以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:88 、訪客IP:3.129.63.252
姓名 陳愷風(Kai-Feng Chen) 查詢紙本館藏 畢業系所 應用地質研究所 論文名稱 利用航空影像關聯和DSM時間序列測量 台灣西南部車瓜林斷層和旗山斷層之間的地表變形
(Measuring ground deformation across the Chegualin and Chishan faults, Southwestern Taiwan, using aerial image correlation and DSM time series)相關論文
★ 利用台灣西南部二仁溪之階地分析探討全新世構造運動 ★ 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性 ★ 台灣西南部滾水坪的構造活動性和泥火山機制 ★ 台灣西南部二仁溪緯度一帶活躍變形的西部麓山帶的構造分析 ★ 台灣西南部曾文溪一帶跨越西部麓山帶山麓前緣的活動構造及全新世變形速率 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2026-2-22以後開放) 摘要(中) 台灣位於菲律賓海板塊與歐亞板塊的聚合邊界,前者以每年82毫米的速度向東北方與後者碰撞。其中約一半的板塊擠壓變形集中在台灣西南部,主要通過褶皺逆衝和構造脫逸作用來吸收變形。大地測量結果揭示了台灣南部西麓山帶的顯著變形。本區有兩條相距僅500米且平行的向東南傾斜的逆衝斷層。車瓜林斷層截切上新世至更新世的古亭坑層泥岩,並以其低起伏的惡地地形著稱。東側的旗山斷層將中新世晚期的砂岩抬升至古亭坑層之上,並在斷層上盤形成了與植被茂密的顯著山脊,且具有較不穩定的邊坡。根據安裝於國道一帶的全球導航衛星系統(GNSS)、水準測量和導線測量等,跨越這兩個斷層測量結果顯示此二構造的總縮短速率僅為每年15毫米。但在車瓜林斷層的壓縮率達到每年50毫米,而在旗山斷層的伸張速率達到每年32毫米。在這兩個斷層之間的地區,相對於澎湖的抬升速率從每年33毫米往東南方增加到每年100毫米,但在旗山斷層以東,抬升速率下降到每年20毫米。引發這種顯著無震地表變形的機制仍須深入探究。
本研究通過影像相關技術來監測地表變形和測量水平位移,並且透過數值地表模型(DSM)時間序列來評估垂直位移。該方法透過提供覆蓋面積更廣且高解析度的觀測來補充現有的大地測量和合成孔徑雷達干涉(InSAR)的成果。我們使用2008年至2015年的8組航拍影像,測量了一個以國道及大地測量網為中心,面積達3×3平方公里的區域。影像通過Micmac進行處理,這是一套免費開源的攝影測量軟體。
由影像關聯所測得位於國道沿線的水平位移與大地測量觀測結果相當吻合。在車瓜林斷層一帶,我們在2008年至2015年間觀察到垂直斷層方向的累積水平壓縮約有17至44公分,且該水平壓縮的側向延伸至少有2000公尺,分布於車瓜林斷層及其主要分支斷層上;國道以南帶有13至42公分的右移分量,而國道以北則有略微的左移分量。不過由於植被覆蓋的關係,旗山斷層的定位及錯移量仍難以偵測。此外,我們的量測成果揭示了在兩條斷層之間此前從未偵測到的旋轉位移,國道以北的地塊為順時針旋轉,國道以南則為逆時針旋轉。另外,利用DSM時間序列來測量的垂直位移的初步結果也符合大地測量網先前所觀察到的抬升模式。
地表地質調查揭示了數個具有滑移方向指標的斷層帶。我們在車瓜林斷層沿線設法追踪到至少延續2公里的主要剪切帶,其逆衝滑動特性與影像關聯測量的結果一致。在旗山斷層附近,我們發現了向東南傾斜且呈雁形排列的高角度正斷層,這些斷層均帶有右移分量,地表出露最遠可達國道西北方1.4公里。透過剪切面上的擦痕,我們還觀察到這些右移正斷層的滑移角有所變化。
總結影像相關性和地質調查結果,我們總結出一張局部活動構造分布圖和一個2.5×2.5平方公里範圍的三維地表變形模型。我們提出了一個與泥貫入體相關的半穹頂系統來解釋局部的地表變形模式。穹頂的中心位於中寮隧道西北端附近,穹頂的西北側則是以車瓜林斷層為界。我們可能還需要透過地球物理方法或地質定年來進一步解釋此一現象的機制。摘要(英) Taiwan is located at a convergent boundary where the Philippine Sea Plate is moving northeastward to the Eurasian Plate at the rate of 82 mm/year. About half of the convergence is accommodated in southwestern Taiwan through folding and thrusting, as well as tectonic extrusion. Ground-based geodetic observations revealed a remarkable deformation pattern within the Western Foothills of southern Taiwan. There, two sub-parallel southeast-dipping thrusts are separated by only 500 m. The Chegualin fault cuts through the Plio-Pleistocene Gutingkeng mudstone, characterized by a scenic low-relief badland landscape. To the east, the Chishan fault has brought Late Miocene sandstone on top of the Gutingkeng mudstone: the hanging wall consists of a significant ridge topography associated with vegetated and locally unstable slopes. According to GNSS, levelling and traverse measurements along a freeway and tunnel crossing