參考文獻 |
1. AbuAisha, M., Loret, B., Eaton, D., “Enhanced Geothermal Systems (EGS): Hydraulic fracturing in a thermo-poroelastic framework.” Journal of Petroleum Science and Engineering, Vol. 146, pp. 1179-1191, 2016.
2. Dershowitz, W., Ambrose, R., Lim, D.H., Cottrell, M., “Hydraulic Fracture and Natural Fracture Simulation for Improved Shale Gas Development,” In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, pp. 10-13, 2011.
3. Yan, B., Mi, L., Wang, Y., Tang, H., An, C., Killough, J.E, “Multi-porosity multi-physics compositional simulation for gas storage and transport in highly heterogeneous shales.” Journal of Petroleum Science and Engineering, Vo. 160, pp. 498-509, 2018.
4. Wang, H.Y., “Discrete fracture networks modeling of shale gas production and revisit rate transient analysis in heterogeneous fractured reservoirs,” Journal of Petroleum Science and Engineering, Vol. 169, pp. 796-812, 2018.
5. Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N., “Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy,” Journal of Scientific Computing, Vol. 36, pp. A1871-A1894, 2014.
6. Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S, “dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport,” Computers & Geosciences, Vol. 84, pp. 10-19, 2015.
7. Makedonska, N.; Painter, S.; Bui, Q.; Gable, C.; Karra, S. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computers & Geosciences, Vol, 19, pp. 1123-1137, 2015.
8. Zhang, Q.H., “Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks,” Journal of Hydrology, Vol. 529, pp. 890-908, 2015.
9. 林朝宗、何信昌,「從地質觀點探討我國核廢料最終處置之對策」,經濟部八十一年度研究發展專題,編號81009,經濟部,1992。
10. Kalbacher, T., Wang, W., McDermott, C., Kolditz, O., Taniguchi, T., “Development and application of a CAD interface for fractured rock,” Engineering Geology, Vol. 47, pp. 1017-1027, 2005.
11. 台灣電力公司,「用過核子燃料最終處置計畫書2006年核定版」,2006。
12. 台灣電力公司,「用過核子燃料最終處置計畫書2018年修訂版」,2019。
13. 台灣電力公司,「我國用過核子燃料最終處置技術可行性評估報告-SNFD2017報告」,用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段,TPC-SNFD2017-V1,台灣電力公司,第1-1頁至第8-43頁,2019。
14. 台灣電力公司,「用過核子燃料最終處置計畫書2022年修訂版」,2023。
15. 放射性物料管理法,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160015.
16. 放射性物料管理法施行細則,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160034.
17. 高放射性廢棄物最終處置及其設施安全管理規則,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160070.
18. 高放射性廢棄物最終處置設施場址規範,取自https://erss.nusc.gov.tw/law/LawContent.aspx?id=GL000065.
19. SKBF/KBS, “Final Storage of Spent Nuclear fuel–KBS-3, Summary,” Swedish Nuclear Fuel Supply Company/Division KBS, 1983.
20. SKB, “Long-term safety for the final repository for spent nuclear fuel at Forsmark, Main report of the SR-Site project,” TR-11-01, Svensk Kärnbränslehantering AB, 2011.
21. JNC, “H12: Project to establish the scientific and technical basis for HLW disposal in Japan, Project overview report,” JNC-T21410-2000-001, Japan Nuclear Cycle Development Institute, 2000.
22. 倪春發、余允辰、李奕賢、Vu, P. T.,「放射性廢棄物地質處置之地下水流動與傳輸分析」,土木水利,第四十八卷、第六期,2021。
23. Parsons, R.W., “Permeability of idealized fractured rock,” Society of Petroleum Engineers, Vol. 6, No. 2, pp. 126-136, 1966.
24. Wilson, C.R., Witherspoon, P.A., “Flow interference effects at fracture intersections,” Water Resources Research, Vol. 12, pp. 102-104, 1976.
