博碩士論文 111323053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.12.102.192
姓名 蔡侑倫(Yu-Lun Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電極公轉繞圓電化學放電切割加工石英晶圓之研究
(Research on quartz wafer cutting by using Electrochemical Discharge Machining with circumferentially arranged electrodes revolution)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前常被用於切割石英晶圓的加工方式主要有傳統機械加工及半導體微影製程,而於傳統機械加工中,容易於石英晶圓邊緣處產生微裂紋,若採用半導體微影製程進行加工,其加工過程費時且成本昂貴,且會對環境造成汙染之風險。本研究採用直徑為150 m的碳化鎢螺旋電極作為工具電極,進行電極公轉繞圓電化學放電切割加工石英晶圓之研究,實驗以單因子參數實驗進行,探討各項加工參數如工作電壓、脈衝週期、Z軸進給速率及衝擊係數等對於石英晶圓之各種加工品質特性的影響,加工品質特性包含了槽寬、槽深、槽道表面形貌及螺旋工具電極表面形貌。此外,於各項單因子參數實驗後,會選用較為可行之參數,進行石英晶圓直徑8 mm之整圓切穿測試,以獲得較佳加工參數組合。
採用電極公轉繞圓的方式,以電化學放電切割加工石英晶圓,不僅能避免長時間於同一點的火花放電,而且能透過公轉繞圓的方式,使新鮮的電解液能夠流動至加工區域,因此所切割完成之石英晶圓側壁較為平滑及未有裂紋生成,而且亦可大幅縮短加工時間,增進加工效率。依據各項參數實驗及整圓切穿測試結果,可得到本研究較適合切割石英晶圓之最佳參數組合為工作電壓48 V、脈衝週期10 s、Z軸進給速率1/5 m/s及衝擊係數50 %,加工時間相較於電極自轉CNC繞圓方式切割加工時間減少了83 %。
摘要(英) Currently, the common processing methods for cutting quartz wafers mainly include traditional machining and semiconductor lithography. In traditional machining, micro-cracks are likely to occur at the edges of quartz wafers. If the semiconductor lithography is used for processing, the process is time-consuming and expensive, and may pollute the environment. In this study, a tungsten carbide spiral electrode in diameter of 150 µm was used as the tool electrode to study the quartz wafer cutting by using electrochemical discharge machining with circumferentially arranged electrodes revolution. The experiments were conducted in single-factor parameter experiments to discuss the influence of various processing parameters such as voltage, pulse period, Z axis feed rate and duty factor on various processing quality characteristics of quartz wafers. The processing quality characteristics include slot width, slot depth, channel surface morphology and spiral tool electrode surface morphology. In addition, relative feasible parameters were selected after each single-factor parameter experiment to test full-circle cut through with a diameter of 8 mm on the quartz wafer, so as to obtain a better combination of processing parameters.
The circumferentially arranged electrodes revolution is used, and the quartz wafer is cut by using electrochemical discharge, the spark discharge at the same point in a long period of time can be avoided, and the fresh electrolyte can flow to the processing area through the revolution round the circle, so the sidewall of the cut quartz wafer is relatively smooth and free of cracks, and the processing time can be greatly shortened and the processing efficiency can be improved. According to various parameter experiments and full-circle cut through test results, the optimal parameter combination for cutting quartz wafers in this study consists of voltage 48 V, pulse period 10 µs, Z-axis feed rate 1/5 µm/s and duty factor 50 %. The cutting time is reduced by 83% compared with the CNC circle path with electrode rotation.
