博碩士論文 111323020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.149.29.98
姓名 杜永瀚(Yung-Han Du)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 禮帽型諧波齒輪減速機之傳動性能分析與實驗驗證
(Transmission Performance Analysis and Experimental Verification of a SHG Harmonic Gear Drive)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 電動車齒輪箱之剛-柔耦合動力學模型建立及等效輻射聲功率分析★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 在全球工業4.0興起的年代,帶起了許多自動化設備與機器人的發展,其中又以諧波減速機在工業設備中佔有著舉足輕重的地位,因為諧波減速機具有輕量化、減速比高、體積較小等優點,且可以產生較大的扭力,非常適合用於機械手臂與機器人中。在航太設備、醫療設備等產業也被廣泛的運用。然而,諧波減速機在齒形及傳動性能設計上佔了非常重要的一環,其中,傳動性能的指標包含扭轉剛性、遲滯損失、傳動誤差等。
本研究之目的為進行禮帽型諧波齒輪之傳動性能分析與實驗驗證,首先進行諧波齒輪數學模型的建立,並根據合作公司所逆向提供的諧波齒輪模型進行FEA (Finite Element Analysis),考量了波產生器柔性軸承的變形,藉由FEA分析出諧波齒輪的扭轉剛性、遲滯損失、傳動誤差、齒面接觸應力等,並探討諧波齒輪在波產生器為剛體及考慮柔性軸承下,齒面接觸應力、扭轉剛性及遲滯損失的性能差異,後面再透過與合作廠商協同建立的諧波齒輪實驗平台,進行扭轉剛性及遲滯損失的性能量測,將廠商試做的諧波齒輪產品與日本HDS(Harmonic Drive System)的產品進行性能上的比較,並將實驗量測結果與FEA分析結果進行比對,進而驗證FEA模型的合理性,最後將自行設計一組諧波齒輪齒形來進行優化分析,並針對柔輪齒長方向進行齒向修整,該齒形可以有效的提高諧波齒輪的扭轉剛性、接觸率及降低遲滯損失,並且可以降低齒面接觸應力,提升諧波齒輪的傳動性能。
摘要(英) In the era of global Industry 4.0, the development of many automated equipment and robots has been spurred, among which harmonic reducers play a significant role in industrial equipment. Harmonic drive are favored for their advantages of lightweight, high reduction ratio, small size, and ability to generate large torque, making them highly suitable for use in robotic arms and robots. They are also widely used in industries such as aerospace equipment and medical devices. However, the design of tooth shape and transmission performance in harmonic reducers is crucial, with transmission performance indicators including torsional stiffness, hysteresis loss, backlash, transmission error, etc.The purpose of this study is to analyze and experimentally verify the transmission performance of silk hat-type harmonic drive. Firstly, a mathematical model of harmonic gears is established, and Finite Element Analysis (FEA) is conducted based on the reverse-provided harmonic drive model from a collaborating company, considering the deformation of the wave generator flexible bearing. Through FEA analysis, the torsional stiffness, hysteresis loss, backlash, transmission error, and tooth contact stress of the harmonic drive were determined. The performance differences between rigid body wave generators and flexible bearings in terms of tooth surface contact stress, torsional stiffness, and hysteresis loss will also be explored. Finally, using the harmonic drive experimental platform co-established with the partner company, we will measure the performance of torsional stiffness and hysteresis loss. The performance of the harmonic drive products developed by the partner company will be compared with those from Japan′s HDS (Harmonic Drive System). The experimental measurement results will be compared with the FEA analysis results to verify the rationality of the FEA model.
Finally, a harmonic drive tooth profile will be designed and optimized, with axial modification along the length of the flexspline tooth. This tooth profile can effectively enhance the torsional stiffness and contact ratio of the harmonic drive, reduce hysteresis loss, decrease contact stress on the tooth surface, and improve the transmission performance of the harmonic drive.
關鍵字(中) ★ 諧波齒輪
★ 有限元素分析
★ 齒面接觸應力
★ 扭轉剛性
★ 遲滯損失
★ 實驗驗證
關鍵字(英) ★ Harmonic Drive
★ Finite Element Analysis
★ Tooth Surface Contact Stress
★ Torsional Stiffness
★ Hysteresis Loss
★ Experimental Verification
論文目次 摘要 i
ABSTRACT ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 xii
參數符號表 xiii
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-3 研究目的 13
1-4 論文架構 14
第2章 諧波齒輪數學模型之建立 15
2-1 前言 15
2-2 齒條數學模型之建立 16
2-3 柔輪數學模型之建立 19
2-4 波產生器數學模型之建立 22
2-5 剛輪數學模型之建立 24
第3章 諧波齒輪有限元素模型之建立 29
3-1 前言 29
3-2 幾何模型之建立 30
3-3 網格模型之建立 36
3-3-1 網格收斂性分析 36
3-3-2 柔輪與剛輪網格劃分 38
3-3-3 波產生器網格劃分 40
3-3-4 材料性質與元素類型設定 42
3-4 交互作用設定 44
3-4-1 約束設定 44
3-4-2 接觸設定 46
3-5 邊界條件設定 48
3-5-1 扭轉剛性及遲滯損失邊界條件設定 48
3-5-2 傳動誤差邊界條件設定 51
3-6 分析結果 52
3-6-1 最大Von-Mises應力 52
3-6-2 最大CPRESS應力 57
3-6-3 扭轉剛性及遲滯損失 61
3-6-4 傳動誤差 63
3-6-5 剛體波產生器與柔性軸承結果比較 63
第4章 諧波齒輪之實驗建立及驗證 70
4-1 前言 70
4-2 實驗平台及量測方法建立 71
4-3 實驗量測結果與有限元素分析比較 73
4-4 諧波齒輪之優化分析 78
第5章 總結與未來展望 88
5-1 總結 88
5-2 未來展望 90
參考文獻 91
作者簡介 93
參考文獻 [1] 網路資料,https://kknews.cc/zh-mo/tech/ev92a4.html
[2] International Federation of Robotics, World Robotics Report:“All-Time High” with Half a Million Robots Installed in one Year, 2022.
[3] Harmonic Drive LLC, Reducer Catalog, 2021. 取自https://www.harmonicdrive.net/_hd/content/documents1/reducer_catalog.pdf
[4] 沈允文,葉慶泰,諧波齒輪傳動的理論和設計,北京:機械工業出版社,1985。
[5] C. W. Musser, Strain Wave Gearing, U.S. Patent No2906143, 1959.
[6] K. Kondo, & J. Takada, “Study on Tooth Profiles of the Harmonic Drive,” Journal of Mechanical Design, 112(1), 131, 1990. doi:10.1115/1.2912570.
[7] S. Ishikawa, Tooth Profile of Spline of Strain Wave Gearing, U.S. Patent No.4823638, 1989.
[8] S. Ishikawa, Flexing Contact Type Gear Drive of Non-Profile-Shifted Two-Circular-Arc Composite Tooth Profile, U.S. Patent No.5458023, 1995.
[9] 辛洪兵,雙圓弧諧波齒輪滾齒刀,中華人民共和國專利,授權公告號CN101134256B,2010。
[10] 黃士芳,具ETE齒廓諧波齒輪設計及強力刮齒加工方法之研究,碩士論文,國立中央大學,2023。
[11] O. Kayabasi and F. Erzincanli, “Shape Optimization of Tooth Profile of a Flexspline for a Harmonic Drive by Finite Element Modelling,” Materials and Design, vol. 28, pp. 441-447, 2007.
[12] F. E. Rhéaume, H. Champliaud and Z. Liu, “Understanding and Modelling the Torsional Stiffness of Harmonic Drives through Finite-Element Method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, pp. 515-524, 2009.
[13] W. Ostapski, “Analysis of the Stress State in the Harmonic Drive Generator-Flexspline System in Relation to Selected Structural Parameters and Manufacturing Deviations,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 58, pp. 683-698, 2010.
[14] H. Dong, Z. Zhu, W. Zhou and Z. Chen, “Dynamic Simulation of Harmonic Gear Drives Considering Tooth Profiles Parameters Optimization,” Journal of Computers, vol. 7, pp. 1429-1436, 2012.
[15] 陳毅恆,諧波齒輪傳動系統之有限元素分析,碩士論文,國立交通大學,2013。
[16] 李東祐,諧波齒輪傳動系統之三維有限元素分析,碩士論文,國立交通大學,2014。
[17] 黃彥明,波產生器對諧波齒輪性能影響之有限元素分析,碩士論文,國立交通大學,2017。
[18] 蔡昕儒,SHG諧波齒輪之柔輪幾何設計與分析,碩士論文,國立虎尾科技大學,2016。
[19] Y. Yao, X. Chen, J. Xing, “Tooth effects on assembling bending stress of flexible tooth rim in harmonic drive, ” Mech. Mach. Theory, 150, 103871, 2020.
[20] C. Song, F.Zhu, X. Li, and X. Du, “Three-Dimensional Conjugate Tooth Surface Design and Contact Analysis of Harmonic Drive with Double-Circular-Arc Tooth Profle, ” Chinese Journal of Mechanical Engineering, 36:83, 2023.
[21] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, 2nd ed.,” Cambridge University Press, New York, 2004.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明