博碩士論文 109326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.226.248.88
姓名 潘冠蓁(Quan-Jhen Pan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究
(Characteristics Study of Recycling Process for Polylactic Acid (PLA) and Crystalline Polylactic Acid (CPLA))
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究
★ 台灣石門水庫之表層、中層水與下游飲用水廠中微型塑膠之時空分佈、組成與相關性★ 桌上型能量分散式X射線螢光光譜儀(ED XRF)分析製程廢液之銅、鎳濃度方法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-1以後開放)
摘要(中) 1980年代,台灣環保意識抬頭,從1950年代以來普遍被使用的塑膠,也因為其原料來自於有限的石油,製造時不僅會造成環境汙染,使用後又不易分解,塑膠製品已經廣泛使用多年,但在一次性使用後所拋棄的塑膠廢棄物引發的環境議題受各國廣泛關注,進而熱議討論及尋找取代方案,而聚乳酸塑膠(Polylactic Acid, 以下簡稱為PLA)成為許多塑膠產品的替代方案,因為當聚乳酸塑膠在適當溫度及濕度的堆肥環境時,會被微生物快速地分解,若是試算全球的塑膠預計使用量,仍然需要大面積的土地作為堆肥使用。而本研究主要是探討非耐熱型聚乳酸(PLA)以及耐熱型聚乳酸(Crystalline Polylactic Acid, 以下簡稱為CPLA)之比較,可生物分解之塑膠製品回收再利用的可行性,回收過程中分子量降解的過程比較,在不同的氫氧化鈉清洗濃度和不同清洗溫度的條件下,進行聚乳酸生物可分解塑膠之物化性質以及熱性質的分析比較。
本研究為了解PLA和CPLA塑膠回收再利用之可行性探討,採用美國材料暨試驗協會(American Society for Testing and Materials, ASTM) G154 Cycle A的標準方法作為老化條件,此方法是最廣為使用的加速老化試驗之一,模擬陽光、溫度對塑膠材料的破壞作用,其塑膠材料老化包含強度降低、褪色、龜裂、脫落、粉化和氧化等等,樣品在模擬的環境中從幾個小時甚至數天的時間,可體現在戶外幾個月或是數年發生的損害。本研究將分成無照光老化條件的聚乳酸塑膠分解情形比較,以及使用UVA-340燈管照射8小時後,接著進入4小時黑暗期,總共循環20次,(總)實驗時長為240小時,其老化的加速倍數約為12倍,將探討有無經過照光老化240小時之PLA和CPLA進行熱性質與物化性質分析。
摘要(英) Environmental issues caused by single-use plastic products have received extensive attention from various countries, and have been banned and replaced. Polylactic acid plastic has become an alternative for many products to be used. PLA plastics are rapidly decomposed by microorganisms in a compost field with appropriate temperature and humidity, but compared with the global usage, a large area of land is still required for composting. The purpose of this study is to investigate the aging of PLA plastics in 10 days, the comparison of molecular degradation during the recovery process, the analysis and comparison of the physical and chemical properties of the recovered PLA w carried out at higher NaOH concentration and higher cleaning temperature.
To understand the aging of polylactic acid wastes exposed to environmental, the accelerated aging standard method of American Society for Testing and Materials (ASTM) G154 was used, and polylactic acid fragments were exposed to air. Then, put it into the weather resistance testing machine (UVA lamp), the accelerated aging rate of this condition is about 12 times, and in order to understand the effect of light on the aging reaction, no light is used as the control group, both groups were aged for 10 days for physical property analysis.
