.org/10.1126/science.1067123
[2] Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater modeling: simulation of flow and advective transport: Academic press.
[3] Bajni, G., Apuani, T., & Beretta, G. P. (2019). Hydro-geotechnical modelling of subsidence in the Como urban area. Engineering Geology, 257, 105144.
[4] Calderhead, A. I., Therrien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Advances in water resources, 34(1), 83-97.
[5] Cao, Z., Wang, Y., & Li, D. (2016). Quantification of prior knowledge in geotechnical site characterization. Engineering Geology, 203, 107-116.
[6] Cao, Z., Wang, Y., & Li, D. (2017). Probabilistic approaches for geotechnical site characterization and slope stability analysis: Springer.
[7] Carle, S., & Fogg, G. (2020). Integration of Soft Data Into Geostatistical Simulation of Categorical Variables. Frontiers in Earth Science, 8, 565707.
[8] Carle, S. F. (1997). Integration of geologic interpretation into geostatistical simulation. Retrieved from
[9] Carle, S. F. (1999). T-PROGS: Transition probability geostatistical software. University of California, Davis, CA, 84.
[10] Carle, S. F., Esser, B. K., & Moran, J. E. (2006). High-resolution simulation of basin-scale nitrate transport considering aquifer system heterogeneity. Geosphere, 2(4), 195-209.
[11] Carle, S. F., & Fogg, G. E. (1996). Transition probability-based indicator geostatistics. Mathematical Geology, 28(4), 453-476.
[12] Carle, S. F., & Fogg, G. E. (1997). Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Mathematical Geology, 29(7), 891-918.
[13] Carle, S. F., Labolle, E. M., Weissmann, G. S., Van Brocklin, D., & Fogg, G. E. (1998). Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. Hydrogeologic models of sedimentary aquifers, concepts in hydrogeology environmental geology, 1, 147-170.
[14] Cassiani, G., & Zoccatelli, C. (2000). Subsidence risk in Venice and nearby areas, Italy, owing to offshore gas fields; a stochastic analysis. Environmental & Engineering Geoscience, 6(2), 115-128.
[15] Chappell, J., & Shackleton, N. J. (1986). Oxygen isotopes and sea level. Nature, 324(6093), 137-140.
[16] Chen, C.-H., Wang, C.-H., Hsu, Y.-J., Yu, S.-B., & Kuo, L.-C. (2010). Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Engineering Geology, 115(1-2), 122-131.
[17] Chen, C.-T., Kuo, C.-H., Lin, C.-M., Huang, J.-Y., & Wen, K.-L. (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 106498. doi:https://doi.org/10.1016/j.enggeo.2021.106498
[18] Chen, K.-H., Hwang, C., Tanaka, Y., & Chang, P.-Y. (2023). Gravity estimation of groundwater mass balance of sandy aquifers in the land subsidence-hit region of Yunlin County, Taiwan. Engineering Geology, 107021.
[19] Chiang, C., Lai, T., Lai, T., Huang, C., Fei, L., Hou, C., . . . Chou, S. (1999). Hydrogeological Survey Report of Chosui River Watershed. Central Geological Survey: Taipei, Taiwan, 129.
[20] Colombo, I., Nobile, F., Porta, G., Scotti, A., & Tamellini, L. (2018). Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins. Computer Methods in Applied Mechanics and Engineering, 328, 122-146.
[21] Deng, Z., Ke, Y., Gong, H., Li, X., & Li, Z. (2017). Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model. GIScience Remote Sensing, 54(6), 797-818.
[22] Eivazy, H., Esmaieli, K., & Jean, R. (2017). Modelling geomechanical heterogeneity of rock masses using direct and indirect geostatistical conditional simulation methods. Rock Mechanics and Rock Engineering, 50(12), 3175-3195.
[23] Elfeki, A. M. (2006). Prediction of contaminant plumes (shapes, spatial moments and macrodispersion) in aquifers with insufficient geological information. Journal of Hydraulic Research, 44(6), 841-856.
[24] Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1-15.
[25] Erban, L. E., Gorelick, S. M., Zebker, H. A., & Fendorf, S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences, 110(34), 13751-13756. doi:https://doi.org/10.1073/pnas.1300503110
[26] Feyen, L., & Caers, J. (2006). Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in water resources, 29(6), 912-929.
