博碩士論文 111323145 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.145.62.36
姓名 許凱翔(Kai-Xiang Xu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低溫熱處理製備軟性基板全無機鈣鈦礦發光二極體之研究
(The Study of All-Inorganic Perovskite Flexible Substrate Light-Emitting Diodes Prepared by Low-Temperature Thermal Process)
相關論文
★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究★ 水溶液法製備CsxPbyBrz鈣鈦礦系材料之研究
★ CsPb(BrxI1-x)3@SiO2量子點薄膜之合成及其性質探討★ 單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究
★ APTES製備CsPbBr3@SiO2量子點擴散粒子暨擴散膜之研究★ 二氧化矽包覆鈣鈦礦量子點薄膜 暨擴散粒子之研究
★ 高壓輔助熱退火製程改善全無機鈣鈦礦太陽能電池之研究★ 雙源順序熱蒸鍍全無機混合鹵化物鈣鈦礦藍色發光二極體之研究
★ 以高壓輔助熱退火製備高開關比之自供電全無機鈣鈦礦光電感測器★ 不同熱處理製程對於全無機混合鹵化物鈣鈦礦 藍色發光二極體之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 發光二極體(light-emitting diodes, LED)是一種將電能轉化為光能的元件,當電子和電洞在主動層中進行輻射複合時,便會產生出能量與其能階相符的光。歷經多年發展仍持續進步,對人類生活產生深遠影響。
鈣鈦礦材料因為具有可調的發光波長、可控的能隙、可以透過簡易以及低成本的製程方式製造,讓鈣鈦礦材料被廣泛運用在光電領域中,如應用於太陽能電池,光電探測器及LED中。
本研究利用真空鍍膜技術研發鈣鈦礦LED,並應用於PET基板之上。然而,由於基板耐熱性質較低,無法承受高溫熱處理,因此更改熱處理溫度以配合基板性能,並導入氧化鋅做電子傳輸層進一步提升元件效率。經實驗發現,使用退火溫度70°C並延長退火時間至210分鐘能夠使薄膜的晶粒成長,降低熱處理溫度避免基板的翹曲和損壞問題。最終,元件的結構為PET/ITO/ALD-ZnO/CsPbBr3/C,元件最大輝度為1166 cd/m2。
摘要(英) The light-emitting diode (LED) is a device that converts electrical energy into light. When electrons and holes undergo radiative recombination in the active layer, light with energy corresponding to their energy levels is emitted. Despite years of development, LEDs continue to advance and have a profound impact on human life.

Perovskite materials have become widely used in optoelectronics due to their tunable emission wavelengths, controllable band gaps, and ability to be manufactured through simple and low-cost processes. These materials have found applications in solar cells, photodetectors, and LEDs.

In this work, we developed perovskite LEDs using vacuum deposition technology and applied them onto PET substrates. However, due to the low heat resistance of the substrates, which cannot withstand high-temperature treatments, we adjusted the annealing temperature to match the substrate′s properties. Additionally, we incorporated zinc oxide as an electron transport layer to further improve the device′s efficiency. The experiments showed that increasing the annealing time to 210 minutes at 70°C helps the film′s grains grow. Reduced the risk of substrate warping and damage by avoiding high temperatures. The final device structure was PET/ITO/ALD-ZnO/CsPbBr3/C, with a maximum luminance of 1166 cd/m².
關鍵字(中) ★ 鈣鈦礦
★ 低溫熱退火
關鍵字(英) ★ Perovskite
★ Low temperature thermal annealing
論文目次 摘要 i
Abstract ii
致謝 iii
1-1前言 1
1-2鈣鈦礦介紹 2
1-3鈣鈦礦材料性質及應用 3
1-3-1 鈣鈦礦材料性質 3
1-3-2 鈣鈦礦材料應用 3
1-4鈣鈦礦薄膜製備 7
1-4-1旋轉塗佈法 (Spin-coating method) 7
1-4-2熱蒸鍍法(Thermal evaporation method) 7
1-5軟性基板鈣鈦礦發光二極體 10
1-5-1軟性基板的選擇 10
1-5-2鈣鈦礦主動層 10
1-5-3 電子傳輸層 24
1-5-4 軟性導電電極 26
1-6 研究動機 30
第二章 實驗儀器及步驟 31
2-1 實驗藥品及儀器 31
2-1-1 實驗藥品 31
2-1-2 實驗儀器 31
2-2實驗步驟 33
2-2-1 清潔基板 33
2-2-2 電子傳輸層-氧化鋅(ZnO)沉積 33
2-2-3 CsPbBr3蒸鍍 34
2-3 實驗儀器分析介紹 35
第三章 結果與討論 37
3-1 硬性基板CsPbBr3 LED 37
3-1-1 CsPbBr3熱處理分析 37
3-1-2添加電子傳輸層(ZnO)提升效率 41
3-2未退火的鈣鈦礦LED 44
3-2-1 軟板鈣鈦礦LED 45
3-3 軟性基板熱處理分析 46
3-3-1軟板鈣鈦礦薄膜熱處理討論 46
3-3-2 電子傳輸層(ZnO)基板溫度調整 49
3-3-3 軟性基板鈣鈦礦LED元件製成 52
3-3-4 軟性基板鈣鈦礦LED元件發光模式 53
文獻參考 57
參考文獻 [1] X. J. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.- L. Tsai, and R.-S. Liu. “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display.” Chemistry of Materials, vol.28, pp.8493-8497, 2016.
[2] A. Suhail, A. Saini, S. Beniwal, and, M. Bag. “Tunable Optoelectronic Properties of CsPbBr3 Perovskite Nanocrystals for Photodetectors Applications.” The Journal of Physical Chemistry, vol.127, pp.17298-17306, 2023.
[3] J.H. Zhu, R. Kottokkaran, S. Sharikadze, H. Gaonkar, L.-P. Poly, A. Akopian and V.L. Dalai. “Inorganic Perovskite Solar Cells with High Voltage and Excellent Thermal and Environmental Stability.” ACS Applied Energy Materials, vol.5, pp.6265-6273, 2022.
[4] C.A. Hsieh, G.H. Tan, Y.T. Chuang, H.C. Lin, P.T. Lai, P.E. Jan, B.H. Chen, C.H. Lu, S.D. Yang, K.Y. Hsiao, M.Y. Lu, L.Y. Chen and H.W. Lin. “Vacuum‐Deposited Inorganic Perovskite Light‐Emitting Diodes with External Quantum Efficiency Exceeding 10% via Composition and Crystallinity Manipulation of Emission Layer under High Vacuum.” Advanced Science, vol.10, p.2206076. 2023.
[5] S. Chaudhary, S.K. Gupta and C.M.S. Negi. “Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach.” Materials Science in Semiconductor Processing, vol.109, p.104916, 2020.
[6] S.H. Xie, A. Osherov and V. Bulovic. “All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes.” APL Materials, vol.8, p.051113, 2020.
[7] N. Klipfel, M.P.U. Haris, S. Kazim, A.A. Sutanto, N. Shibayama, H. Kanda, A.M. Asiri, C. Momblona, S. Ahmad and M.K. Nazeeruddin. “Structural and photophysical investigation of single-source evaporation of CsFAPbI 3 and FAPbI 3 perovskite thin films.” Journal of Materials Chemistry C, vol.10, pp.10075-10082, 2022.
[8] Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N. Myoung, C.L. Lee, S.H. Im and T.W. Lee. ”Multicolored organic/inorganic hybrid perovskite light‐emitting diodes.” Advanced materials, vol.27, pp.1248-1254, 2015.
[9] S.G.R. Bade, X. Shan, P.T. Hoang, J.Q. Li, T. Geske, L. Cai, Q.B. Pei, C. Wang and Z.B. Yu.“Stretchable light‐emitting diodes with organometal‐halide‐perovskite-polymer composite emitters.” Advanced Materials, vol.29, p.1607053, 2017.
[10] D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im, G.Y. Lee, J.Y. Seok, T. Yun, K.J. Lee, and S.O. Kim. “Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes.” Nano Energy, vol.61, pp.236-244, 2019.
[11] H. Kim, H.N. Ra, J.S. Kim, S.H. Paek, J. Park, and Y.C. Kim.(2020). “Improved performance of flexible perovskite light-emitting diodes with modified PEDOT: PSS hole transport layer.” Journal of Industrial and Engineering Chemistry, vol.90, pp.117-121, 2020.
[12] T. Kim, J.H. Kim, and J.W. Park. “Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity. “Solid-State Electronics, vol.165, p.107749, 2020.
[13] G.E. Kim, H.J. Kim, H.S. Jung, and M. Park. “Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes.” Journal of Materials Chemistry C, vol.12, pp.673-684, 2024.
[14] J.H. Han, P. Sadhukhan, and J.M. Myoung. “Highly flexible and stable green perovskite light-emitting diodes based on IL-modified PEDOT: PSS film.” Applied Surface Science, vol.641, p.158493, 2023.
[15] X.F. Zhao and Z.K. Tan. “Large-area near-infrared perovskite light-emitting diodes.” Nature Photonics, vol.14, pp.215-218, 2020.
[16] D.-H. Jiang, Y.-C. Liao, C.-J. Cho, L. Veeramuthu, F.-C. Liang, T.-C. Wang, C.-C. Chueh, T. Satoh, S.-H. Tung, and C.-C. Kuo. “Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes.” ACS applied materials & interfaces, vol.12, pp.14408-14415, 2020.
[17] L.P. Cheng, J.S. Huang, Y. Shen, G.P. Li, X.K. Liu, W. Li, Y.H. Wang, Y.Q. Li, Y. Jiang, F. Gao, C.S. Lee, and J.X. Tang. “Efficient CsPbBr3 perovskite light‐emitting diodes enabled by synergetic morphology control.” Advanced Optical Materials, vol.7, p.1801534, 2019.
[18] G. Vescio, G. Mathiazhagan, S. González-Torres, J. Sanchez-Diaz, A. Villaueva-Antolí, R.S. Sánchez, A.F. Gualdrón-Reyes, M. Oszajca, F. Linardi, A. Hauser, F.A. Vinocour-Pacheco, W. Zuraw, S. Öz, S. Hernández, I. Mora-Seró, A. Cirera, and B. Garrido. “Fully Inkjet‐Printed Green‐Emitting PEDOT: PSS/NiO/Colloidal CsPbBr3/SnO2 Perovskite Light‐Emitting Diode on Rigid and Flexible Substrates.” Advanced Engineering Materials, vol.25, p.2300927, 2023.
[19] J.H. Li, P.P. Du, S.R. Li, J. Liu, M.H. Zhu, Z.F. Tan, M.C. Hu, J.J. Luo, D.Q.A. Guo, L. Ma, Z.G. Nie, Y. Ma, L. Gao, G.D. Niu, and J. Tang. “High‐throughput combinatorial optimizations of perovskite light‐emitting diodes based on all‐vacuum deposition.” Advanced Functional Materials, vol.29, p.1903607, 2019.

[20] C. Chen, T.E.H.E. Han, S. Tan, J.J. Xue, Y.P. Zhao, Y.F. Liu, H.R. Wang, W. Hu, C. Bao, M. Mazzeo, R. Wang, Y. Duan, and Y. Yang. “Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization.” Nano Letters, vol.20, pp.4673-4680 , 2020.
[21] P.P. Du, J.H. Li, L. Wang, L. Sun, X. Wang, X. Xu, L.B. Yang, J.C. Pang, W.X. Liang, J.J. Luo, Y. Ma, and J. Tang. “Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement.” Nature Communications, vol.12, p.4751, 2021.
[22] J. Iqbal, A. Jilani, P.M.Z. Hassan, S. Rafique, R. Jafer, and A.A. Alghamdi. “ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap.”Journal of King Saud University-Science, vol.28, pp.347-354, 2016.
[23] M.J. Zhao, Z.T. Sun, C.H. Hsu, P.H. Huang, X.Y. Zhang, W.Y. Wu, P. Gao, Y. Qiu, S.Y. Lien, and W.Z. Zhu. “Zinc oxide films with high transparency and crystallinity prepared by a low temperature spatial atomic layer deposition process.” Nanomaterials, vol.10, p.459, 2020.
[24] H.K. Seo, H. Kim, J. Lee, M.H. Park, S.H. Jeong, Y.H. Kim, S.J. Kwon, T.H. Han, S. Yoo, and T.W. Lee. “Efficient flexible organic/inorganic hybrid perovskite light‐emitting diodes based on graphene anode.” Advanced Materials, vol.29, p.1605587, 2017.
[25] F.C. Zhao, D. Chen, S. Chang, H.L. Huang, K. Tong, C.T. Xiao, S.Y. Chou, H.Z. Zhong, and Q.B. Pei. “Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode.” Journal of Materials Chemistry C, vol.5, pp. 531-538, 2017.

[26] K. C. Yeh , C. H. Chan. "High brightness and low operating voltage CsPbBr3 perovskite LEDs by single-source vapor deposition." Scientific Reports , vol.14 , p.10858048 , 2024.
[27] 游柏彥. “原子層沉積法製備氧化鋅薄膜於全無機綠光鈣鈦礦發光二極體之應用研究”. 國立中央大學 能源工程研究所. 2021.
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明