both thrusts, there is limited net shortening across the two major structures at a rate of 15 mm/year, but 50 mm/year of compression across the Chegualin fault and 32 mm/year of extension across the Chishan fault. In-between the faults, uplift increases southeastward from 33 to 100 mm/year relative to Penghu, but drops to 20 mm/year east of the Chishan fault. Sharp deformation gradients indicate aseismic slip on both structures. Such significant aseismic ground deformation has raised the question of the driving mechanism.
To investigate this phenomenon, this study monitors ground-surface deformation using the image correlation technique to quantify horizontal displacements and using DSM (Digital Surface Model) time series to access vertical displacements. This approach aptly complements the existing ground-based transect and regional observations from GNSS and InSAR: it would provide high resolution observations covering a larger area along the strike of the geological structures. We used 8 sets of 8 aerial images acquired from 2008 to 2015 covering a 3 x 3 km area, centered on the freeway and ground-based geodetic network. Images were processed with Micmac, a free open-source photogrammetric software suite.
The estimated horizontal displacements along the freeway closely match ground-based observations. Across the Chegualin fault, we observe during 2008-2015 cumulated horizontal compression along the fault-perpendicular direction ranging from 17 to 44 cm, 13 to 42 cm of right-lateral offset south of the freeway, and slightly left-lateral offset north of the freeway. The compression extends at least 2000 meters along the Chegualin fault and a major branch fault. However, it remains challenging to precisely quantify and locate the displacement discontinuity across the Chishan fault due to poor correlation caused by vegetation. Our results also reveal a previously unknown rotation pattern in-between the two faults, with a clockwise rotation north
vi
of the freeway and a counter-clockwise rotation south of it. Preliminary results on DSM time series also support the previously observed uplift pattern.
Field geological surveys reveal several fault zones with kinematic indicators on the outcrop scale. Along the Chegualin fault, we manage to trace the main shear zones with reverse slip sense for at least 2 km, and geological evidence is consistent with the aerial image correlation results in terms of fault kinematics. Along the Chishan fault, we found steep SE-dipping en echelon pattern normal faults with a right-lateral component up to 1.4 km northwest of the freeway, and these dextral normal faults also present changes in rake, according to the slickenlines on the shear planes.