[27] Fleckenstein, J. H., Niswonger, R. G., & Fogg, G. E. (2006). River‐aquifer interactions, geologic heterogeneity, and low‐flow management. Groundwater, 44(6), 837-852.
[28] Foged, N., Marker, P. A., Christansen, A., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.-S., & Auken, E. (2014). Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion. Hydrology and Earth System Sciences, 18(11), 4349-4362.
[29] Freeze, R. A., & Cherry, J. A. (1979). Groundwater: Prentice-Hall, Englewood Cliffs, New Jersey.
[30] Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology journal, 19(8), 1459-1486. doi:https://doi.org/10.1007/s10040-011-0775-5
[31] Galloway, D. L., Hudnut, K. W., Ingebritsen, S., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585. doi:https://doi.org/10.1029/98WR01285
[32] Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182): US Geological Survey.
[33] Gambolati, G., Teatini, P., & Ferronato, M. (2006). Anthropogenic land subsidence. Encyclopedia of Hydrological Sciences. doi:https://doi.org/10.1002/0470848944.hsa164b
[34] Gelhar, L. W. (1993). Stochastic Subsurface Hydrology: Prentice-Hall.
[35] Gong, W., Zhao, C., Juang, C. H., Tang, H., Wang, H., Hu, X. J. C., & Geotechnics. (2020). Stratigraphic uncertainty modelling with random field approach. Computers and Geotechnics, 125, 103681.
[36] Hansen, A., Gunderman, D., He, X., & Refsgaard, J. (2014). Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations. Journal of Hydrology, 519, 225-237.
[37] Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). Modflow-2000, the US Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Retrieved from
[38] He, X., Højberg, A. L., Jørgensen, F., & Refsgaard, J. C. (2015). Assessing hydrological model predictive uncertainty using stochastically generated geological models. Hydrological Processes, 29(19), 4293-4311.
[39] He, X., Koch, J., Sonnenborg, T. O., Jørgensen, F., Schamper, C., & Refsgaard, J. C. (2014). Transition probability‐based stochastic geological modeling using airborne geophysical data and borehole data. Water Resources Research, 50(4), 3147-3169.
[40] He, X., Sonnenborg, T., Jørgensen, F., Høyer, A.-S., Møller, R. R., & Jensen, K. (2013). Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrology earth system sciences, 17(8), 3245-3260.
[41] Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., . . . Shujun, Y. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34-36.
[42] Hoffmann, J., Leake, S. A., Galloway, D. L., & Wilson, A. M. (2003). MODFLOW-2000 ground-water model--User guide to the subsidence and aquifer-system compaction (SUB) package.
[43] Højberg, A., & Refsgaard, J. (2005). Model uncertainty–parameter uncertainty versus conceptual models. Water Science Technology, 52(6), 177-186.
[44] Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., . . . Chen, Y.-G. (2005). Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geoscience, 337(13), 1184-1193. doi:https://doi.org/10.1016/j.crte.2005.05.012
[45] Hsieh, C.-S., Shih, T.-Y., Hu, J.-C., Tung, H., Huang, M.-H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural hazards, 58(3), 1311-1332. doi:https://doi.org/10.1007/s11069-011-9734-7
[46] Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology journal, 15(5), 903-913. doi:https://doi.org/10.1007/s10040-006-0137-x
[47] Hung, W.-C., Hwang, C., Chang, C.-P., Yen, J.-Y., Liu, C.-H., & Yang, W.-H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548. doi:https://doi.org/10.1007/s12665-009-0139-9
[48] Hung, W.-C., Hwang, C., Liou, J.-C., Lin, Y.-S., & Yang, H.-L. (2012). Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology, 147, 78-90.
[49] Hung, W.-C., Hwang, C., Sneed, M., Chen, Y. A., Chu, C. H., & Lin, S. H. (2021). Measuring and interpreting multilayer aquifer-system compactions for a sustainable groundwater-system development. Water Resources Research, 57(4). doi:https://doi.org/10.1029/2020WR028194
[50] Hwang, C., Hung, W.-C., & Liu, C.-H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural hazards, 47(1), 1-16.
[51] Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D. L., . . . Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific reports, 6(1), 1-12. doi:https://doi.org/10.1038/srep28160
[52] Jacob, C. E. (1940). On the flow of water in an elastic artesian aquifer. Eos, Transactions American Geophysical Union, 21(2), 574-586.