25. Long, J.C.S., Gilmour, P., Witherspoon, P.A., “A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures,” Water Resources Research, Vol. 21, pp. 1105-1115, 1985.
26. 李奕賢,「三維離散裂隙網路水流與溶質傳輸模式發展」,國立中央大學應用地質研究所博士論文,2016。
27. Long, J.C.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A., “Porous media equivalents for networks of discontinuous fractures,” Water Resources Research, Vol. 18, pp. 645-658, 1982.
28. 吳宛庭,「三維裂隙網路升尺度方法推估等效參數之差異評估」,國立中央大學應用地質研究所碩士論文,2016。
29. Schwartz, F.W., Smith, L., Crowe, A.S., “A stochastic analysis of macroscopic dispersion in fractured media,” Water Resources Research, Vol. 19, pp. 1253-1265, 1983.
30. Smith, L., Schwartz, F.W., “An analysis of the influence of fracture geometry on mass transport in fractured media,” Water Resources Research, Vol. 20, pp. 1241-1252, 1984.
31. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,國立成功大學資源工程學系碩士論文,2004。
32. Andersson, J., Thunvik, R., “Predicting mass transport in discrete fracture networks with the aid of geometrical field data,” Water Resources Research, Vol. 22, pp. 1941-1950, 1986.
33. Andersson, J., Shapiro, A.M., Bear, J., “A stochastic model of a fractured rock conditioned by measured information,” Water Resources Research, Vol. 20, pp. 79-88, 1984.
34. Dverstorp, B., Andersson, J., Nordqvist, W., “Discrete fracture network interpretation of field tracer migration in sparsely fractured rock,” Water Resources Research, Vol. 28, pp. 2327-2343, 1992.
35. Gómez-Hernández, J.J., Franssen, H.J.H., Cassiraga, E.F., “Stochastic analysis of flow response in a three-dimensional fractured rock mass block,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 31-44, 2001.
36. Lin, B.S., Lee, C.H., “Percolation and dispersion of mass transport in saturated fracture network,” Water Resources Research, Vol. 12, pp. 409-432, 1998.
37. Lin, B.S., Lee, C.H., Yu, J.L., “Analysis of groundwater seepage of tunnels in fracture rock,” Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160, 2000.
38. 林碧山,「破裂岩體地下水滲流與溶質傳輸」,國立成功大學資源工程學系博士論文,共135頁,2000.
39. De Dreuzy, J.R., Davy, P., Bour, O., “Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1, Effective connectivity,” Water Resources Research, Vol. 37, pp. 2065-2078, 2001.
40. 李振誥、曾建豪、林宏奕、葉信富,「破裂面內寬模式之評估」,中國土木水利工程學刊,第21卷,第1期,第25-34頁,2009.
41. Park, Y.J., Lee, K.K., Kosakowski, G., Berkowitz, B., “Transport behavior in three-dimensional fracture intersections,” Water Resources Research, Vol. 39, p. 1215, 2003.
42. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,國立成功大學資源工程學系碩士論文,2004。
43. Nakaya, S., Nakamura, K., “Percolation conditions in fractured hard rocks: A numerical approach using the three-dimensional binary fractal fracture network (3D-BFFN) model,” Chemistry and Physics of Minerals and Rocks/Volcanology, Journal of Geophysical Research, Vol. 112, p. B12203, 2007.
44. 翁淑涵,「隧道破裂面露頭與湧水量關係之研究」,國立成功大學資源工程學系碩士論文,2007。
45. Frampton, A., Cvetkovic, V., “Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks,” Advances in Water Resources, Vol. 32, pp. 649-658, 2009.
