博碩士論文 111624005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.133.148.125
姓名 許安誼(An-Yi Hsu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用熱示蹤劑試驗與水-熱數值模式評估海岸帶含水層分層流動特性─ 以桃園海岸帶場址為例
(Utilization of in-situ thermal tracer tests and hydro-thermal model to characterize the stratified aquifer systems- a case study in the Taoyuan coastal area)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著沿海地區經濟日益發展,海岸環境退化的問題逐漸浮現。為改善此現象,了解沿海含水層與海水間動態交換的過程,必是後續管理及規劃沿海含水層不可或缺的一環。本研究透過現地熱示蹤劑試驗結合三維數值模擬,比較不同方法所估算之海岸帶地下水出流量(Submarine groundwater discharge)差異,探討沿海含水層分層流動機制。為獲取此地分層流動和熱能傳遞特性,本研究先於此地進行水力試驗及熱示蹤劑試驗,後運用MODFLOW和MT3DMS兩種數值模式,模擬出海淡水交互作用對沿海含水層的動態影響。此研究地點位於中央大學TaiCOAST臨海觀測站,模式將透過現地蒐集之地下水位和溫度觀測資料進行率定驗證。現地試驗結果顯示,熱示蹤劑試驗所產生的熱響應與鑽探岩心匹配,此外加熱井附近的觀測井,從地下水面到深12公尺間皆有些微之熱反應。數值模擬結果與觀測資料吻合,以流場模擬所計算之比出流量範圍介於0.03至0.12(m/day)之間,結果顯示深度0至7公尺及26至50公尺整體比出流量較高,高低潮位所造成的比出流量差異達0.03(m/day)以上;深度12至26公尺整體比出流量較低,高低潮位所造成的比出流量差異僅0.004(m/day)。而以模擬熱示蹤劑試驗所得到的溫度峰值傳遞時間差異計算出各剖面的垂直通量,得出地下水通量大致介於2.5m/day至5m/day,與前期研究所求得之加熱井通量相似,且符合前期研究認為熱示蹤劑試驗所適合估算之比出流量範圍。地下水流場及熱示蹤劑試驗所模擬之溫度場,由於資料尺度及方法不同,導致所計算出之地下水比流量存在大約兩個數量級之差異,此結果表明桃園西部沿海之海岸地下水出流量豐沛,透過此研究了解此地區沿海含水層分層流動之特性。
摘要(英) With the increasing economic development in coastal areas, the problem of coastal degradation has emerged. To facilitate subsequent planning of water resources management, it is essential to determine the coastal aquifer′s dynamic exchange with the ocean. In this research, our objective is to integrate innovative experiments and modeling techniques to discuss the submarine groundwater discharge(SGD), which is estimated by different methods, aiming to clarify the layered flow mechanisms in coastal aquifer system. Specific hydraulic and heat tracer tests are conducted at this location to obtain the flow rate and heat transfer characteristics of the layered flow. In subsequent steps, we employed the MODFLOW and MT3DMS numerical models to simulate the influence of interactions between seawater and groundwater on the temperature field of the coastal aquifer. The calibration of the model is based on the groundwater levels and the temperature acquired from monitoring wells which installed near the coastline at the TAICOAST observation station. The experimental results show that the thermal responses from the active heat tracer test can match with the core sample. Significant thermal responses are observed vertically in the observation well near the heating well, ranging from the groundwater level to depths of 12 m, with BW08 being the observation well showing the maximum thermal responses. The simulation of numerical model aligns well with the observed groundwater levels and temperature in wells, with the specific discharge calculated from flow field simulations ranging from 0.03 to 0.12 m/day. The results indicate higher specific discharge at depths from 0 to 7 meters and 26 to 50 meters, with tidal variations causing differences of over 0.03 m/day. In contrast, lower specific discharge was observed at depths from 12 to 26 meters, with tidal variations causing differences of only 0.004 m/day. Using the time differences in temperature peak transmission obtained from simulated heat tracer tests, the vertical fluxes for different profiles were calculated, yielding groundwater fluxes ranging from approximately 2.5 to 5 m/day. These findings are consistent with the fluxes obtained by pervious study from heated wells and align with the specific discharge range suggested by pervious study for heat tracer tests. The groundwater flow field and the temperature field simulated by the heat tracer tests showed a discrepancy of about two orders of magnitude in the calculated specific discharge due to differences in data scales and methods. These results indicate that the coastal groundwater discharge in western Taoyuan is abundant, providing insights into the layered flow characteristics of the coastal aquifer in this area.