To conclude on the aerial image correlation and geological survey results, we provide a map of active structures and a 3D ground deformation model with a range of 2.5 x 2.5 km. We propose a mud-piercement-related half-doming system to explain the local ground deformation pattern. The center of the dome is located near the northwestern end of the Zhongliao tunnel and the northwest side of the dome is bounded by the pre-existing Chegualin fault. Further explaining the mechanism may require more geophysical or geochronological research.關鍵字(中) ★ 影像關聯
★ 攝影測量
★ 地表位移
★ 中寮隧道
★ 活動斷層
★ 潛移斷層關鍵字(英) ★ Image correlation
★ Photogrammetry
★ Surface displacement
★ Zhongliao tunnel
★ Active faults
★ Creeping faults論文目次 Abstract ................................................................................................................................................... v
Table of contents ................................................................................................................................... ix
List of Figures ........................................................................................................................................ xi
Chapter 1. Introduction ........................................................................................................................ 1
1.1 Research background ................................................................................................................. 1
1.2 Tectonic setting of southwest Taiwan ........................................................................................ 6
1.3 Geological setting of the Zhongliao tunnel area ....................................................................... 8
1.4 Geodetic observations at the Zhongliao tunnel ...................................................................... 12
1.5 Research goal ............................................................................................................................. 13
Chapter 2. Aerial Image Correlation ................................................................................................ 16
2.1 Image acquisition and processing steps ................................................................................... 16
2.2.1 Tie points search ................................................................................................................. 18
2.2.2 Image geometry estimation................................................................................................ 21
2.2.3 Reconstruction of 2008 and 2015 DSM and orthoimage ................................................ 23
2.2.4 2D pixel correlation ............................................................................................................ 27
2.3 Horizontal displacement ........................................................................................................... 29
2.4 Vertical displacement ................................................................................................................ 37
Chapter 3. Geological Field Survey ................................................................................................... 39
3.1 Along the Chegualin fault ......................................................................................................... 39
3.1.1 Outcrops North of the freeway.......................................................................................... 40
3.1.2 Tai-Yang valley transect .................................................................................................... 42
3.2 Along the Chishan fault ............................................................................................................ 44
3.2.1 Coffeeshop outcrops ........................................................................................................... 46
3.2.2 Zhongliao tunnel outcrops ................................................................................................. 49
Chapter 4. Discussion .......................................................................................................................... 53
x
4.1 Validation of the image correlation results ............................................................................. 53
4.2 The connection between image correlation results and shear zones activity ....................... 55
4.3 Spatial distribution of active geological structures ................................................................ 58
4.4 Regional tectonic implications .................................................................................................. 61
Chapter 5. Conclusions and suggestions ........................................................................................... 62
References ............................................................................................................................................ 63
Appendix 1: Image Catalogue ............................................................................................................ 66
Appendix 2: MicMac processing pipeline ......................................................................................... 67參考文獻 Angelier, J., Chang, T.-Y., Hu, J.-C., Chang, C.-P., Siame, L., Lee, J.-C., Deffontaines, B., Chu, H.-T. & Lu, C.-Y. (2009). Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics, 466(3-4), 356-376. doi: 10.1016/j.tecto.2007.11.015
Ching, K.-E., Gourley, J. R., Lee, Y.-H., Hsu, S.-C., Chen, K.-H., & Chen, C.-L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251. doi: 10.1016/j.tecto.2015.07.020
Ching, K.-E., Rau, R.-J., Lee, J.-C., & Hu, J.-C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619. doi: 10.1016/j.epsl.2007.08.017
Delorme, A., Grandin, R., Klinger, Y., Pierrot‐Deseilligny, M., Feuillet, N., Jacques, E., Rupnik, & E., Morishita, Y. (2020). Complex Deformation at Shallow Depth During the 30 October 2016 Mw6.5 Norcia Earthquake: Interference Between Tectonic and Gravity Processes? Tectonics, 39(2). doi: 10.1029/2019tc005596
Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Second Edition, 240.
Ho, C. S. (1985). A SYNTHESIS OF THE GEOLOGIC EVOLUTION OF TAIWAN. Tectonophysics, 125, 1-16.