關鍵字(中) ★ 電化學放電加工
★ 石英晶圓
★ 電極公轉繞圓
關鍵字(英) ★ Electrochemical Discharge
★ Quartz Wafer
★ circumferentially arranged electrodes revolution
論文目次 摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-4 論文架構 9
第二章 實驗基礎理論 10
2-1 電化學放電加工的基礎理論[34] 10
2-1-1 電化學放電加工之放電火花產生機制 12
2-1-2 電化學放電加工之材料移除機制 14
2-2 放電加工基礎理論[34] 17
2-2-1 放電加工之材料移除機制[38] 19
第三章 實驗設備與材料 22
3-1 實驗方法 22
3-2 實驗設備 26
3-2-1 電化學放電加工設備 26
3-2-2 車床 26
3-2-3 線切割放電加工機 27
3-2-4 去離子水系統 27
3-2-5 電磁加熱攪拌器 29
3-2-6 直流電源供應器 30
3-2-7 直接數位合成函數波訊號產生器 30
3-2-8 金屬氧化物半導體場效電晶體(MOSFET) 31
3-2-9 高精度影像量測儀 31
3-2-10 精密電子水平 32
3-2-11 超音波清洗機 33
3-2-12 示波器 34
3-2-13 電壓探棒 34
3-2-14 電流探棒 34
3-2-15 斜向式顯微鏡 35
3-2-16 掃描式電子顯微鏡 35
3-2-17 自動濺射鍍膜機 36
3-2-18 雷射共軛焦暨白光干涉儀 37
3-3 實驗材料 38
3-3-1 石英晶圓 38
3-3-2 螺旋工具電極 38
3-3-3 輔助電極 40
3-3-4 電解液 41
3-4 實驗流程與方法 42
3-4-1 試片製作 43
3-4-2 電解液製備流程 43
3-4-3 安裝螺旋工具電極 44
3-4-4 實驗架設參數設定 45
3-4-5 實驗結果之量測方式 48
3-4-6 實驗加工完成的螺旋工具電極拍攝 50
第四章 結果與討論 51
4-1 電極公轉繞圓與電極自轉CNC繞圓之加工比較 51
4-2 不同參數對電化學放電加工之影響 55
4-2-1 不同工作電壓對電化學放電切槽加工之影響 55
4-2-2 工作電壓整圓切穿測試 64
4-2-3 不同脈衝週期對電化學放電切槽加工之影響 69
4-2-4 脈衝週期切圓測試 79
4-2-5 不同Z軸進給速率對電化學放電切槽加工之影響 81
4-2-6 Z軸進給速率整圓切穿測試 91
4-2-7 不同衝擊係數對電化學放電切槽加工之影響 95
4-2-8 衝擊係數整圓切穿測試 103
第五章 結論 106
未來展望 108
參考文獻 109
參考文獻 [1] 王岱璟,超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究,碩士論文,2023。
[2] J. Brice, “Crystals for quartz resonators”, Reviews of modern physics, vol. 57, no. 1, p. 105, 1985.
[3] Singh, C. S. Jawalkar, R. Vaishya, and A. Kumar, “A study on wire breakage and parametric efficiency of the wire electrochemical discharge machining process”, All India Manufacturing Technology, vol. 272, no. 1, pp. 1-6, 2014.
[4] F. Xiaolong, Z. Xianghe, Z. Pengfei, Z. Yongbin, and Q. Ningsong, “Improving machining accuracy in wire electrochemical micromachining using a rotary helical electrode”, The International Journal of Advanced Manufacturing Technology, vol. 84, pp. 929-939, 2016.
[5] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Annals of the CIRP, vol. 415, no. 16, 1968.
[6] V. K. Jain, P. M. Dixit, and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools and Manufacture, vol. 39, no. 1, pp. 165-186, 1999.
[7] B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, vol. 95, no. 1-3, pp. 145-154, 1999.
[8] C. T. Yang, S. S. Ho, and B. H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM)”, KEM, vol. 196, pp. 149-166, Jan. 2001.
[9] R. Wüthrich et al., “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, J. Micromech. Microeng., vol. 15, no. 10, pp. S268-S275, 2005.
[10] D. J. Kim, Y. Ahn, S. H. Lee, and Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1064-1067, 2006.
[11] Z. P. Zheng, J. K. Lin, F. Y. Huang, and B. H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, vol. 18, no. 2, pp. 025014, 2008.
[12] M. S. Han, B. K. Min, and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, vol. 19, no. 6, pp. 065004, 2009.
[13] C. K. Yang, C. P. Cheng, C. C. Mai, A. Cheng Wang, J. C. Hung, and B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance”, International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1088-1096, 2010.
[14] J. D. Abou Ziki, T. F. Didar, and R. Wüthrich, “Micro-texturing channel surfaces on glass with spark assisted chemical engraving”, International Journal of Machine Tools and Manufacture, vol. 57, pp. 66-72, 2012.
[15] S. K. Jui, A. B. Kamaraj, M. M. Sundaram, “High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM)”, Journal of Manufacturing Processes, vol. 15, no. 4, pp. 460-466, 2013.
[16] B. Jiang, S. Lan, and J. Ni, “Experimental Investigation of Drilling Incorporated Electrochemical Discharge Machining”, ASME Materials and Processing, vol. 2, pp. 9-13, 2014.