關鍵字(中) ★ 跨孔熱示蹤劑試驗
★ 海岸帶地下水出流量
★ 三維數值模式
★ 桃園西部沿海
關鍵字(英) ★ Cross hole heating test
★ Numerical simulation analysis
★ Submarine groundwater discharge
★ Western Taoyuan Coast
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究流程 3
1-4 論文架構 5
第二章 文獻回顧 6
2-1 海岸帶地下水出流研究 6
2-2 熱示蹤劑試驗應用於地下水調查 9
2-3 數值模式應用於地下水中熱傳輸研究 12
第三章 研究方法 14
3-1 試驗場址 14
3-2 儀器介紹 19
3-3 室內試驗 25
3-4 現地試驗 28
3-5 三維地下水模式 30
第四章 結果與討論 44
4-1 鎧裝材質差異比對結果 44
4-2 現地熱示蹤劑試驗結果 48
4-3 模式模擬結果 52
4-4 模式率定結果 68
4-5 比出流量計算結果 81
第五章 結論與建議 88
5-1 結論 88
5-2 建議 90
參考文獻 91
參考文獻 [1] A.K. Aaron, G.O. Jordi, R. Valentí, C.D. Marc, T.S. Antonio, D.F. Marc, T. Giada, S.Q, David, S.V. Anna and C. Miquel, “Remobilization of dissolved metals from a coastal mine tailing deposit driven by groundwater discharge and porewater exchange” "Science of the Total Environment, Vol 688, pp.1359-1372, 2019.
[2] A.K. Aaron and R.M. Isabel, “The social implications of Submarine Groundwater Discharge from an Ecosystem Services perspective: A systematic review”, Earth-Science Reviews, Vol 221, pp. 103742, 2021.
[3] L. Elco, T. Gleeson and N. Moosdorf, “Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems” Nature communications, Vol 11.1, pp.1260, 2020.
[4] F. A. Kohout, ”Biological zonation related to groundwater discharge along the shore of Biscayne Bay, Miami, Florida”, Eatuaries Conf., 1967.
[5] R.E. Johannes, “The ecological significance of the submarine discharge of groundwater” Marine Ecology Progress Series, Vol 365-373, 1980.
[6] W. S. Moore, “The effect of submarine groundwater discharge on the ocean” Annual review of marine science, Vol 2, pp.59-88, 2010.
[7] W.S. Moore, “Large groundwater inputs to coastal waters revealed by 226Ra enrichments” Nature, Vol 380.6575, pp.612-614, 1996.
[8] C. A. McCoy, and D. R. Corbett, “Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications”, Journal of environmental management, Vol 90, pp. 644–651 2009.
[9] M.C. Castro, “Helium sources in passive margin aquifers—new evidence for a significant mantle 3He source in aquifers with unexpectedly low in situ 3He/4He production”, Earth and Planetary Science Letters, Vol 222, pp. 897-913, 2004.
[10] M.Taniguchi, W.C. Burnett, H. Dulaiova, E.A. Kontar, P.P. Povinec, and W.S. Moore, “Submarine groundwater discharge measured by seepage meters in Sicilian coastal waters”, Continental Shelf Research, Vol 26.7, pp. 835-842, 2006.
[11] V.F. Bense, T. Read, O. Bour, T. Le Borgne, T. Coleman, S. Krause, A. Chalari, M. Mondanos, F. Ciocca, and J. S. Selker, “Distributed T emperature S ensing as a downhole tool in hydrogeology” Water Resources Research, Vol 52, pp. 9259-9273, 2016.
[12] M.Q. Dang, S.J. Wang, C.C. Fu, and H.-D. Truong, “Coastal flowing artesian wells and submarine groundwater discharge driven by tidal variation at TaiCOAST site in Taoyuan, Taiwan.”, Journal of Hydrology:Regional Studies, Vol 52, pp. 101708, 2024.