46. 林宏奕,「破裂岩體優勢水流路徑之研究」,國立成功大學資源工程研究所博士論文,共123頁,2009。
47. 李信和,「應用直接時間域粒子追蹤法模擬離散裂隙網路之溶質傳輸」,國立中正大學應用地球物理與環境科學研究所碩士論文,2009。
48. 潘建邦,「利用破裂面網路模式及透水係數張量探討地下水流動及溶質傳輸之研究」,國立成功大學資源工程研究所博士論文,2012。
49. 劉明坤,「離散裂隙網路數值模擬:以花蓮溪畔坑道花崗片麻岩體為例」,國立中正大學地球與環境科學系應用地球物理與環境科學碩士班,20104。
50. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks,” Journal of Applied Mathematics and Mechanics, Vol. 24, pp. 1286-1303, 1960.
51. Warren, J.E., Root, P.J., “The behavior of naturally fractured reservoirs,” Society of Petroleum Engineers, Vol. 3, pp. 245-255, 1963.
52. Huyakorn, P.S., Lester, B.H., Faust, C.R., “Finite element techniques for modeling groundwater flow in fractured aquifers,” Water Resources Research, Vol. 19, pp. 1019-1035, 1983.
53. Carslaw, H.S., Jaeger, J.C., “Conduction of Heat in Solids,” second edition, Oxford University Press, New York, 1986.
54. Moench, A.F., “Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture Skin,” Water Resource Research, Vol. 20, No. 7, pp. 831-846, 1984.
55. Zimmerman, R.W., Chen, G., Hadgu, T., Bodvarsson, G.S., “A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow,” Water Resources Research, Vol. 29, pp. 2127-2137, 1993.
56. Snow, D.T., “A parallel plate model of fractured permeable media,” University of California, Berkeley, 1965.
57. Weiss, L.E., “The Minor Structures of Deformed Rocks: A Photographic Atlas,” Springer-Verlag Berlin Heidelberg, 1972.
58. Chen, R.H., Lee, C.H., Chen, G.S., “Evaluation of transport of radioactive contaminant in fractured rock,” Environmental Geology, Vol. 41, pp. 440-450, 2001.
59. Khaleel, R., “Scale dependence of continuum models for fractured basalts,” Water Resource Research, Vol. 25, No. 8, pp. 1241-1252, 1984.
60. Rouleau, A., Gale, J.E., “Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 24, pp. 99-112, 1987.
61. 陳榮華,「破裂安山岩體放射性核種傳輸之研究」,國立成功大學資源工程學系博士論文,2001。
62. Oda, M., “Permeability tensor for discontinuous rock masses,” Géotechnique, Vol. 35, pp. 483-495, 1985.
63. Wei, Z.Q., Egger, P., Descoeudres, F., “Permeability predictions for jointed rock masses,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, pp. 251-261, 1995.
64. Renshaw, C.E., “Influence of Subcritical Fracture Growth on the Connectivity of Fracture Network,” Water Resources Research, Vol. 32, pp. 1519-1530, 1996.
65. Jackson, C.P., Hoch, A.R., Todman, S., “Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium,” Water Resources Research, Vol. 36, pp. 189-202, 2000.
66. Novakowski, K.S., Bogan, J.D., “A semi-analytical model for the simulation of solute transport in a network of fractures having random orientations,” Internal Journal for Numerical and Analytical Method in Geomechanics, Vol. 23, pp. 317-333, 1999.
67. 台灣電力公司,「我國用過核子燃料最終處置初步安全論證報告-SNFD2021報告」,用過核子燃料最終處置計畫候選場址評選與核定階段,TPC-SNFD2021-V1,台灣電力公司,2023。
68. Joyce, S., Simpson, T., Hartley, L., Applegate, D., Hoek, J., Jackson, P., Swan, D., “Groundwater Flow Modelling of Periods with Temperate Climate Conditions—Forsmark,” R-09-20, Svensk Kärnbränslehantering AB, 2010.
69. Vidstrand, P., Follin, S., Zugec, N., “Groundwater Flow Modelling of Periods with Periglacial and Glacial Climate Conditions-Forsmark," R-09-21, Svensk Kärnbränslehantering AB, 2010.