Hollingsworth, J., Leprince, S., Ayoub, F., & Avouac, J. P. (2012). Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery. Journal of Geophysical Research: Solid Earth, 117(B11). doi: 10.1029/2012jb009140
Klinger, Y., Michel, R., & King, G. (2006). Evidence for an earthquake barrier model from Mw∼7.8 Kokoxili (Tibet) earthquake slip-distribution. Earth and Planetary Science Letters, 242(3-4), 354-364. doi: 10.1016/j.epsl.2005.12.003
Kuo, Y. T., Wang, Y., Hollingsworth, J., Huang, S. Y., Chuang, R. Y., Lu, C. H., Hsu, Y.-C., Tung, H., Yen, J.-Y. & Chang, C. P. (2018). Shallow Fault Rupture of the Milun Fault in the 2018 Mw 6.4 Hualien Earthquake: A High‐Resolution Approach from Optical Correlation of Pléiades Satellite Imagery. Seismological Research Letters, 90(1), 97-107. doi: 10.1785/0220180227
Lacombe, O., Mouthereau, F., Angelier, J., & Deffontaines, B. (2001). Structral, geodetic and seimological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333, 323-345.
Laurich, B., Urai, J. L., Vollmer, C., & Nussbaum, C. (2018). Deformation mechanisms and evolution of the microstructure of gouge in the Main Fault in Opalinus Clay in the Mont Terri rock laboratory (CH). Solid Earth, 9(1), 1-24. doi: 10.5194/se-9-1-2018
Lee, F.-Y., Tan, E., & Chang, E. T. Y. (2023). Escape Mechanism with Shallow Ramp and Décollements in Southwest Taiwan. Geosciences, 13(2). doi:
64
10.3390/geosciences13020041
Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9). doi: 10.1029/2001jb000669
Lowe, D. G. (1999). Object Recognition from Local Scale-Invariant Features. Paper presented at the Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece.
Lu, C.-Y. & Malavieille, J. (1994). Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling. Earth and Planetary Science Letters, 191, 477-494.
Michel, R., Avouac, J.-P., & Taboury, J. (1999). Measuring ground displacements from SAR amplitude images: application to the Landers earthquake. GEOPHYSICAL RESEARCH LETTERS, 26(7), 875-878.
Pierrot-Deseilligny, M., Rupnik, E., Girod, L., Belvaux, J., Maillet, G., Deveau, M., & G., C. (2022). MicMac, Apero, Pastis and Other Beverages in a Nutshell.
Pierrot Deseilligny, M., & Clery, I. (2012). Apero, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 269-276. doi: 10.5194/isprsarchives-XXXVIII-5-W16-269-2011
Rupnik, E., Daakir, M., & Pierrot Deseilligny, M. (2017). MicMac – a free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards, 2(1). doi: 10.1186/s40965-017-0027-2
Soto, J. I., Heidari, M., & Hudec, M. R. (2021). Proposal for a mechanical model of mobile shales. Scientific Reports, 11(1), 1-11.
Sung, Q.-C., Chang, H.-C., Liu, H.-C., & Chen, Y.-C. (2010). Mud volcanoes along the Chishan fault in Southwestern Taiwan: A release bend model. Geomorphology, 118(1-2), 188-198. doi: 10.1016/j.geomorph.2009.12.018