[13] D.Q. Thanh,「Numerical modeling of fresh-seawater interaction induced by tidal variation, a case study at NCU TaiCOAST site in Taoyuan, Taiwan」,國立中央大學,碩士論文,民國109年。
[14] 陳宜瑾,「結合多尺度水力試驗方法評估沿海含水層地下水流動特徵」,國立中央大學,碩士論文,民國112年。
[15] 許家毓,「以高解析度熱示蹤劑試驗解析沿海含水層分層地下水流場與熱傳輸特性」,國立中央大學,碩士論文,民國112年
[16] 王新博,「結合GEMPY與FLOPY開源模式模擬海岸含水層中海淡水交互作用」,國立中央大學,碩士論文,民國112年
[17] M.L. Martínez, A. Intralawan, G. Vázquez, O. Pérez-Maqueo, P. Sutton and R. Landgrave, “The coasts of our world: Ecological, economic and social importance” Ecological economics, Vol 63.2-3, pp.254-272, 2007.
[18] V. Alonso and L. del, ”Advancing in the characterization of coastal aquifers: a multimethodological approach based on fiber optics distributed temperature sensing”,2020.
[19] W.C. Burnett and H. Dulaiova, “Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements” Journal of environmental radioactivity, Vol 69, pp.1-2 , 2003.
[20] Y. Uchiyama, K. Nadaoka, P. Rolke, K. Adachi, and H. Yagi , “Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach”, Water Resources Research, Vol 36.6 , pp. 1467-1479, 2000.
[21] I. R. Santos, X. Chen, A.L. Lecher, A.H. Sawyer, N. Moosdorf, V. Rodellas, J. Tamborski, H.M. Cho, N. Dimova, R. Sugimoto, S. Bonaglia, H. Li, M.C. Hajati ,and L. Li, ”Submarine groundwater discharge impacts on coastal nutrient biogeochemistry”, Nature Reviews Earth and Environment, Vol 2(5), pp. 307-323, 2021.
[22] 林淇平、張俼瑍和倪春發 “建構與評估跨孔熱示蹤劑試驗模式解析現地尺度含水層流場特性” 土壤及地下水污染整治, 第七卷, 81-112頁,民國111年.
[23] J.P. Jones, E.A. Sudicky, A.E. Brookfield, and Y.J. Park, “An assessment of the tracer‐based approach to quantifying groundwater contributions to streamflow” Water Resources Research, Vol 42, pp. W02407, 2006.
[24] P. Jamin, M. Cochand, S. Dagenais, J.-M. Lemieux, R. Fortier, J. Molson, and S. Brouyère1, “Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada)” Hydrogeology Journal, Vol 28.3 , pp. 869-885, 2020.
[25] M.P. Anderson. “Heat as a ground water tracer” Groundwater, Vol. 43.6, pp. 951-968, 2005.
[26] S. W. Tyler, J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen, C.E. Thodal, and S.G. Schladow, “Environmental temperature sensing using Raman spectra DTS fiber‐optic methods” Water Resources Research , Vol 45.4, pp. W00D23, 2009.
[27] T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers”, optics letters, Vol15, pp.1038-1040, 1990.
[28] J.S. Selker, L. Thevenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M B. Parlange, “Distributed fiber‐optic temperature sensing for hydrologic systems” Water Resources Research, Vol 42.12, pp. W12202, 2006.
[29] AP sensing, https://www.apsensing.com/technology/dts
[30] S.W. Tyler, S.A. Burak, J.P. McNamara, A. Lamontagne, J.S. Selker, and J Dozier, “Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors” Journal of Glaciology, Vol 54.187, pp. 673-679, 2008
[31] R.D. Henderson, F.D. Day-Lewis, C.F. Harvey, “Investigation of aquifer‐estuary interaction using wavelet analysis of fiber‐optic temperature data” Geophysical Research Letters, Vol 36.6, pp. L06403, 2009.