[17] P. K. Gupta, A. Dvivedi, and P. Kumar, “Effect of Pulse Duration on Quality Characteristics of Blind Hole Drilled in Glass by ECDM”, Materials and Manufacturing Processes, vol. 31, no. 13, pp. 1740-1748, 2015.
[18] F. Xiaolong, Z. Pengfei, Z. Yongbin, Q. Ningsong, and Z. Di, “Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode”, Journal of Materials Processing Technology, vol. 227, pp. 129-137, 2016.
[19] A. Behroozfar and M. R. Razfar, “Experimental study of the tool wear during the electrochemical discharge machining”, Materials and Manufacturing Processes, vol. 31, no. 5, pp. 574-580, 2016.
[20] M. Goud, A.K. Sharma, and C. Jawalkar, “A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate”, Precision Engineering, vol. 45, pp. 1-17, 2016.
[21] S. Elhami and M. Razfar, “Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, vol. 92, pp. 1591-1599, 2017.
[22] T. Singh and A. Dvivedi, “On pressurized feeding approach for effective control on working gap in ECDM”, Materials and Manufacturing Processes, vol. 33, no. 4, pp. 462-473, 2018.
[23] N. Sabahi and M. R. Razfar, “Investigating the effect of mixed alkaline electrolyte (NaOH+ KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM)”, The International Journal of Advanced Manufacturing Technology, vol. 95, pp. 643-657, 2018.
[24] J. Arab, H. K. Kannojia, and P. Dixit, “Effect of tool electrode roughness on the geometric characteristics of through-holes formed by ECDM”, Precision Engineering, vol. 60, pp. 437-447, 2019.
[25] L. Huang, Y. Cao, F. Jia, and Y. Lei, “Study on the stability of gas film in electrochemical discharge machining of ultra-white glass micro array holes”, Microsystem Technologies, vol. 26, no. 3, pp. 947-955, 2020.
[26] R. S. Rathore and A. Dvivedi, “Sonication of tool electrode for utilizing high discharge energy during ECDM”, Materials and Manufacturing Processes, vol. 35, no. 4, pp. 415-429, 2020.
[27] J. Arab, D. K. Mishra, and P. Dixit, “Role of tool-substrate gap in the micro-holes formation by electrochemical discharge machining”, Procedia Manufacturing, vol. 48, pp. 492-497, 2020.
[28] V. Rajput, M. Goud, and N. M. Suri, “Numerical and experimental investigations to analyze the micro-hole drilling process in spark-assisted chemical engraving (SACE)”, SN Applied Sciences, vol. 2, pp. 1-17, 2020.
[29] J. Bian, B. Ma, X. Liu, and L. Qi, “Experimental study of tool wear in electrochemical discharge machining”, Applied Sciences, vol. 10, no. 15, p. 5039, 2021.
[30] T. Singh, A. Dvivedi, A. Shanu, and P. Dixit, “Experimental investigations of energy channelization behavior in ultrasonic assisted electrochemical discharge machining”, Journal of Materials Processing Technology, vol. 293, p. 117084, 2021.
[31] T. Singh and A. Dvivedi, “Impact of gas film thickness on the performance of RM-ECDM process during machining of glass”, Materials and Manufacturing Processes, vol. 37, no. 6, pp. 652-663, 2022.
[32] P. Pawar, A. Kumar, and R. Ballav, “A Review on Experimental Studies in Electrochemical Discharge Machining”, Hybrid Micromachining and Microfabrication Technologies: Principles, Varieties and Applications, pp. 17-100, 2023.
[33] S. Grover, V. Rajput, V. Yadav, S. K. Mangal, S. Singh, and S. Kumar, “An Introduction to Electrochemical Discharge Machining (ECDM) Process and Its Research Potentials”, 2024.
[34] 鄭志平,微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究,博士論文,2008。
[35] 楊程光,電化學放電加工法應用於石英的精微加工研究,博士論文,2011。
[36] W. J. Clower, “Quartz-mems: Wet chemical etching assisted by electromagnetic energy sources for the development of quartz crystal to be used for microelectromechanical systems”, 2014.
[37] 洪榮洲,結合微細放電與電解拋光之微孔加工研究,碩士論文,2004。
[38] 倉藤尚雄、鳳誠三郎著,鄒大鈞譯,放電加工,復漢出版社。
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明