[53] Johnson, A. I. (1967). Specific yield: compilation of specific yields for various materials: US Government Printing Office.
[54] Jones, C. E., An, K., Blom, R. G., Kent, J. D., Ivins, E. R., & Bekaert, D. (2016). Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 121(5), 3867-3887. doi:https://doi.org/10.1002/2015JB012636
[55] Jørgensen, F., Høyer, A.-S., Sandersen, P. B., He, X., & Foged, N. (2015). Combining 3D geological modelling techniques to address variations in geology, data type and density–An example from Southern Denmark. Computers and Geosciences, 81, 53-63.
[56] Juang, C. H., Zhang, J., Shen, M., & Hu, J. (2019). Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering Geology, 249, 148-161.
[57] Keaton, J. R. (2013). Engineering Geology: Fundamental Input or Random Variable? In Foundation Engineering in the Face of Uncertainty: Honoring Fred H. Kulhawy (pp. 232-253).
[58] Koltermann, C. E., & Gorelick, S. M. (1996). Heterogeneity in sedimentary deposits: A review of structure‐imitating, process‐imitating, and descriptive approaches. Water Resources Research, 32(9), 2617-2658.
[59] Krumbein, W. (1968). STATISTICAL MODELS IN SEDIMENTOLOGY 1. Sedimentology, 10(1), 7-23.
[60] Krumbein, W. C., & Dacey, M. F. (1969). Markov chains and embedded Markov chains in geology. Journal of the International Association for Mathematical Geology, 1(1), 79-96.
[61] Kuo, C.-H., Chen, C.-T., Lin, C.-M., Wen, K.-L., Huang, J.-Y., & Chang, S.-C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, 128, 27-41. doi:https://doi.org/10.1016/j.jseaes.2016.07.012
[62] Leake, S. (1990). Interbed storage changes and compaction in models of regional groundwater flow. Water Resources Research, 26(9), 1939-1950.
[63] Lee, S.-Y., Carle, S. F., & Fogg, G. E. (2007). Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation. Advances in water resources, 30(9), 1914-1932.
[64] Leeder, M. R. (1982). Sedimentology: process and product: Springer Science & Business Media.
[65] Leighton, D. A., & Phillips, S. P. (2003). Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California. Water-Resources Investigations Report, 4016.
[66] Lelliott, M., Cave, M., & Wealthall, G. (2009). A structured approach to the measurement of uncertainty in 3D geological models. Quarterly Journal of Engineering Geology and Hydrogeology.
[67] Li, Z., Wang, X., Wang, H., & Liang, R. Y. (2016). Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Engineering Geology, 201, 106-122.
[68] Lin, L., Lin, H., Ke, A., & Chou, T. (1992). Petroleum potential of the pre-Miocene formations in the Chianan Plain, Taiwan. Petroleum Geology of Taiwan, 27, 177-197.
[69] Lin, P.-L., Hsu, K.-C., Lin, C.-W., & Hwung, H.-H. (2015). Modeling compaction of multi-layer-aquifer system due to groundwater withdrawal. Engineering Geology, 187, 143-155.
[70] Liu, C.-H., Pan, Y.-W., Liao, J.-J., Huang, C.-T., & Ouyang, S. (2004a). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166.
[71] Liu, C.-H., Pan, Y.-W., Liao, J.-J., & Hung, W.-C. (2004b). Estimating coefficients of volume compressibility from compression of strata and piezometric changes in a multiaquifer system in west Taiwan. Engineering Geology, 75(1), 33-47.
[72] Liu, C.-W., Jang, C.-S., & Chen, S.-C. (2002). Three-dimensional spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Environmental Geology, 43, 48-56.
[73] Liu, C.-W., Lin, W.-S., Shang, C., & Liu, S.-H. (2001). The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environmental Geology, 40(4), 518-527.
[74] Liu, Y., Li, J., Fasullo, J., & Galloway, D. L. (2020). Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Scientific reports, 10(1), 1-11. doi:https://doi.org/10.1038/s41598-020-74696-4
[75] Lu, C.-Y., Hu, J.-C., Chan, Y.-C., Su, Y.-F., & Chang, C.-H. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote sensing, 12(20), 3315. doi:https://doi.org/10.3390/rs12203315
[76] McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model: US Geological Survey.