關鍵字(中) ★ 聚乳酸
★ 老化
★ 生物可分解
關鍵字(英) ★ PLA
★ Aging
★ Biodegradable
論文目次 目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目標 2
1.3 研究特色 2
第二章 文獻回顧 4
2.1 塑膠歷史與應用 4
2.2 聚乳酸塑膠(PLA) 7
2.2.1 直接縮聚法(Condensation Polymerization) 11
2.2.2 開環聚合法(Ring-Opening Polymerization) 13
2.3 耐熱型聚乳酸塑膠(CPLA) 15
2.3.1 PLA結晶性質介紹 15
2.3.2 PLA奈米複合材料 16
2.3.3 PLA混摻多種複合材 17
2.4 PLA分解機制 18
2.5 PLA光解機制 20
2.6 PLA塑膠回收 21
2.6.1 水解法 22
2.6.2 熱解法 23
2.6.3 醇解法 23
2.6.4 醣解法 24
2.6.5 氨解法 24
第三章 實驗方法 25
3.1 研究架構與規劃 25
3.2 實驗方法與步驟 27
3.2.1 PLA與CPLA來源 27
3.2.2 模擬老化試驗 28
3.2.3 實驗製備步驟 29
3.3 實驗儀器設備 30
3.3.1 耐候試驗機(Weather-Proofing Tester) 30
3.3.2 衰減全反射傅立葉紅外線光譜儀(Attenuated Total Reflection - Fourier Transform Infrared Spectroscopy, ATR-FTIR) 31
3.3.3 差示熱掃描分析儀(Differential Scanning Calorimetry,DSC) 32
3.3.4 X-光繞射分析儀(X-ray diffractometer, XRD) 33
3.3.5 熱重量分析儀(Thermogravimetric Analysis, TGA) 34
3.3.6 特性黏度計(Inherent Viscosity,IV) 35
3.3.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 36
3.4 實驗藥品 37
第四章 結果與討論 38
4.1 IV特性黏度分析 38
4.1.1 分子量比較 38
4.1.2 不同清洗溫度 49
4.1.3 不同清洗濃度 50
4.1.4 不同清洗時間 52
4.1.5 有無照光老化 53
4.2 DSC分析 55
4.3 TGA分析 62
4.4 FTIR分析 69
4.5 XRD分析 71
4.6 SEM分析 73
第五章 結論與建議 76
5.1 結論 76
5.2 建議 78
參考文獻 79
附錄 89
附錄一 學位考試委員意見回覆表 89

圖目錄
圖 1從農產品生產PLA的製作過程 6
圖 2熱塑性與熱固性分子結構圖 8
圖 3 D-型與L-型聚乳酸單體結構圖 9
圖 4 環狀丙交酯結構式 10
圖 5 直接縮聚法示意圖 11
圖 6 聚合期間PLA所發生的反應 11
圖 7 乳酸聚合成PLA流程圖 12
圖 8 聚乳酸開環聚合法流程圖 14
圖 9 PLA降解反應過程 19
圖 10 PLA回收路徑圖 21
圖 11 從葡萄糖發酵和PLA熱解聚反應生產乳酸所需負荷總能量 23
圖 12 研究架構圖 26
圖 13 市售商業用 (a) PLA塑膠杯 (b) CPLA杯蓋 27
圖 14 模擬老化耐候試驗機 28
圖 15 FTIR-ATR光譜設置 31
圖 16 X-光繞射分析儀 34
圖 17黏度管(Ubbelohde Viscometers) 36
圖 18 掃描式電子顯微鏡分析原理圖 37
圖 19 不同溫度PLA分子量比較 49
圖 20 不同清洗溫度CPLA分子量比較 50
圖 21 不同清洗濃度的PLA分子量比較 51
圖 22 不同清洗濃度的CPLA分子量比較 51
圖 23不同清洗時間PLA分子量比較 52
圖 24 不同清洗時間CPLA分子量比較 52
圖 25不同條件清洗(a)未照光老化PLA以及(b)有照光老化PLA 54
圖 26 照光老化PLA在90℃的10% NaOH溶液中清洗90分鐘 54
圖 27不同條件清洗(a)未照光老化CPLA以及(b)有照光老化CPLA 54
圖 28 照光老化CPLA在90℃的10% NaOH溶液中清洗90分鐘 54
圖 29 原樣PLA之DSC圖譜 56
圖 30 有照光老化240小時環境下PLA之DSC圖譜 56
圖 31 無照光老化CPLA之DSC圖譜 60
圖 32 有照光老化240小時環境下CPLA之DSC圖譜 60
圖 33 Virgin PLA與Aging PLA以及鹼洗PLA熱重(TG)曲線圖 63
圖 34 Virgin PLA與Aging PLA以及鹼洗PLA熱重微分(DTG)曲線圖 63
圖 35 Virgin CPLA與Aging CPLA以及鹼洗CPLA熱重(TG)曲線圖 67
圖 36 Virgin CPLA與Aging CPLA以及鹼洗CPLA熱重微分(DTG)曲線圖 67
圖 37 有無照光老化與鹼洗(a) PLA和(b) CPLA之FTIR分析 70
圖 38 原樣CPLA與高溫鹼洗後CPLA之XRD圖譜 72
圖 39 原樣CPLA與高溫鹼洗後CPLA之XRD疊圖比較 72
圖 40 (a)原樣PLA、(b)照光老化PLA、(c)與(d)鹼洗PLA之SEM比較圖 73
圖 41 鹼洗Aging PLA之SEM比較圖 74
圖 42 (a)原樣CPLA與(b)照光老化CPLA之SEM比較圖 74
圖 43 (a)照光老化CPLA與(b)鹼洗CPLA之SEM比較圖 75
圖 44照光老化240小時後鹼洗CPLA之SEM比較圖 75

表目錄
表 1目前開發之綠色塑膠 5
表2 實驗藥品清單 37
表 3 無照光老化PLA分子量 40
表 4 有照光老化240小時PLA分子量 42
