博碩士論文 111323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:52.14.184.10
姓名 宋遠輊(Yuan-Zhi Sung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助微電化學加工製備微梨形工具技術之研究
(A Study on Micro Pear-shaped Tools Fabrication by Ultrasonic Assisted Micro Electrochemical Machining摧)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-24以後開放)
摘要(中) 本論文為超音波輔助微電化學加工製備微梨形工具技術之研究,採用超音波輔助振動,製備碳化鎢微梨形工具。當採用線切割放電加工、燒結法等方式製備之微梨形工具時,會表面容易缺陷、高成本、需較長加工時間等問題,難以加工出尺寸精度及表面形貌較佳之微梨形工具,為了克服前述困難點,本論文設計出一三板片電極,並使用一向上噴流式電解液供給治具及超音波振動輔助,進行電化學加工製備微梨形工具,並探討工作電壓、上電極供電時間、脈衝休止時間及超音波功率格數等不同加工參數對微梨形工具整體形貌、最大徑、最小徑、橢圓長軸長1、橢圓長軸長2、消耗長、整體直徑差及橢圓度等各種加工特性之影響,並分析微梨形工具加工後之表面成分變化。
實驗結果顯示,採用超音波振動會產生泵吸作用,可加速加工間隙內之電解液更新,並快速移除加工間隙中的反應熱與各種電化學生成物,且相較於無超音波振動輔助,可得到較佳之微梨形工具形貌與較小微梨形工具尺寸。當採用本研究較佳之參數組合,即工作電壓9V、上電極板片供電時間20s、脈衝休止時間40μs及超音波功率格數15時,可得到較佳微梨形工具尺寸為最大徑181m、最小徑54m、橢圓長軸長1 168m、橢圓長軸長2 543m、消耗長1288m、橢圓度1.99與整體直徑差126m,並能有效改善微梨形工具整體形貌。
摘要(英) This study prepared micro pear-shaped tools using ultrasonic-assisted micro electrochemical techniques. It used ultrasonic assisted vibration to prepare tungsten carbide micro pear-shaped tools. When wire-cutting electrical discharge machining, sintering process and other methods are adopted to prepare micro pear-shaped tools, but there are problems of likely forming of surface defects and high cost and requiring long processing time. Hence, it is difficult to process micro pear-shaped tools with better dimension precision and surface appearance. In order to overcome the above difficulties, this study designed a three-plate electrode, and employed jet flow electrolyte to supply fixture and assistance of ultrasonic-assisted vibration to prepare micro pear-shaped tools using electrochemical techniques. This study also discussed the influence of different machining parameters, such as working voltage, upper electrode power supply time, pulse off time and ultrasonic vibration stage, on various processing characteristics, such as maximum diameter, minimum diameter, ellipse major axis length 1, ellipse major axis length 2, consumption length, overall diameter difference and ellipticity. It further analyzed change of surface components of micro pear-shaped tools after machining.
Experimental results show that ultrasonic vibration has a pumping function, and it can accelerate electrolyte renewal in machining gap and rapidly remove reaction heat and various electrochemical products in machining gap. Comparing with the situation without assistance of ultrasonic vibration, better appearance of micro pear-shaped tools and smaller dimensions of micro pear-shaped tools can be obtained. Under parameter combination of working voltage of 9V, upper electrode power supply time of 20s, pulse off time of 40s, and ultrasonic vibration stage is 15, better dimensions of micro pear-shaped tools can be obtained (maximum diameter of 181m, minimum diameter of 54m, ellipse major axis length 1 of 168m, ellipse major axis length 2 of 543m, consumption length of 1288m, ellipticity of 1.99 and overall diameter difference of 126m), the overall appearance of micro pear-shaped can be improved effectively.