[77] Meckel, T., ten Brink, U. S., & Williams, S. J. (2006). Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophysical Research Letters, 33(11). doi:https://doi.org/10.1029/2006GL026300
[78] Meirovitz, C. D. (2010). Influence of American River incised valley fill on Sacramento County hydrogeology. University of California, Davis,
[79] Miall, A. D. (1973). Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20(3), 347-364.
[80] Minderhoud, P., Erkens, G., Pham, V., Bui, V. T., Erban, L., Kooi, H., & Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters, 12(6), 064006. doi:https://doi.org/10.1088/1748-9326/aa7146
[81] Nilsson, B., Højberg, A., Refsgaard, J., & Troldborg, L. (2007). Uncertainty in geological and hydrogeological data. Hydrology Earth System Sciences, 11(5), 1551-1561.
[82] Phien-Wej, N., Giao, P., & Nutalaya, P. (2006). Land subsidence in bangkok, Thailand. Engineering Geology, 82(4), 187-201.
[83] Poland, J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal.
[84] Qi, X.-H., Li, D.-Q., Phoon, K.-K., Cao, Z.-J., & Tang, X.-S. (2016). Simulation of geologic uncertainty using coupled Markov chain. Engineering Geology, 207, 129-140.
[85] Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in water resources, 36, 36-50.
[86] Rushton, K. R., & Redshaw, S. C. (1979). Seepage and groundwater flow: Numerical analysis by analog and digital methods: John Wiley & Sons Incorporated.
[87] Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA Journal of the American Water Resources Association, 37(5), 1169-1188.
[88] Sartore, L. (2013). spMC: Modelling Spatial Random Fields with Continuous Lag Markov Chains. R Journal, 5(2), 16.
[89] Sartore, L., Fabbri, P., & Gaetan, C. (2016). spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains. Computers & Geosciences, 94, 40-47.
[90] Shi, C., & Wang, Y. (2021a). Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost. Journal of Geotechnical and Geoenvironmental Engineering, 147(9), 04021082.
[91] Shi, C., & Wang, Y. (2021b). Nonparametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics. Canadian Geotechnical Journal, 58(2), 261-280.
[92] Slatt, R. M. (2013). Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers: Elsevier.
[93] Smith, R. G., Knight, R., Chen, J., Reeves, J., Zebker, H., Farr, T., & Liu, Z. (2017). Estimating the permanent loss of groundwater storage in the southern S an J oaquin V alley, C alifornia. Water Resources Research, 53(3), 2133-2148.
[94] Taiwan, G. S. M. M. A. (1999). The Investigation of Hydrogeology in the Choshui River Alluvial Fan, Taiwan.
[95] Taiwan, W. R. A. (2006). Installation and Data Analysis for Land Subsidence Monitoring Wells and GPS Permanent Stations in Yunlin.
[96] Taiwan, W. R. A. (2011). The research and assessment of groundwater pumping mechanism in the land subsidence region of Yun-Lin.
[97] Taiwan, W. R. A. (2016). Hydrogeological Parameters Identification through Analysis of Groundwater Fluctuation and Geological Data Inspection - A Case Study of Pingtung Plain.
[98] Taiwan, W. R. A. (2017). Trail Implementation plan for Water Use Survey and Analysis of available Groundwater yield.
[99] Taiwan, W. R. A. (2020). Construction of 400m extensometer and monitoring data value-added application in Yunlin area.
[100] Taiwan, W. R. A. (2021a). Compressibility parameter investigation and field data analysis for deep strata in Yunlin area.
[101] Taiwan, W. R. A. (2021b). Monitoring and Analyzing Land Subsidence of Changhua and Yunlin Area in 2021.
[102] Taiwan, W. R. A. (2021c). Study on Vertical Deformation in Deep Soil Layers and Intergration of Landsubsidence Research Projects.
[103] Taiwan, W. R. A. (2022). Evaluating the Impact Factors on Vertical Displacement of Deep Soil Layers and Intergration of Land Subsidence Mitigation Measures.