表 5 無照光老化CPLA分子量 45
表 6 有照光老化240小時CPLA分子量 47
表 7 原樣PLA與有照光老化240小時PLA之DSC熱性質比較 58
表 8 原樣PLA與有照光老化240小時CPLA之DSC熱性質比較 61
表 9 Virgin PLA與Aging PLA熱性質TGA比較 65
表 10 Virgin CPLA與Aging CPLA熱性質TGA比較 68
參考文獻 Agarwal, M., Koelling, K. W., & Chalmers, J. J. (1998). Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment. Biotechnology Progress, 14(3), 517-526. https://doi.org/https://doi.org/10.1021/bp980015p
Ahmed, J., & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging technology: a review. International journal of food properties, 14(1), 37-58.
Akbari, A., Jawaid, M., Hassan, A., & Balakrishnan, H. (2013). Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties. Journal of Composite Materials, 48. https://doi.org/10.1177/0021998313477461
Al-Majed, A. (2022). Profiles of drug substances, excipients, and related methodology. Academic Press.
Alberti, C., Damps, N., Meißner, R. R. R., Hofmann, M., Rijono, D., & Enthaler, S. (2020). Selective Degradation of End-of-Life Poly(lactide) via Alkali-Metal-Halide Catalysis. Advanced Sustainable Systems, 4(1), 1900081. https://doi.org/https://doi.org/10.1002/adsu.201900081
Alger, M. (2017). Polymer Science Dictionary. Springer Netherlands. https://books.google.com.tw/books?id=hhehDAEACAAJ
Ali, W., Ali, H., Gillani, S., Zinck, P., & Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21(3), 1761-1786. https://doi.org/10.1007/s10311-023-01564-8
Aliotta, L., Sciara, L. M., Cinelli, P., Canesi, I., & Lazzeri, A. (2022). Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers (Basel), 14(5). https://doi.org/10.3390/polym14050977
Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., Mustafa Mohamed, A., & Alaskar, A. (2020). Use of recycled plastic as fine aggregate in cementitious composites: A review. Construction and Building Materials, 253, 119146. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119146
Anikin, I. N. (1984). Crystallization of Phlogopite KMg3 [AlSi3O10]F2 from Melts. In A. A. Chernov (Ed.), Рост Кристаллоь / Rost Kristallov / Growth of Crystals: Volume 12 (pp. 158-167). Springer US. https://doi.org/10.1007/978-1-4615-7116-2_25
Ariyoshi, S., Ohnishi, S., Mikami, H., Tsuji, H., Arakawa, Y., Tanaka, S., & Hiroshiba, N. (2021). Temperature dependent poly(L-lactide) crystallization investigated by Fourier transform terahertz spectroscopy. Materials Advances, 2. https://doi.org/10.1039/D1MA00195G
Arroyo, O., Huneault, M., Favis, B., & Bureau, M. (2010). Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polymer Composites, 31(1), 114-127.
Badía, J. D., Strömberg, E., Ribes-Greus, A., & Karlsson, S. (2011). Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide). European Polymer Journal, 47(7), 1416-1428. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.05.001
Bajpai, P. K., Singh, I., & Madaan, J. (2014). Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81. https://doi.org/10.1177/0892705712439571
Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., & Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11).
Belgacem, K., Llewellyn, P., Kais, N., & trabelsi ayadi, M. (2008). Thermal behaviour study of the talc. Optoelectronics and Advanced Materials, Rapid Communications, 2, 332-336.
Beltrán, F. R., Lorenzo, V., de la Orden, M. U., & Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polymer Degradation and Stability, 133, 339-348. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2016.09.018
Beltrán, F. R., Ortega, E., Solvoll, A. M., Lorenzo, V., de la Orden, M. U., & Martínez Urreaga, J. (2018). Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites. Journal of Polymers and the Environment, 26(5), 2142-2152. https://doi.org/10.1007/s10924-017-1117-z
Bioplastics, E. (2023). European Bioplastics Announces Speaker Line-up for EBC 2023.
Bob B. He, J. W. a. S. (2010). Two-Dimensional X-Ray Diffraction Author: Bob B. He, John Wiley and Sons, New York, 2009: ISBN 9780470227220, 426 pages + prefix. Joseph H. Reibenspies and Nattamai Bhuvanesh. Powder Diffraction, 25(2), 200-200. https://doi.org/10.1154/1.3427643
Bužarovska, A. (2021). Poly(l-lactic acid)/alkali lignin composites: properties, biocompatibility, cytotoxicity and antimicrobial behavior. Journal of Materials Science, 56. https://doi.org/10.1007/s10853-021-06185-6
Cai, Y., Lv, J., & Feng, J. (2013). Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. Journal of Polymers and the Environment, 21(1), 108-114. https://doi.org/10.1007/s10924-012-0534-2
Carné Sánchez, A., & Collinson, S. R. (2011). The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. European Polymer Journal, 47(10), 1970-1976. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.07.013
Carraher, C. E. (2012). Introduction to Polymer Chemistry. CRC Press. https://books.google.com.tw/books?id=_izOBgAAQBAJ
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2009.11.045
Chia, R. W., Lee, J. Y., Kim, H., & Jang, J.-H. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19, 4211 - 4224.
Chrysafi, I., Ainali, N. M., & Bikiaris, D. N. (2021). Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Lactic Acid) and Its Copolymers with Poly(Hexylene Succinate). Polymers (Basel), 13(9). https://doi.org/10.3390/polym13091365
Copinet, A., Bertrand, C., Govindin, S., Coma, V., & Couturier, Y. (2004). Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 55(5), 763-773. https://doi.org/https://doi.org/10.1016/j.chemosphere.2003.11.038
de França, J. O. C., da Silva Valadares, D., Paiva, M. F., Dias, S. C. L., & Dias, J. A. (2022). Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers (Basel), 14(12). https://doi.org/10.3390/polym14122317
Deetuam, C., Samthong, C., Choksriwichit, S., & Somwangthanaroj, A. (2020). Isothermal cold crystallization kinetics and properties of thermoformed poly (lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iranian Polymer Journal, 29, 103-116.
Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319-329. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2014.01.020
Di Lorenzo, M. L. (2006). Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). Journal of Applied Polymer Science, 100(4), 3145-3151. https://doi.org/https://doi.org/10.1002/app.23136
Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., & Sels, B. F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis [10.1039/C3EE00069A]. Energy & Environmental Science, 6(5), 1415-1442. https://doi.org/10.1039/C3EE00069A
EU COMMISSION, E. (2022). EU policy framework on biobased, biodegradable and compostable plastics
Fan, Y., Zhou, C., & Zhu, X. (2009). Selective Catalysis of Lactic Acid to Produce Commodity Chemicals. Catalysis Reviews, 51(3), 293-324. https://doi.org/10.1080/01614940903048513
Fang, Q., Chen, B., Lin, Y., & Guan, Y. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol, 48(1), 279-288. https://doi.org/10.1021/es403711y
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/https://doi.org/10.1016/j.addr.2016.06.012
Feng, L., Feng, S., Bian, X., Li, G., & Chen, X. (2018). Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability, 157, 212-223. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2018.10.008
Garratt, A., Nguyen, K., Brooke, A., Taylor, M. J., & Francesconi, M. G. (2023). Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS Environmental Au, 3(6), 342-347. https://doi.org/10.1021/acsenvironau.3c00040
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Sci Adv, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Gordobil, O., Egüés, I., Llano-Ponte, R., & Labidi, J. (2014). Physicochemical properties of PLA lignin blends. Polymer Degradation and Stability, 108, 330-338. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2014.01.002
Haafiz, M. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate polymers, 98(1), 139-145.
