博碩士論文 110326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:169 、訪客IP:3.14.128.118
姓名 陳仁杰(REN-JIE CHEN)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 闡明溶解態有機物與甲烷對砷在蘭陽平原厭氧含水層遷移的相對重要性
(Clarifying the relative importance of DOM vs. CH4 in the liberation of arsenic from the anoxic aquifer to groundwater in the Lanyang Plain)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-1以後開放)
摘要(中) 近期氣候變遷的衝擊雖讓地下水資源的開發與使用愈發重要,但全球各地的地下水常遇到與點源污染排放無關的砷濃度過高的問題,包括台灣西南沿海及蘭陽平原中下游地區。台灣高砷濃度的地下水經調查後,常發現有水溶氣甲烷共存的現象,特別是蘭陽平原,因此被推斷砷在含水層中的遷移與甲烷的存在具有一定的關聯性,但時至今日仍未被直接驗證。為了解 “現地甲烷厭氧氧化” 與 “砷自沉積物釋出” 兩者間的連結,實驗室先前藉由現地調查與縮模驗驗、並運用地質化學模擬與分子生物探測等技術後發現,蘭陽平原地下水中微生物所主導的鐵還原溶解作用,是砷自含水層礦物相釋出的主因,而甲烷雖然極可能在此程序中扮演著電子供體的角色,但與非甲烷的現地溶解性有機質相比,其真正的貢獻程度為何,仍需進一步確認。有鑑於此,本研究重複之前的調查手法,但修正培養實驗的設計,並針對現地地下水甲烷除外的溶解性有機質的物種組成,以三維螢光光譜進行追蹤,以釐清三價鐵與五價砷被還原時,實質的生物性甲烷厭氧氧化程度。現地調查的結果顯示,蘭陽平原武淵採樣處的地下水仍維持著高(三價)砷、高(二價)鐵、高甲烷與低溶氧的特徵,說明該處地下水依舊保有厭氧狀態。水樣經三維螢光光譜分析後發現,該地下水的有機物組成是以不易被微生物降解的腐植物質為主,此特性恰好呼應現地下水生化需氧量較低的檢測結果。本研究也將部署於現地井水兩個月後長有生物膜的羊毛絨、自行合成的水鐵礦,以及所採集的現地地下水,組合進行為期七個月的縮模培養試驗。培養後發現,曝氮氣移除甲烷的實驗組(N2)在試驗第130天的螢光光譜雖有微生物代謝產物色氨酸的螢光訊號,但該組別卻無觀察到顯著的溶解態三價砷與二價鐵的生成;而在曝過飽和甲烷的實驗組別,經培養200天後的水溶液相中的三價砷與二價鐵皆顯著增加,且頂空甲烷的濃度顯著衰減,此結果有別於滅菌組與N2組,顯示該系統的微生物具有厭氧甲烷氧化並呼吸鐵礦的能力,使得原本吸附在鐵礦的五價砷藉此還原成三價砷而釋出至水溶液相中。上述的現象也同樣在以甲烷做為唯一碳源的人工合成地下水的培養過程中觀察到。不僅如此,甲烷濃度的衰減也反應在厭氧甲烷氧化功能性基因pmoA與mcrA的表達上,說明甲烷的減少確實是因生物性作用所導致;生物膜次世代定序的結果更進一步說明厭氧甲烷氧化菌Methanoperedens,很可能是利用甲烷做為電子供體並造成砷與鐵還原溶解的關鍵菌群。最後,統計分析的結果再次表明Methanoperedens與水溶液相中砷與二價鐵具顯著相關性 (p < .05)。綜上所述,本研究的結果明確指出甲烷相較於其他非甲烷的溶解性有機物,具有更高驅動武淵地區砷自含水層釋出的潛勢。
摘要(英) Recent climate change impacts have heightened the importance of groundwater development and utilization. However, elevated arsenic concentrations unrelated to point source pollution discharge remain a challenge in groundwater worldwide, including the southwestern coast and middle-lower reaches of the Lanyang Plain in Taiwan. Investigations into high arsenic concentrations in Taiwanese groundwater often reveal co-occurrence with dissolved methane, particularly in the Lanyang Plain. This suggests a potential correlation between arsenic migration within aquifers and the presence of methane, though direct verification has not been established to date. To elucidate the connection between in-situ methane anaerobic oxidation and arsenic release from sediments, our laboratory previously conducted field surveys, scaled modeling experiments, and utilized techniques such as geochemical simulation and molecular biological detection. Results indicated that microbial-mediated iron reduction dissolution in Lanyang Plain groundwater is the primary driver of arsenic release from aquifer minerals. While methane likely acts as an electron donor in this process, its true contribution relative to non-methane dissolved organic matter remains to be conclusively determined.