[104] Tatone, B. S. (2009). Quantitative characterization of natural rock discontinuity roughness in-situ and in the laboratory. University of Toronto Toronto,
[105] Teatini, P., Strozzi, T., Tosi, L., Wegmüller, U., Werner, C., & Carbognin, L. (2007). Assessing short‐and long‐time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. Journal of Geophysical Research: Earth Surface, 112(F1). doi:https://doi.org/10.1029/2006JF000656
[106] Teatini, P., Tosi, L., & Strozzi, T. (2011). Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. Journal of Geophysical Research: Solid Earth, 116(B8). doi:https://doi.org/10.1029/2010JB008122
[107] Terzaghi, K. (1925). Principles of soil mechanics, IV—Settlement and consolidation of clay (Vol. 95).
[108] Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology: John Wiley & Sons.
[109] Törnqvist, T. E., Wallace, D. J., Storms, J. E., Wallinga, J., Van Dam, R. L., Blaauw, M., . . . Snijders, E. M. (2008). Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1(3), 173-176. doi:https://doi.org/10.1038/ngeo129
[110] Tran, D.-H., & Wang, S.-J. (2020). Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences, 382, 361-365. doi:https://doi.org/10.5194/piahs-382-361-2020
[111] Tran, D.-H., Wang, S.-J., & Nguyen, Q. C. (2022). Uncertainty of heterogeneous hydrogeological models in groundwater flow and land subsidence simulations–A case study in Huwei Town, Taiwan. Engineering Geology, 106543. doi:https://doi.org/10.1016/j.enggeo.2022.106543
[112] Troldborg, L. (2000). Effects of geological complexity on groundwater age prediction. 81(48), F435.
[113] Tsai, M.-S., & Hsu, K.-C. (2018). Identifying poromechanism and spatially varying parameters of aquifer compaction in Choushui River alluvial fan, Taiwan. Engineering Geology, 245, 20-32.
[114] Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. doi:https://doi.org/10.1016/j.tecto.2012.08.009
[115] Wang, S.-J., Hsu, K.-C., & Lee, C.-H. (2015a). A fusion model used in subsidence prediction in Taiwan. Proceedings of the International Association of Hydrological Sciences, 372, 463-469.
[116] Wang, S.-J., Lee, C.-H., & Hsu, K.-C. (2015b). A technique for quantifying groundwater pumping and land subsidence using a nonlinear stochastic poroelastic model. Environmental Earth Sciences, 73(12), 8111-8124. doi:https://doi.org/10.1007/s12665-014-3970-6
[117] Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y.-F., & Tseng, H.-W. (2021). Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water, 13(9), 1153.
[118] Wang, S.-J., Nguyen, Q. C., Lu, Y.-C., Doyoro, Y. G., & Tran, D.-H. (2022). Evaluation of geological model uncertainty caused by data sufficiency using groundwater flow and land subsidence modeling as example. Bulletin of Engineering Geology and the Environment, 81(8), 1-21.
[119] Wang, Y., & Cao, Z. (2013). Probabilistic characterization of Young′s modulus of soil using equivalent samples. Engineering Geology, 159, 106-118.
[120] Yeh, C.-H., Dong, J.-J., Khonevisan, S., Juang, C. H., Huang, W.-C., & Lu, Y.-C. (2021). The role of the geological uncertainty in a geotechnical design–A retrospective view of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology, 106233.
[121] Yeh, H.-F., Chang, J.-C., Huang, C.-C., & Chen, H.-Y. (2022). Spatial correlation of groundwater level with natural factors using geographically weighted regression model in the Choushui River Alluvial Fan, Taiwan. Frontiers in Earth Science, 10, 977611.
[122] Zhu, L., Franceschini, A., Gong, H., Ferronato, M., Dai, Z., Ke, Y., . . . Teatini, P. (2020). The 3‐D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing. Water Resources Research, 56(3), e2019WR027026.
[123] Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255.
[124] Zoccarato, C., Minderhoud, P. S., & Teatini, P. (2018). The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Scientific reports, 8(1), 1-12. doi:https://doi.org/10.1038/s41598-018-29734-7
[125] 江崇榮、林燕初、陳建良. (2011). 濁水溪沖積扇地下水位與地表高程互動之模式與應用. 地質, 30(2), 32-35.
[126] 洪秋香. (2010). 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢. (碩士), 國立中央大學, Retrieved from https://hdl.handle.net/11296/f28fdp |