Han, Z.-M., Li, D.-H., Yang, H. B., Zhao, Y.-X., Yin, C. H., Yang, K.-P., Liu, H. C., Sun, W.-B., Ling, Z. C., Guan, Q.-F., & Yu, S.-H. (2022). Nacre‐Inspired Nanocomposite Films with Enhanced Mechanical and Barrier Properties by Self‐Assembly of Poly(Lactic Acid) Coated Mica Nanosheets. Advanced Functional Materials, 32. https://doi.org/10.1002/adfm.202202221
Haubruge, H., Daussin, R. D., Jonas, A. M., Legras, R., Wittmann, J. C., & Lotz, B. (2003). Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc: Structure at the Lattice and Lamellar Scales. Macromolecules, 36, 4452-4456.
Henton, D. E., Gruber, P., Lunt, J., & Randall, J. (2005). Polylactic acid technology. Natural fibers, biopolymers, and biocomposites, 16, 527-577.
Hirao, K., Nakatsuchi, Y., & Ohara, H. (2010). Alcoholysis of Poly(l-lactic acid) under microwave irradiation. Polymer Degradation and Stability, 95(6), 925-928. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2010.03.027
Ho, K.-L. G., & Pometto III, A. L. (1999). Effects of electron-beam irradiation and ultraviolet light (365 nm) on polylactic acid plastic films. Journal of environmental polymer degradation, 7(2), 93-100.
Holten, C. H. (1971). Lactic acid. Properties and chemistry of lactic acid and derivatives.
Horváth, T., Marossy, K., & Szabó, T. J. (2022). Ring-opening polymerization and plasticization of poly(L-lactic)acid by adding of glycerol-dioleate. Journal of Thermal Analysis and Calorimetry, 147(3), 2221-2227. https://doi.org/10.1007/s10973-020-10540-1
Hu, X.-L., Mi, S., Lu, J.-L., Cao, J.-F., Xing, L.-Y., Lin, Z.-D., Chen, D.-L., Lu, Y., He, J., Xiong, C.-D., & Li, Q. (2021). In vitro degradation behavior of shape memory PLLA-TMC random copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126220. https://doi.org/https://doi.org/10.1016/j.colsurfa.2021.126220
Hu, X., He, J., Yong, X., Lu, J., Xiao, J., Liao, Y., Li, Q., & Xiong, C. (2020). Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 195, 111218. https://doi.org/https://doi.org/10.1016/j.colsurfb.2020.111218
Jadhav, N., Paradkar, A., Salunkhe, N., Karade, R., & Mane, G. (2013). Talc: A versatile pharmaceutical excipient. World Journal of Pharmacy and Pharmacutical Sciences, 2(2013), 4639-4660.
Jeon, H. J., & Kim, M. N. (2013). Biodegradation of poly (L-lactide)(PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 85, 289-293.
Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromol Biosci, 7(3), 255-277. https://doi.org/10.1002/mabi.200600168
Karamanlioglu, M., & Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98, 2063-2071.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247-1253. https://doi.org/10.1021/es9031419
Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267-273. https://doi.org/https://doi.org/10.1016/S0032-3861(97)00229-2
Kolstad, J. J. (1996). Crystallization kinetics of poly(L-lactide-co-meso-lactide). Journal of Applied Polymer Science, 62(7), 1079-1091. https://doi.org/https://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1
Kricheldorf, H. (2014). Wallace H. Carothers: Life and Work. In H. Kricheldorf (Ed.), Polycondensation: History and New Results (pp. 27-34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39429-4_3
Kricheldorf, H. R., & Kreiser, I. (1987). Polylactones, 11. Cationic copolymerization of glycolide with L,L-dilactide. Die Makromolekulare Chemie, 188(8), 1861-1873. https://doi.org/https://doi.org/10.1002/macp.1987.021880810
Lapienis, G. (2012). 4.18 - Ring-Opening Polymerization of Cyclic Phosphorus Monomers. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 477-505). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00113-8
Lee, C., Pang, M. M., Koay, S. C., Choo, H. L., & Tshai, K. Y. (2020). Talc filled polylactic-acid biobased polymer composites: tensile, thermal and morphological properties. SN Applied Sciences, 2(3), 354. https://doi.org/10.1007/s42452-020-2172-y
Li, S., Girard, A., Garreau, H., & Vert, M. (2000). Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polymer Degradation and Stability, 71(1), 61-67. https://doi.org/https://doi.org/10.1016/S0141-3910(00)00152-X
Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2008.05.004
Lowe, C. E. (1954). Preparation of high molecular weight polyhydroxyacetic ester. In: US.
MacDonald, R. T., McCarthy, S. P., & Gross, R. A. (1996). Enzymatic degradability of poly (lactide): effects of chain stereochemistry and material crystallinity. Macromolecules, 29(23), 7356-7361.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/https://doi.org/10.1016/j.biortech.2010.05.092
Madras, G., & Chattopadhyay, S. (2001). Optimum temperature for oxidative degradation of poly(vinyl acetate) in solution. Chemical Engineering Science, 56(17), 5085-5089. https://doi.org/https://doi.org/10.1016/S0009-2509(01)00186-5
Magalhaes da Silva, S., Silva, M. A., & Oliveira, J. M. (2021). Non-isothermal cold crystallization kinetics of cork–polymer biocomposites based on polylactic acid for fused filament fabrication. Journal of Thermal Analysis and Calorimetry, 146(4), 1667-1678.
Markarian, J. (2008). Biopolymers present new market opportunities for additives in packaging. Plastics, Additives and Compounding, 10(3), 22-25. https://doi.org/https://doi.org/10.1016/S1464-391X(08)70091-6
Mokhena, T. C., Sefadi, J. S., Sadiku, E. R., John, M. J., Mochane, M. J., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers (Basel), 10(12). https://doi.org/10.3390/polym10121363
Moon, S. I., Lee, C. W., Miyamoto, M., & Kimura, Y. (2000). Melt polycondensation of L‐lactic acid with Sn (II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly (L‐lactic acid). Journal of Polymer Science Part A: Polymer Chemistry, 38(9), 1673-1679.
Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22), 8493-8501.
Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 20(1), 379-395. https://doi.org/10.1007/s10311-021-01334-4
Narayanan, N., Roychoudhury, P. K., & Srivastava, A. (2004). L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 7, 167-178.
Newman, A. W., Vitez, I. M., Cortina, P., Young, G., DeVincentis, J., Bugay, D. E., & Patel, T. (1994). Talc. In Analytical profiles of drug substances and excipients (Vol. 23, pp. 511-542). Elsevier.
Nim, B., & Opaprakasit, P. (2021). Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119684. https://doi.org/https://doi.org/10.1016/j.saa.2021.119684
Ninaya, Z. H. A., Hamid, Z. A. A., Ahmad, Z., Jaafar, M., & Yahaya, B. H. (2016). Development and Evaluation of Surface Modified Poly (lactic acid) Microsphere via Irradiation Techniques for Drug Delivery System. Procedia Chemistry, 19, 373-380. https://doi.org/https://doi.org/10.1016/j.proche.2016.03.026
Piemonte, V., & Gironi, F. (2013). Kinetics of Hydrolytic Degradation of PLA. Journal of Polymers and the Environment, 21(2), 313-318. https://doi.org/10.1007/s10924-012-0547-x
Piemonte, V., Sabatini, S., & Gironi, F. (2013). Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? Journal of Polymers and the Environment, 21(3), 640-647. https://doi.org/10.1007/s10924-013-0608-9
Pluta, M., Jeszka, J. K., & Boiteux, G. (2007). Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal, 43(7), 2819-2835. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2007.04.009
Pranamuda, H., Tokiwa, Y., & Tanaka, H. (1997). Polylactide degradation by an Amycolatopsis sp. Applied and environmental microbiology, 63(4), 1637-1640.
Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials (Basel), 15(12). https://doi.org/10.3390/ma15124312
Ren, J. (2011). Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer Science & Business Media.
Riba, J.-R., Cantero, R., García-Masabet, V., Cailloux, J., Canals, T., & Maspoch, M. L. (2020). Multivariate identification of extruded PLA samples from the infrared spectrum. Journal of Materials Science, 55(3), 1269-1279. https://doi.org/10.1007/s10853-019-04091-6
Ritch, E., Brennan, C., & MacLeod, C. (2009). Plastic bag politics: modifying consumer behaviour for sustainable development. International Journal of Consumer Studies, 33(2), 168-174. https://doi.org/https://doi.org/10.1111/j.1470-6431.2009.00749.x
Shi, K., Liu, G., Sun, H., Yang, B., & Weng, Y. (2022). Effect of Biomass as Nucleating Agents on Crystallization Behavior of Polylactic Acid. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204305
Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/https://doi.org/10.1016/j.tifs.2008.07.003
Smith, J. K., & Hounshell, D. A. (1985). Wallace H. Carothers and Fundamental Research at Du Pont. Science, 229(4712), 436-442. http://www.jstor.org/stable/1695650
Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Design, Development and Therapy, Volume 12, 3117-3145. https://doi.org/10.2147/DDDT.S165440
Sriphong, L., Rojanarata, T., Gasser, C., & Lend, B. (2018). At-line analysis of pharmaceutical nanofiber-products using ATR-FTIR spectroscopy.
Statista. (2023). report, B.R., Global markets and technologies for bioplastics. 2023. https://www.statista.com/topics/8744/bioplastics-industry-worldwide/#topicOverview
Thoden van Velzen, E. U., Chu, S., Molenveld, K., & Jašo, V. (2022). Effect of poly lactic acid trays on the optical and thermal properties of recycled poly (ethylene terephthalate). Packaging Technology and Science, 35(4), 351-360. https://doi.org/https://doi.org/10.1002/pts.2633
Tian, S., Jiao, Y., Gao, Z., Xu, Y., Fu, L., Fu, H., Zhou, W., Hu, C., Liu, G., Wang, M., & Ma, D. (2021). Catalytic Amination of Polylactic Acid to Alanine. Journal of the American Chemical Society, 143(40), 16358-16363. https://doi.org/10.1021/jacs.1c08159
Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly (lactide). Applied microbiology and biotechnology, 72(2), 244-251.
Tounthai, J., Petchsuk, A., Opaprakasit, P., & Opaprakasit, M. (2013). Curable polyester precursors from polylactic acid glycolyzed products. Polymer Bulletin, 70(8), 2223-2238. https://doi.org/10.1007/s00289-013-0940-1
Tsuji, H., & Miyauchi, S. (2001). Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability, 71(3), 415-424.
Tsuneizumi, Y., Kuwahara, M., Okamoto, K., & Matsumura, S. (2010). Chemical recycling of poly(lactic acid)-based polymer blends using environmentally benign catalysts. Polymer Degradation and Stability, 95(8), 1387-1393. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2010.01.019
Usuki, A., Kato, M., Okada, A., & Kurauchi, T. (1997). Synthesis of polypropylene-clay hybrid. Journal of Applied Polymer Science, 63(1), 137-138. https://doi.org/https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<137::AID-APP15>3.0.CO;2-2
Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/https://doi.org/10.1016/S0141-3910(02)00372-5
Weraporn, & Pivsa-Art, S. (2019). Effect of Talc on Mechanical Characteristics and Fracture Toughness of Poly(lactic acid)/Poly(butylene succinate) Blend. Journal of Polymers and the Environment, 27(8), 1821-1827. https://doi.org/10.1007/s10924-019-01478-z
Williams, D. F. (1982). Biodegradation of surgical polymers. Journal of Materials Science, 17(5), 1233-1246. https://doi.org/10.1007/BF00752233
Xiang, S., Feng, L., Bian, X., Li, G., & Chen, X. (2020). Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 81, 106211. https://doi.org/https://doi.org/10.1016/j.polymertesting.2019.106211
Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2009). Anaerobic Biodegradation Tests of Poly(lactic acid) under Mesophilic and Thermophilic Conditions Using a New Evaluation System for Methane Fermentation in Anaerobic Sludge. International Journal of Molecular Sciences, 10(9), 3824-3835.