Tapponnier, P., Peltzer, G., Dain, A. Y. L., Armijo, R., & Cobbold, P. (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology ,10, 611-616, doi: 10.1130/0091-7613(1982)102.0.CO;2
Wu, W. J., Kuo, L. W., Ku, C. S., Chiang, C. Y., Sheu, H. S., Aprilniadi, T. D., & Dong, J. J. (2020). Mixed‐Mode Formation of Amorphous Materials in the Creeping Zone of the Chihshang Fault, Taiwan, and Implications for Deformation Style. Journal of Geophysical Research: Solid Earth, 125(6). doi: 10.1029/2020jb019862
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
Zhang, L., Rupnik, E., & Pierrot-Deseilligny, M. (2021). Feature matching for multi-epoch historical aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 182,
65
176-189. doi: 10.1016/j.isprsjprs.2021.10.008
林啓文
林啓文 (Lin et al, 2021)、劉彥求、周稟珊、林燕慧(、劉彥求、周稟珊、林燕慧(2021)。臺灣活動斷層調查的近期發)。臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊,展。經濟部中央地質調查所彙刊, 第三十四號,頁第三十四號,頁 1-40。。
林啟文
林啟文 (Lin, 2013)((2013)。旗山圖幅及說明書)。旗山圖幅及說明書-五萬分之一臺灣地質圖及說明書。經濟五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所出版,部中央地質調查所出版, 第第56 號。號。
林啟文
林啟文 (Lin, et al., 2009),陳文山,劉彥求、陳柏村(,陳文山,劉彥求、陳柏村(2009)。臺灣東部與南部的活動斷)。臺灣東部與南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書,旗山斷層。經濟部中央地質調查所層:二萬五千分之一活動斷層條帶圖說明書,旗山斷層。經濟部中央地質調查所特刊,特刊, 第二十三號,頁第二十三號,頁 163-174。。
邱奕維
邱奕維 (Chiou et al., 2019)、藺于鈞、黃文正、顏一勤、波玫琳、李元希(、藺于鈞、黃文正、顏一勤、波玫琳、李元希(2019)。臺灣)。臺灣西南部中寮隧道北端口旗山斷層帶構造特性研究。經濟部中央地質調查所特刊,西南部中寮隧道北端口旗山斷層帶構造特性研究。經濟部中央地質調查所特刊, 第三十四號,頁第三十四號,頁 83-100。。
張李群
張李群 (Chang-Lee, 2014) (2014)。以大地測量資料進行龍船斷層與旗山斷層行為分析之。以大地測量資料進行龍船斷層與旗山斷層行為分析之研究研究 國立成功大學碩士論文。國立成功大學碩士論文。
莊承家
莊承家 (Jhuang, 2023)((2023)。臺灣西南部車瓜林斷層之斷層岩石及變形機制。未出版)。臺灣西南部車瓜林斷層之斷層岩石及變形機制。未出版之碩士論文,國立中央大學應用地質研究所碩士論文。之碩士論文,國立中央大學應用地質研究所碩士論文。
陳勇昇
陳勇昇 (Chen, 2015)((2015)。藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特)。藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性。國立成功大學測量及空間資訊學系碩士論文。性。國立成功大學測量及空間資訊學系碩士論文。
陳柏村
陳柏村 (Chen et al, 2009)、林啟文、江婉綺、劉彥求、林慶偉(、林啟文、江婉綺、劉彥求、林慶偉(2009)。台灣南部旗山斷)。台灣南部旗山斷層的構造特性研究。經濟部中央地質調查所彙刊,層的構造特性研究。經濟部中央地質調查所彙刊, 第二十二號,頁第二十二號,頁 63-98。。
陳新翰
陳新翰 (Chen, 2021)((2021)。台灣西南部泥岩車瓜林斷層之岩石特徵與隱示。國立中央)。台灣西南部泥岩車瓜林斷層之岩石特徵與隱示。國立中央大學應用地質研究所碩士論文。大學應用地質研究所碩士論文。
楊名
楊名 (Yang et al., 2018)、景國恩、楊智堯、吳宗翰、景國恩、楊智堯、吳宗翰、吳文隆、蕭秋安(、吳文隆、蕭秋安(2018)。廣域大地)。廣域大地變位之利用變位之利用GPS監測分析與解算監測分析與解算─以國道以國道33號田寮號田寮33號高架橋及中寮隧道大地號高架橋及中寮隧道大地變位監測為例。中華技術,變位監測為例。中華技術, 119期,頁期,頁 122-135。。
劉彥求
劉彥求 (Liu and Lin, 2019)、林啟文(、林啟文(2019)。臺灣南部車瓜林斷層的構造特性研究。經)。臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊濟部中央地質調查所特刊 ,, 第三十四號第三十四號 ,頁,頁 53-82。。
藺于鈞
藺于鈞 (Lin, 2019) ((2019)。台灣西南部中寮隧道北端旗山與龍船斷層帶構造特性研究。)。台灣西南部中寮隧道北端指導教授 波玫琳(Maryline Le Béon) 審核日期 2024-8-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare