博碩士論文 111323057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.191.74.140
姓名 李晨睿(Chen-Jui-Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究
(Research on Electrochemical Discharge combined with Ultrasonic Vibration Assisted Electrophoresis Deposition Machining Micro Square Holes on Quartz Wafers)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前於石英晶圓上製作方形微通孔非常困難,因為石英材料具有硬而脆之特性,而採用銑削加工微形方孔時,會導致石英晶圓破裂,造成產品品質不佳等問題,本研究主要係採用電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔,於實驗的過程中,採用線放電研磨加工(Wire Electrical Discharge Grinding,WEDG)製成之碳化鎢二階式工具電極進行電化學放電加工微形方孔,接著,再進行超音波振動輔助電泳沉積修整加工,除解決電化學放電加工後,微形方孔之形貌及加工精度不佳的問題外,同時亦能降低電極製作成本。本研究於實驗中,藉由調整各項加工參數進行單因子參數實驗,並探討各項加工參數如工作電壓、電泳濃度、進給速度及超音波功率等級對於石英晶圓微形方孔加工之各種品質特性的影響,品質特性包含微形方孔之入、出口邊長平均值、入、出口表面形貌、出口破片情況及二階式工具電極寬度消耗之情形。
採用電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔時,於電泳效應的幫助下,磨料會聚集在二階式工具電極周圍,形成研磨工具,於超音波振動輔助下,藉由研磨工具修整微形方孔,可獲得較佳之微形方孔之入、出口表面形貌,實驗結果顯示,利用電泳沉積磨料修整加工來進行石英晶圓的微形方孔加工時,於工作電壓2V、磨料濃度10wt.%、第二階段進給速度1μm/5sec及超音波功率等級Level 5為本研究較佳參數組合,並可得到微形方孔加工後之入口邊長平均值為99μm,微形方孔之出口邊長平均值為93μm,且微形方孔之表面形貌較佳。
摘要(英) At present, it is very difficult to make square micro holes on quartz wafers. Because the quartz material is hard and brittle. Milling micro square holes may break the quartz wafer, resulting in poor product quality. This study combined electrochemical discharge with ultrasonic vibration-assisted electrophoresis deposition to process micro square holes on the quartz wafers. During the experiment, the tungsten carbide two-stage tool electrode made by Wire Electrical Discharge Grinding (WEDG) was used for electrochemical discharge machining of micro square holes. Afterwards, the ultrasonic vibration-assisted electrophoresis deposition trimming was performed. The problem of poor morphology and processing accuracy of micro square holes after electrochemical discharge machining was solved, and the electrode fabrication cost was reduced. In the experiment, various processing parameters were adjusted for the single-factor parameter experiment. The influence of various processing parameters such as working voltage, electrophoresis concentration, feed rate and ultrasonic power level on various quality characteristics of micro square holes processing on the quartz wafers. The quality characteristics included the hole average width of the entrance and exit side lengths of the micro square hole, the entrance and exit surface morphologies, the exit fragmentation and the two-stage tool electrode width wear.
When the electrochemical discharge combined with ultrasonic vibration-assisted electrophoresis deposition was used to process micro square holes in a quartz wafer. Under the electrophoretic effect, the abrasives gathered around the two-stage tool electrode to form a grinding tool. Using ultrasonic vibration, the micro square holes were trimmed with the grinding tool, better entrance and exit surface morphologies of the micro square holes were obtained. The experimental results show that when the electrophoresis deposition abrasive finishing was used to process micro square holes in quartz wafers, the better parameter combination in this study consisted of working voltage 2V, abrasive concentration 10wt.%, Stage 2 feed rate 1μm/5sec and ultrasonic power Level 5. The entrance micro square holes average width was 99μm after the processing, and the exit micro square holes average width was 93μm after the processing. The micro square holes have better surface morphology.