Yuan, Z., Zhang, X., Yao, Q., Zhang, Y., & Fu, Y. (2019). Production of acetonitrile via catalytic fast pyrolysis of biomass derived polylactic acid under ammonia atmosphere. Journal of Analytical and Applied Pyrolysis, 140, 376-384. https://doi.org/https://doi.org/10.1016/j.jaap.2019.04.017
Yuxia, Z. (2012). Crystallization Behavior and Mechanical Properties of Poly(lactic acid)/Talc Systems.
Zhou, L., Ke, K., Yang, M.-B., & Yang, W. (2021). Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 23, 100548. https://doi.org/https://doi.org/10.1016/j.coco.2020.100548
Zhu, Z., Bian, Y., Zhang, X., Zeng, R., & Yang, B. (2022). Study of Crystallinity and Conformation of Poly(lactic acid) by Terahertz Spectroscopy. Analytical Chemistry, 94(31), 11104-11111. https://doi.org/10.1021/acs.analchem.2c02652
Zhu, Z., Yu, Z., Bian, Y., Zhang, X., Zeng, R., & Yang, B. (2023). Evaluation of relative content and crystallization behavior of homogeneous crystals in poly (lactic acid) by terahertz spectroscopy. Polymer, 270, 125779. https://doi.org/https://doi.org/10.1016/j.polymer.2023.125779
丁亞涵, & 羅凱尹. (2021). 生物可分解性塑膠聚乳酸的降解條件研究 [Study of the Degradation Conditions of Biodegradable Plastics Polylactic Acid]. 臺灣農業化學與食品科學, 59(1), 11-17. https://doi.org/10.6578/TJACFS.202103_59(1).0003
朱國福. (2015). 聚乳酸/聚羥基丁酯摻合物熱裂解及生物可分解行為研究 (Publication Number 2015年) 淡江大學]. AiritiLibrary.
周泓佳. (2012). 生物可分解含聚乳酸奈米複合材料之開發應用於工程塑膠 (Publication Number 2012年) 國立臺灣大學]. AiritiLibrary.
林銘貴, & 尤浚達. (2003). 生物可分解性高分子 : 聚乳酸之應用與發展潛力評估 / 林銘貴計畫主持 ; 尤浚達作作 (初版 ed.). 工業技術研究院產業經濟與資訊服務中心.
塗三賢, 李. (2012). 成核劑對射出成型木粉-聚乳酸複合材強度性質之影響 [Effects of Nucleating Agent on Mechanical Properties of Injection Molding Wood Flour-Polylactic Acid Composite]. 林產工業, 31(1), 1-6. https://doi.org/10.6561/fpi.2012.31(1).1
潘祖仁. (2021). 高分子化学. 化学工业出版社.
鄒智元, 「聚乳酸/木粉、聚乳酸/聚對苯二甲酸丙二醇與聚乳酸/細菌纖維素複合材料之研究」,博士論文,臺北市,國立臺北科技大學(2017)。
巫承德, 「剪切作用對聚丙烯冷卻過程中的高階結構形成之影響」,碩士論文,新竹市 國立陽明交通大學(2003)。
尤中甫, 「多官能基壓克力修飾聚乳酸之合成與應用」,博士論文,臺北市 國立臺北科技大學(2023)。
尤浚達, 「聚乳酸–最具發展潛力的生分解材料」,塑膠百年特刊,塑膠工業技術發展中心,(2008)。
陳忠吾, 「淺談生物可分解型塑膠–PLA」,聚乳酸PLA生質材料發展現況及應用趨勢討會,臺中市(2008)。
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2024-5-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明