70. Selroos, J.-O., Follin, S., “SR-Site Groundwater flow Modelling Methodology, Setup and Results,” R-09-22; Svensk Kärnbränslehantering AB, 2010.
71. Hartley, L., Follin., S., Selroos, J.-O., “Responses to SSM on Uncertainties in Hydrogeological Calculation, Question 1,” SKBdoc 1416510, Svensk Kärnbränslehantering AB, (2011).
72. Bear, J., “Dynamic of Fluids in Porous Media,” Amer. Elsevier, New York, 1972.
73. Nelson, R.W., “Evaluating the environmental consequences of groundwater contamination, Parts 1-4,” Water Resources research, Vol. 14, No. 3, pp. 409-455, 1978.
74. Javandel, I., Doughty, C., Tsang, C.F., “Groundwater Transport: Handbook of Mathematical Models, Water Resources Monograph 10,” Amer. Geophy. Union, Washington D.C., 1984.
75. Kinzelbach, W., “Groundwater Modelling: An Introduction with Sample Programs in BASIC,” Development in Water Science, Vol. 25, p. 334, 1986.
76. Bear, J., Verruijt, A., “Modeling Groundwater Flow and Pollution,” Springer Dordrecht, 1987.
77. Newsom, J.M., Wilson, J.L., “Flow of ground water to a well near a stream-effect of ambient ground-water flow direction,” Ground Water, Vol. 26, No. 6, pp. 703-711, 1988.
78. Pollock, D.W., “Semianalytical computation of path lines for finite-difference model,” Ground Water, Vol. 26, No. 6, pp. 743-750, 1988.
79. Pollock, D.W., “Documentation of computer programs to complete and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water model,” United States Geological Survey, Open File Report 89-381, 1989.
80. Zheng, C., “PATH3D,” S.S. Papadopulos & Assoc., Rockville, MD, 1989.
81. McDonald, M.G., Harbaugh, A.W., “A modular three-dimensional finite-difference ground-water flow model,” Techniques of Water-Resources Investigations 06-A1, United States Geological Survey, 1988.
82. Shafer, J.M., “Reverse pathline calculation of time related capture zones in nonuniform flow,” Ground Water, Vol. 25, No. 3, pp. 283-289, 1989.
83. Shafer, J.M., “GWPATH, Version 4.0,” Champaign, IL, 1990.
84. Blandford, T.N., Huyakorn, P.S., “WHPA: a modular semi-analytical model for the delineation of wellhead protection areas,” U.S. EPA, Office of Ground-Water Protection, 1990.
85. Kincaid, C.T., “FASTCHEMTM package, V.3: User’s guide to the ETUBE pathline and streamtube database code,” EPRI EA-5870-CCM, Electric Power Research Institute, 1988.
86. 李振誥,「破裂面網路中地下水質點傳輸之研究」,國立成功大學資源工程學系執行,行政院國家科學委員會補助,1994。
87. 項建昌,「數值模式於淺水方程式與理查方程式」,國立臺灣大學土木工程學研究所碩士論文,2014。
88. 方譚,「利用質點傳輸進行三維離散裂隙含水層內之化學反應傳輸模擬」,國立中央大學應用地質研究所碩士論文,2019。
89. Feehley, C.E., Zheng, C., Molz, F.J., “A dual-domain mass transfer approach for modelling solute transport in heterogeneous aquifers: application to the macrodispersion experiment (MADE) site,” Water Resources Research, Vol. 36, No. 9, pp. 2501-2515, 2000.
90. Scheidegger, A.E., “Statistical hydrodynamics in porous media,” Journal of Geophysical Research, Vol. 66, pp. 3273-3278, 1954.
91. Ahlstrom, S.W., Foote, H.P., Arnett, R.C., Cole, C.R., Serne, R.J., “Multi-component mass transport model: theory and numerical implementation (discrete parcel random walk version),” Rep. BNWL-2127, Battelle Pacific Northwest Lab., Richland, Washington, 1977.
92. Kinzelbach, W., “The random walk method in pollutant transport simulation. Advances in analytical and numerical groundwater flow and quality modelling,” E. Custodio, et al. (Eds.), NATO ASI Series C, Vol. 224, pp. 227-246, 1987.
93. LaBolle, E.M., Quastel, J., Fogg, G.E., Gravner, J., “Diffusion processes in composite porous media and their numerical integration by random walks: generalized stochastic differential equations with discontinuous coefficients,” Water Resources Research, Vol. 36, No. 3, pp. 651-662, 2000.
94. Hoteit, H., Mosé, R., Younes, A., Lehmann, F., Ackerer, P., “Three-dimensional modelling of mass transfer in porous media using the mixed hybrid finite elements and the random walk methods,” Mathematical Geology, Vol. 34, No. 4, pp. 435-456, 2002.
95. Frind, E.O., Muhammad, D.S., Molson, J.W., “Delineation of three-dimensional well capture zones for complex multi-aquifer systems,” Ground Water, Vol. 40, No. 6, pp. 586-598, 2002.
96. Huang, H., Hassan, A.E., Hu, B.X., “Monte Carlo study of conservative transport in heterogeneous dual porosity media,” Journal of Hydrology, Vol. 275, pp. 229-241, 2003.
97. Bäckblom, G. “Excavation Damage and Disturbance in Crystalline Rock–Results from Experiments and Analyses,” TR-08-08, Svensk Kärnbränslehantering AB, 2008.
98. Svensson, U., “A continuum representation of fracture networks. Part I: Method and basic test cases,” Journal of Hydrology, Vol. 250, pp. 170-186, 2001.
99. Svensson, U., “A continuum representation of fracture networks. Part II: Application to the Äspö Hard Rock laboratory,” Journal of Hydrology, Vol. 250, pp. 187-205, 2001.
100. Svensson, U., “DarcyTools, Version 3.4. Verification, validation and demonstration,” R-10-71, Svensk Kärnbränslehantering AB, 2010.
101. Svensson, U., Ferry, M., “DarcyTools, Version 3.4. User’s guide,” R-10-72, Svensk Kärnbränslehantering AB, 2010.
102. Svensson, U., Ferry, M., Kuylenstierna, H.O., “DarcyTools, Version 3.4 - Concepts, methods andequations,” R-07-38, Svensk Kärnbränslehantering AB, 2010.
103. Romero, L., Thompson, A., Moreno, L., Neretnieks, I., Widen, H., Boghammar, A., “COMP23/NUCTRAN User′s Guide,” R-99-64, Svensk Kärnbränslehantering AB, 1999.
104. Munier, R., “Full perimeter intersection criteria, Definitions and implementations in SR-Site,” TR-10-21, Svensk Kärnbränslehantering AB, 2010.
105. Yu, Y.-C., Shen, Y.-H., Lee, T.-P., Ni, C.-F., Lee, I.-H., “Numerical Assessments of Flow and Advective Transport Uncertainty for Performance Measures of Radioactive Waste Geological Disposal in Fractured Rocks,” Energies, Vol. 15(15), No. 5585, 2022.
106. Yu, Y.-C., Chen, C.-J., Chung, C.-C., Ni, C.-F., Lee, I.-H., Wu, Y.-C., Lin, T.-Y., “A Multimodel Framework for Quantifying Flow and Advective Transport Controlled by Earthquake-Induced Canister Failures in a Reference Case for Radioactive Waste Geological Disposa,” Energies, Vol. 16(13), No. 5081, 2023.
107. 常態分佈(高斯分佈),取自國立臺灣大學計算機及資訊網路中心網站:https://homepage.ntu.edu.tw/~clhsieh/biostatistic/4/4-1.htm |