關鍵字(中) ★ 電化學放電加工
★ 電泳沉積加工
★ 超音波振動輔助
★ 石英晶圓
關鍵字(英) ★ Electrochemical discharge machining
★ Electrophoretic deposition
★ Ultrasonic vibration assisted
★ Quartz wafer
論文目次 ABSTRACT iii
目 錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1研究背景 1
1-2研究動機及目的 3
1-3文獻回顧 5
1-4論文架構 11
第二章 實驗基礎理論 12
2-1電化學放電加工基本理論[36] 12
2-2電化學放電加工之放電火花產生機制[37] 14
2-3電化學放電加工之材料移除機制[37] 17
2-3-1電化學放電機制 17
2-3-2化學蝕刻 17
2-4放電加工的基礎理論[36] 19
2-4-1放電加工之材料移除機制[38] 20
2-5電泳沉積基本原理[39] 24
2-5-1 電雙層理論(The Electric Double Layer) 24
2-5-2 電動力學現象(Electrokinetic Phenomena) 25
2-5-3 粉體粒子表面電荷來源 28
2-5-4 電泳懸浮液內粉體粒子間分散行為之機制 29
2-5-5 電泳沉積法之原理 31
2-5-6 電泳沉積法之速率及方程式 32
2-6超音波基本原理[40] 34
2-6-1 空蝕作用(Cavitation) 34
2-6-2 泵吸作用 35
2-6-3 超音波振動之運動分析 35
第三章 實驗設備與材料 37
3-1實驗方法 37
3-2實驗設備 42
3-2-1 電化學放電微形方孔加工設備 42
3-2-2 高精度四軸微放電加工機 43
3-2-3 示波器 44
3-2-4 電壓探棒 45
3-2-5 電流探棒 45
3-2-6 去離子水系統 46
3-2-7 電子天平 47
3-2-8 電磁加熱攪拌器 49
3-2-9 超音波洗淨機 50
3-2-10 可程式直流電源供應器 51
3-2-11 直接數位合成函數波訊號產生器 52
3-2-12 金屬氧化物半導體場效電晶體 52
3-2-13 超音波主軸及超音波發振器 53
3-2-14 三用電錶 54
3-2-15 蠕動泵浦 55
3-2-16 pH濃度計 56
3-2-17 斜向式顯微鏡 56
3-2-18 實體顯微鏡 57
3-2-19 光學影像量測儀 58
3-2-20 雷射共軛焦兼白光干涉儀 58
3-2-21 自動濺射鍍膜機 59
3-2-22 掃描式電子顯微鏡 60
3-3實驗材料 61
3-3-1 石英晶圓試片 61
3-3-2 二階式工具電極 62
3-3-3 輔助電極 63
3-3-4 電解液(氫氧化鉀水溶液) 64
3-3-5 碳化矽粉末 65
3-3-6 氫氧化鈉 67
3-3-7 鍍鋅銅線 68
3-4 實驗流程與方法 69
3-4-1 試片製作 70
3-4-2 電化學放電之電解液調製 70
3-4-3 超音波振動輔助電泳沉積磨料修整加工之電泳液調製 71
3-4-4 實驗架設參數設定 72
3-4-5 超音波振動輔助電泳沉積磨料修整加工之加工行程 75
3-4-6 實驗結果之量測入、出口邊長方式 76
3-4-7 微形方孔入、出口邊長平均值之計算方式 77
3-4-8 平均二階式工具電極寬度消耗量測 78
3-4-9 超音波振幅量測 79
第四章 結果與討論 80
4-1 有、無電泳沉積磨料修整加工之比較 80
4-2 不同參數對電泳沉積磨料修整加工微形方孔之影響 82
4-2-1 工作電壓對超音波振動輔助電泳沉積磨料修整加工微形方孔之影響 82
4-2-2 磨料濃度對超音波振動輔助電泳沉積磨料修整加工微形方孔之影響 93
4-2-3 進給速度對超音波振動輔助電泳沉積磨料修整加工微形方孔之影響 102
4-2-4 超音波功率等級對電泳沉積磨料修整加工微形方孔之影響 111
第五章 結論 121
未來展望 123
參考文獻 124
參考文獻 [1] M. Kumar, R. O. Vaishya, A. D. Oza, and N. M. Suri, “Experimental investigation of wire-electrochemical discharge machining (WECDM) performance characteristics for quartz material”, Silicon, vol. 12, no. 9, pp. 2211-2220, 2020.
[2] 王岱璟,超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究,中央大學,碩士論文,2023.
[3] V. Raghuram, T. Pramila, Y. Srinivasa, and K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of materials processing technology, vol. 52, no. 2-4, pp. 301-318, 1995.
[4] K.H. Nguyen, P. A. Lee, and B. H. Kim, “Experimental investigation of ECDM for fabricating micro structures of quartz”, International journal of precision engineering and manufacturing, vol. 16, pp. 5-12, 2015.
[5] M. Goud and A. K. Sharma, “On performance studies during micromachining of quartz glass using electrochemical discharge machining”, Journal of Mechanical Science and Technology, vol. 31, pp. 1365-1372, 2017.
[6] T. Singh, J. Arab, and P. Dixit, “A review on microholes formation in glass-based substrates by electrochemical discharge drilling for MEMS applications”, Machining Science and Technology, vol. 26, no. 2, pp. 276-337, 2022.
[7] C.H. Yang, T.C. Wang, J.C. Hung, and H.P. Tsui, “Ultrasonic Vibration-assisted Electrochemical Discharge Machining of Quartz Wafer Micro-Hole Arrays”, Processes, vol. 11, no. 12, p. 3300, 2023.
[8] J.C. Hung and Y.W. Zhang, “Ultrasonic-assisted electrochemical discharge grinding and broaching for machining quartz square microholes”, Journal of Materials Research and Technology, vol. 25, pp. 1782-1799, 2023.
[9] J. He, Z. Guo, Y. Qin, and X. Chen, “Reducing Edge Chipping of Micro-holes with Electrophoresis-assisted Micro-ultrasonic Machining”, Procedia CIRP, vol. 68, pp. 444-449, 2018.
[10]I. Basak and A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification”,Journal of Materials Processing Technology, vol. 62, no. 1-3, pp. 46-53, 1996.
[11]Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi, and Y. Sato, “Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives”, CIRP Annals, vol. 47, no. 1, pp. 245-248, 1998.
[12]B. Bhattacharyya, B. Doloi, and S. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, vol. 95, no. 1-3, pp. 145-154, 1999.
[13]V. Jain, P. Dixit, and P. Pandey, “On the analysis of the electrochemical spark machining process”,International Journal of Machine Tools and Manufacture, vol. 39, no. 1, pp. 165-186, 1999.
[14]W. Peng and Y. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”,Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 363-369, 2004.
[15]Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki, and O. Horiuchi, “A study on constant-pressure grinding with EPD pellets”, Key Engineering Materials, vol. 257, pp. 135-140, 2004.
[16]R. Wüthrich et al., “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, vol. 15, no. 10, p. S268, 2005.
[17]T. Oshita, Y. Sawaki, and M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles”,Journal of alloys and compounds, vol. 408, pp. 1118-1122, 2006.
[18]D.J. Kim, Y. Ahn, S.H. Lee, and Y.K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1064-1067, 2006.
[19]B. H. Yan, K. L. Wu, F. Y. Huang, and C. C. Hsu, “A study on the mirror surface machining by using a micro-energy EDM and the electrophoretic deposition polishing”,The International Journal of Advanced Manufacturing Technology, vol. 34, pp. 96-103, 2007.
[20]J. West and A. Jadhav, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, vol. 17, no. 2, p. 403, 2007.
[21]Z.P. Zheng, J.K. Lin, F.Y. Huang, and B.H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, vol. 18, no. 2, p. 025014, 2008.
[22]N. Kobayashi, Y. Wu, M. Nomura, and T. Sato, “Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique”, Journal of materials processing technology, vol. 201, no. 1-3, pp. 531-535, 2008.
[23]M.S. Han, B.K. Min, and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”,Journal of Micromechanics and Microengineering, vol. 19, no. 6, p. 065004, 2009.
[24]H.P. Tsui, J.C. Hung, K.L. Wu, J.C. You, and B.H. Yan, “Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing”, Materials and Manufacturing Processes, vol. 26, no. 5, pp. 740-745, 2011.
[25]C.K. Yang, K.L. Wu, J.C. Hung, S.M. Lee, J.C. Lin, and B.H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”, International Journal of Machine Tools and Manufacture, vol. 51, no. 6, pp. 528-535, 2011.
[26]A. Chavan, Y. Gaikhe, S. Huddedar, and R. Pawade, “3D surface characterization of electrophoretic deposition assisted polishing of SS316L”, Journal of Applied Sciences, vol. 12, no. 10, pp. 929-937, 2012.
[27]T. Zhao, Q. Deng, J. Yuan, B. Lyu, and Y. Lin, “An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry”, The International Journal of Advanced Manufacturing Technology, vol. 84, pp. 1737-1746, 2016.
[28]H. Lian, Z. Guo, J. Liu, Z. Huang, and J. He, “Experimental study of electrophoretically assisted micro-ultrasonic machining”, The International Journal of Advanced Manufacturing Technology, vol. 85, pp. 2115-2124, 2016.
[29]S. Elhami and M. Razfar, “Analytical and experimental study on the integration of ultrasonically vibrated tool into the micro electro-chemical discharge drilling”, Precision Engineering, vol. 47, pp. 424-433, 2017.
[30]H.M. Lee and T.M. Chen, "A study of polishing feature of ultrasonic-assisted vibration method in Bamboo Charcoal”, Advances in Materials Science and Engineering, vol. 2017, 2017.
[31]T. Singh and A. Dvivedi, “On performance evaluation of textured tools during micro-channeling with ECDM”, Journal of Manufacturing Processes, vol. 32, pp. 699-713, 2018.
[32]N. V. Khatekar and R. S. Pawade, “Analysis and modeling of surface characteristics in electrophoretic deposition–assisted internal polishing of AISI 304 steel”, The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 3083-3094, 2019.
[33]T. Singh and A. Dvivedi, “On prolongation of discharge regime during ECDM by titrated flow of electrolyte”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 3, pp. 1819-1834, 2020.
[34]H. Adibi, M. Khani, and H. Esmaeili, “Experimental evaluation of electrophoretic deposition-assisted polishing”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 1726-1734, 2021.
[35]R. Singh, D. Singh, and J. Singh, “Parametric analysis and optimization of magnetic field-assisted electrochemical spark drilling (MF-ECSD)”, Engineering Research Express, vol. 5, no. 2, p. 025036, 2023.
[36]鄭志平,微電化學放電加工法應用於硼矽玻璃的精微加工技術研究,中央大學,博士論文,2008.
[37]楊程光,電化學放電加工法應用於石英的精微加工研究,中央大學,博士論文,2011.
[38]許世勳,大面積放電加工技術之研究,中央大學,碩士論文,2012
[39]崔海平,電化學結合電泳精密拋光不銹鋼之研究,中央大學,博士論文,2008.
[40]Z.Y. Shen and H.P. Tsui, “An investigation of ultrasonic-assisted electrochemical machining of micro-hole array”, Processes, vol. 9, no. 9, p. 1615, 2021.
[41]C.H. Yang and H.P. Tsui, “A study on quartz wafer slot polishing by using the ultrasonic-assisted wire electrophoretic deposition method”, The International Journal of Advanced Manufacturing Technology, vol. 128, no. 7-8, pp. 3133-3148, 2023.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明