關鍵字(中) ★ 微梨形工具
★ 三板片電極
★ 超音波振動輔助
★ 碳化鎢
關鍵字(英) ★ Micro pear-shaped tools
★ three-plate electrode
★ ultrasonic vibration assistance
★ tungsten carbide
論文目次 目錄
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 文獻回顧 7
1-4 論文架構 12
第二章 實驗基礎原理 13
2-1 電化學加工基礎理論[6] 13
2-1-1 電化學反應機制 13
2-1-2 法拉第電解定律(Faraday’s Laws of Electrolysis) 16
2-1-3 電化學加工速率[30] 17
2-1-4 歐姆定律(Ohm’s law)與導電度 18
2-1-5 電極電位-金屬與溶液介面雙電層理論(Electrical Double Layer Theory)[27] 19
2-1-6 陽極極化曲線及其特徵 21
2-1-7 電流效率 23
2-1-8 脈衝電源與占空比(Duty fator) 24
2-2 超音波理論[26, 53] 25
2-2-1 泵吸作用(Pumping Effect) 25
2-2-2 空蝕作用(Cavitation) 27
2-2-3 超音波振動之運動分析 28
第三章 實驗設備與材料 29
3-1 實驗簡介 29
3-2 實驗設備 30
3-2-1 電化學加工機 30
3-2-2 三用電表 32
3-2-3 去離子水系統 33
3-2-4 電子天平 35
3-2-5 電導度、酸鹼度、氧化還原電位計及其配件 35
3-2-6 石英加熱管與溫度計 37
3-2-7 高精度四軸CNC微放電加工機 38
3-2-8 電解液供給裝置 40
3-2-9 超音波主軸及發振器 41
3-2-10 超音波振幅量刀器 42
3-2-11 直流脈衝電源供應器 42
3-2-12 示波器 44
3-2-13 超音波清洗機 44
3-2-14 光學顯微影像量測系統 45
3-2-15 實體顯微鏡 46
3-3 實驗材料 46
3-3-1 三板片電極 46
3-3-2 碳化鎢棒 47
3-3-3 電解液 50
3-4 實驗流程與方法 51
3-4-1 電解液調配 53
3-4-2 碳化鎢棒準備 53
3-4-3 三板片電極製作 53
3-4-4 超音波振幅量測 54
3-4-5 實驗架設參數設定 55
3-4-6 實驗結果量測與觀察 57
3-4-7 示波器電流與電壓擷取時間 60
第四章 結果與討論 61
4-1 工作電壓對電化學製備微梨形工具之品質特性影響 61
4-2 上電極板片供電時間對電化學製備微梨形工具之品質特性之影響 72
4-3 脈衝休止時間對電化學製備微梨形工具之品質特性之影響 81
4-4 超音波功率格數對電化學製備微梨形工具之品質特性之影響 90
4-5 微梨形工具表面EDX元素分析 100
第五章 結論 102
未來展望 104
參考文獻 105
參考文獻 [1] M. Asmael and A. Memarzadeh, "A review on recent achievements and challenges in electrochemical machining of tungsten carbide", Archives of Advanced Engineering Science, vol. 2, no. 1, pp. 1-23, 2024.
[2] B. Bhattacharyya, J. Munda, and M. Malapati, "Advancement in electrochemical micro-machining", International Journal of Machine Tools and Manufacture, vol. 44, no. 15, pp. 1577-1589, 2004.
[3] A. Meleka and D. Glew, "Electrochemical machining", International Metals Reviews, vol. 22, no. 1, pp. 229-252, 1977.
[4] K. Rajurkar et al., "Micro and nano machining by electro-physical and chemical processes", CIRP annals, vol. 55, no. 2, pp. 643-666, 2006.
[5] R. Schuster, V. Kirchner, P. Allongue, and G. Ertl, "Electrochemical micromachining", Science, vol. 289, no. 5476, pp. 98-101, 2000.
[6] 朱樹敏、陳遠龍, 電化學加工技術. 北京: 化學工業出本版社, 2006.
[7] B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, "Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials", Journal of Materials Processing Technology, vol. 95, no. 1, pp. 145-154, 1999.
[8] N. Sabahi, M. R. Razfar, and M. Hajian, "Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process", Journal of Materials Processing Technology, vol. 250, pp. 190-202, 2017.
[9] S. Saranya and A. Ravi Sankar, "Fabrication of precise micro-holes on quartz substrates with improved aspect ratio using a constant velocity-feed drilling technique of an ECDM process", Journal of Micromechanics and Microengineering, vol. 28, no. 12, p. 125009, 2018.
[10] P. Regenfuss et al., "Industrial freeform generation of microtools by laser micro sintering", Rapid Prototyping Journal, vol. 11, no. 1, pp. 18-25, 2005.
[11] F. Modica, V. Marrocco, G. Copani, and I. Fassi, "Sustainable micro-manufacturing of micro-components via micro electrical discharge machining", Sustainability, vol. 3, no. 12, pp. 2456-2469, 2011.
[12] 鄭圳明, "微細加工單發放電能量對微球形探針之探討", 國立臺北科技大學, 2009.
[13] M. Kumar and P. Satsangi, "A study on machining performance of wire electric discharge grinding (WEDG) process during machining of tungsten alloy micro-tools", Sādhanā, vol. 46, no. 2, p. 69, 2021.
[14] Y. Sun and Y. Gong, "Experimental study on fabricating spirals microelectrode and micro-cutting tools by low speed wire electrical discharge turning", Journal of Materials Processing Technology, vol. 258, pp. 271-285, 2018.
[15] Y. Yildiz, M. M. Sundaram, K. P. Rajurkar, and A. Altintas, "Correlation of surface roughness and recast layer thickness in electrical discharge machining", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 231, no. 3, pp. 414-424, 2017.
[16] C. C. Wang, H. M. Chow, L. D. Yang, and C. T. Lu, "Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study", Journal of Materials Processing Technology, vol. 209, no. 8, pp. 4134-4140, 2009.
[17] 羅亦琥, "應用放電複合製程之微凹型球面的拋光研究", 碩士, 機械工程學系, 國立中央大學, 2007.
[18] C. K. Yang, C. P. Cheng, C. C. Mai, A. Cheng Wang, J. C. Hung, and B. H. Yan, "Effect of surface roughness of tool electrode materials in ECDM performance", International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1088-1096, 2010.
[19] S. K. Patro, D. K. Mishra, J. Arab, and P. Dixit, "Numerical and experimental analysis of high-aspect-ratio micro-tool electrode fabrication using controlled electrochemical machining", Journal of Applied Electrochemistry, vol. 50, pp. 169-184, 2020.
[20] Y. M. Lim and S. H. Kim, "An electrochemical fabrication method for extremely thin cylindrical micropin", International Journal of Machine Tools and Manufacture, vol. 41, no. 15, pp. 2287-2296, 2001.
[21] S. Choi, S. Ryu, D. Choi, and C. Chu, "Fabrication of WC micro-shaft by using electrochemical etching", The International Journal of Advanced Manufacturing Technology, vol. 31, pp. 682-687, 2007.
[22] Z. W. Fan and L. W. Hourng, "The analysis and investigation on the microelectrode fabrication by electrochemical machining", International Journal of Machine Tools and Manufacture, vol. 49, no. 7-8, pp. 659-666, 2009.
[23] Z. Z. Fang, X. Wang, T. Ryu, K. S. Hwang, and H. Sohn, "Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–a review", International Journal of Refractory Metals and Hard Materials, vol. 27, no. 2, pp. 288-299, 2009.
[24] N. Schubert, M. Schneider, A. Michaelis, M. Manko, and M. Lohrengel, "Electrochemical machining of tungsten carbide", Journal of Solid State Electrochemistry, vol. 22, pp. 859-868, 2018.
[25] 鄭安傑, "放電複合超音波輔助電化學加工製備微圓柱形陣列電極之研究", 碩士論文, 2022.
[26] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity", Chemical reviews, vol. 41, no. 3, pp. 441-501, 1947.
[27] N. Sato and G. Okamoto, "Electrochemical passivation of metals", Electrochemical Materials Science, pp. 193-245, 1981.
[28] S. Yeo and L. Tan, "Effects of ultrasonic vibrations in micro electro-discharge machining of microholes", Journal of Micromechanics and Microengineering, vol. 9, no. 4, p. 345, 1999.
[29] B. G. Zhu and Z. L. Wang, "Fabrication of microelectrode by current density control in electrochemical micromachining", in Materials Science Forum, 2006, vol. 532, pp. 221-224: Trans Tech Publ.
[30] T. Tuvić, I. Pašti, and S. Mentus, "Tungsten electrochemistry in alkaline solutions—Anodic dissolution and oxygen reduction reaction", Russian Journal of Physical Chemistry A, vol. 85, pp. 2399-2405, 2011.
[31] N. Shibuya, Y. Ito, and W. Natsu, "Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution", International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 2075-2078, 2012.
[32] S. H. Choi, B. H. Kim, H. S. Shin, and C. N. Chu, "Analysis of the electrochemical behaviors of WC–Co alloy for micro ECM", Journal of Materials Processing Technology, vol. 213, no. 4, pp. 621-630, 2013.
[33] A. Spieser and A. Ivanov, "Design of a pulse power supply unit for micro-ECM", The International Journal of Advanced Manufacturing Technology, vol. 78, pp. 537-547, 2015.
[34] A. Martin, C. Eckart, N. Lehnert, M. Hackert-Oschätzchen, and A. Schubert, "Generation of Defined Surface Waviness on Tungsten Carbide by Jet Electrochemical Machining with Pulsed Current", Procedia CIRP, vol. 45, pp. 231-234, 2016.
[35] P. Z. Yang, J. C. Hung, and C. W. Cheng, "Fabrication of tungsten carbide micro fins by sliding ECM", in 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2017, pp. 136-139: IEEE.