[32] C. Sayde, C. Gregory, M.G. Rodriguez, N. Tufillaro, S.Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker, “Feasibility of soil moisture monitoring with heated fiber optics” Water Resources Research, Vol 46, pp. W06201, 2010.
[33] N. Simon, O. Bour, N. Lavenant, G. Porel, B. Nauleau, B. Pouladi, L. Longuevergne, and A. Crave, “Numerical and experimental validation of the applicability of active‐DTS experiments to estimate thermal conductivity and groundwater flux in porous media” Water Resources Research, Vol 57.1, pp. e2020WR028078, 2021.
[34] L. del Val, J. Carrera, M. Pool, L. Martínez, C. Casanovas, O. Bour, and A. Folch, “Heat dissipation test with fiber‐optic distributed temperature sensing to estimate groundwater flux”, Water Resources Research, Vol 57.3, pp. e2020WR027228, 2021.
[35] C.D. Langevin, “Simulation of Submarine Ground Water Discharge to a Marine Estuary: Biscayne Bay, Florida”, Groundwater, Vol 41, pp. 758-771, 2003.
[36] L. Ling, D. P. Horn, and A.J. Baird, “Tide-induced variations in surface temperature and water-table depth in the intertidal zone of a sandy beach”, Journal of Coastal Research, Vol 22.6, pp.1370-1381, 2006.
[37] S. Luoma1, J, Majaniemi, A. Pullinen, J. Mursu., and J. J. Virtasalo, “Geological and groundwater flow model of a submarine groundwater discharge site at Hanko (Finland), northern Baltic Sea”, Hydrogeology Journal, Vol 29, pp. 1279–1297, 2021.
[38] A.M. Blanco-Coronas, C. Duque, M.L. Calvache, and M. López-Chicano, ”Temperature distribution in coastal aquifers: Insights from groundwater modeling and field data”, Journal of Hydrology, Vol 603, pp. 126912, 2021.
[39] J.H. M´endez, N. M. Giraldo, P. Blum, and P. Bayer, “Evaluating MT3DMS for heat transport simulation of closed geothermal systems” Groundwater, Vol 48.5, pp. 741-756, 2010.
[40] RJ Martin, SF Bender, SW Gaulke, and J Wallace, “Simulation of groundwater flow and heat transport on Grand Cayman Island”, MODFLOW, 2001.
[41] J.H. Méndez, N. M. Giraldo, P. Blum, and P. Bayer, “Use of MT3DMS for heat transport simulation of shallow geothermal systems”, World Geothermal Congress 2010, Vol.2010, Bali, Indonesia, April 2010.
[42] 尹章義,「新屋鄉志」,第一篇·地理篇,桃園縣新屋鄉公所,民國97年。
[43] 王昱,「桃園—新竹臺地區構造活動與地形特徵」,國立臺灣大學,碩士論文,民國92年。
[44] 黃祥慶,「桃園臺地群之礫石堆積層」,國立中央大學,碩士論文,民國84年。
[45] M.G. McDonald, and A.W. Harbaugh, “A modular three-dimensional finite-difference ground-water flow model”, US Geological Survey, 1988.
[46] Silixa, https://silixa.com/
[47] M.B. Hausner, F. Suárez, K.E. Glander, N. van de Giesen, J.S. Selker, and S.W. Tyler, “Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data”, Sensors, Vol 11.11, pp. 10859-10879, 2011.
[48] 李奕賢、倪春發、童建樺、蔡欣祐,「智慧低耗能水位水質監測與物聯網平台展示」,台灣地下水資源暨水文地質學會年會及第十二屆地下水資源及水質保護研討會,基隆市,中華民國,民國109年11月。
[49] C. Duque, M. L. Calvache, A. Pedrera, W. Martín-Rosales, and M. López-Chicano, “Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer (Southern Spain)”, Journal of Hydrology, Vol 349.3-4, pp. 536-547, 2008.
[50] Freeze, R. A., & Cherry, J. A., Groundwater., Prentice Hall., United States of America,1979.
[51] S.M. Dirk, “Longitudinal dispersivity data and implications for scaling behavior”, Groundwater, Vol 43.3, pp. 443-456, 2005.
[52] Medium, https://medium.com/
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明