[36] V. Jain and A. K. Chouksey, "A comprehensive analysis of three-phase electrolyte conductivity during electrochemical macromachining/micromachining", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 232, no. 14, pp. 2449-2461, 2018.
[37] S. Oliaei, Y. Karpat, J. P. Davim, and A. Perveen, "Micro tool design and fabrication: A review", Journal of Manufacturing Processes, vol. 36, pp. 496-519, 2018.
[38] A. Amiri Delouei, H. Sajjadi, R. Mohebbi, and M. Izadi, "Experimental study on inlet turbulent flow under ultrasonic vibration: Pressure drop and heat transfer enhancement", Ultrasonics Sonochemistry, vol. 51, pp. 151-159, 2019/03/01/ 2019.
[39] P. Meshram, U. Prakash, L. Bhagat, D. Abhilash, H. Zhao, and E. van Hullebusch, "Processing of Waste Copper Converter Slag Using Organic Acids for Extraction of Copper, Nickel, and Cobalt", Minerals, vol. 10, p. 290, 2020.
[40] Y. Zhou, Di, Z. Xu, and X. Zhang, "Effects of Gas-mixed Electrolyte on Leveling Ability of Electrochemical Machining of (γ+α2+B2) TiAl Intermetallic", International Journal of Electrochemical Science, vol. 15, no. 7, pp. 6314-6329, 2020.
[41] S. Ao, X. Qin, K. Li, and Z. Luo, "Effects of process parameters on jet electrochemical machining of SiC particle-reinforced aluminum matrix composites", The International Journal of Advanced Manufacturing Technology, vol. 112, pp. 3351-3361, 2021.
[42] 張凱傑, "微細工具之放電加工與表面電化學拋光相關研究", 碩士論文, 2022.
[43] Y. He, B. Xu, H. Guo, X. Zhou, and J. Bai, "Numerical simulation and experimental study on electrochemical milling of cemented carbide", Advances in Mechanical Engineering, vol. 15, no. 9, p. 16878132231196490, 2023.
[44] Z. Liu, Z. Gu, Q. Tang, and X. Zou, "Fabrication of micro tools using electrochemical machining with a reciprocating block electrode", International Journal of Electrochemical Science, vol. 19, no. 3, p. 100484, 2024.
[45] K. M. Andersson and L. Bergström, "Oxidation and dissolution of tungsten carbide powder in water", International Journal of Refractory Metals and Hard Materials, vol. 18, no. 2-3, pp. 121-129, 2000.
[46] N. Schubert, M. Schneider, and A. Michealis, "The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density", Electrochimica Acta, vol. 113, pp. 748-754, 2013.
[47] H. Göhr, "Über anodisch gebildete oxidische deckschichten auf kobalt in wässeriger Lösung—I. Zur thermodynamik des systems kobalt-wässerige lösung", Electrochimica Acta, vol. 11, no. 7, pp. 827-834, 1966.
[48] D. Deconinck, S. Van Damme, and J. Deconinck, "A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II: Numerical simulation", Electrochimica Acta, vol. 69, pp. 120-127, 2012.
[49] H. S. Shin, B. H. Kim, and C. N. Chu, "Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses", Journal of Micromechanics and Microengineering, vol. 18, no. 7, p. 075009, 2008.
[50] V. Jain and S. Murugan, "Investigations into the effect of cathode material on temperature distribution during electrochemical machining", International Journal of Production Research, vol. 24, no. 2, pp. 439-450, 1986.
[51] S. Skoczypiec, "Research on ultrasonically assisted electrochemical machining process", The International Journal of Advanced Manufacturing Technology, vol. 52, pp. 565-574, 2011.
[52] 黃俊曄, "放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響", 碩士論文, 1999.
[53] G. W. Howell, T. M. Weathers, and T. S. G. R. B. CA, "Aerospace fluid component designers’ handbook, volume II, Revision D", Report No. RPL-TDR-64-25, TRW Systems Group, One Space Park, Redondo Beach …1970.
[54] 楊幼明, 張小林, 聶華平, 盧博, and 喬珊, "Mo (W)-H2O 系溶液化學行為研究", 2011.
[55] E. Garcia, J. Santos, E. Pereira, and M. Freitas, "Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique", Journal of Power Sources, vol. 185, no. 1, pp. 549-553, 2008.
[56] N. Schubert, M. Schneider, and A. Michaelis, "Electrochemical Machining of cemented carbides", International Journal of Refractory Metals and Hard Materials, vol. 47, pp. 54-60, 2014.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明