In light of this, this study replicates previous survey methods with modifications to experimental design, focusing on the composition of dissolved organic matter excluding methane in local groundwater. Tracking is conducted via three-dimensional fluorescence spectroscopy to clarify the extent of substantive biological methane anaerobic oxidation during trivalent iron and pentavalent arsenic reduction. Field surveys reveal that groundwater samples from the Wuyuan sampling site in the Lanyang Plain maintain characteristics of high trivalent arsenic, bivalent iron, methane, and low dissolved oxygen, indicating ongoing anaerobic conditions. Analysis of water samples via three-dimensional fluorescence spectroscopy reveals a predominance of recalcitrant humic substances in organic matter composition, aligning with low biochemical oxygen demand detected in groundwater. This study also deploys a seven-month scaled cultivation experiment involving combinations of woolen, biogenic iron, and locally collected groundwater with biofilm growth after two months in-situ. Results indicate that in the nitrogen-exposed methane removal experimental group (N2), although fluorescence signals of microbial metabolite tryptophan are observed on the 130th day of the experiment, no significant generation of dissolved trivalent arsenic and bivalent iron is observed, contrasting with the saturated methane exposure group where significant increases in trivalent arsenic and bivalent iron are observed after 200 days of cultivation, accompanied by significant reduction in headspace methane concentration. This differs from the sterilized and N2 groups, suggesting microbial capability for anaerobic methane oxidation and respiration of iron minerals in this system, leading to reduction of pentavalent arsenic adsorbed on iron minerals to release trivalent arsenic into the aqueous phase. Similar phenomena are observed in the cultivation process of artificially synthesized groundwater with methane as the sole carbon source. Furthermore, methane concentration reduction is reflected in the expression of functional genes pmoA and mcrA for anaerobic methane oxidation, indicating microbial involvement in methane reduction. Subsequent sequencing of biofilm generations further indicates Methanoperedens, a key microbial group likely utilizing methane as an electron donor to drive arsenic and iron reduction dissolution. Finally, statistical analysis results once again demonstrate significant correlation (p < .05) between Methanoperedens and trivalent arsenic and bivalent iron in the aqueous phase. In summary, the results of this study clearly indicate that methane, compared to other non-methane dissolved organic matter, holds a higher potential to drive arsenic release from the aquifers in the Wuyuan area.
關鍵字(中) ★ 蘭陽平原
★ 地下水砷污染
★ 鐵還原
★ 厭氧甲烷氧化
★ 三維螢光光譜
關鍵字(英) ★ Lanyang Plain
★ groundwater arsenic contamination
★ iron reduction
★ anaerobic methane oxidation
★ fluorescence spectroscopy
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
1 第一章 前言 1
1.1 研究緣起 1
1.1.1 地下水砷污染的公共衛生議題 1
1.1.2 台灣地下水高砷污染地區的比較 1
1.1.3 蘭陽平原地下水的特徵 4
1.1.4 地下水砷污染的背景與機制 5
1.1.5 砷污染含水層中甲烷的循環 6
1.1.6 有機物與砷於地下水遷移的關聯 7
1.1.7 同研究群對地下水砷釋出的調查與研究 10
1.2 研究目的 12
2 第二章 研究方法 14
2.1 研究流程及架構 14
2.2 蘭陽平原地下水井現地調查與介紹 17
2.3 水井地化參數分析 19
2.4 有機物物種濃度分析 25
2.4.1 研究採樣分法與分析參數 25
2.4.2 資料分析與建模 26
2.5 分子生物實驗 27
2.5.1 次世代定序分析 27
2.5.2 即時定量聚合酶連鎖反應 28
2.6 縮模實驗設計 32
2.6.1 模擬地下水設計 33
2.6.2 現地水井生物膜採集 33
2.6.3 縮模實驗架設 35
2.7 統計分析 39
3 第三章 結果與討論 40
3.1 蘭陽平原現地調查結果 40
3.1.1 地下水基本特性分析 40
3.1.2 地下水元素與離子濃度分析 42
3.1.3 現地地下水有機物分析 45
3.1.4 現地地下水模擬結果 46
3.1.5 現地地下水分子生物分析結果 49
3.2 縮模實驗結果 54
3.2.1 縮模實驗製備 54
3.2.2 甲烷利用率 55
3.2.3 總鐵和二價鐵生成 58
3.2.4 總砷與三價砷的釋出 61
3.2.5 有機物物種濃度追蹤 65
3.2.6 分子生物學分析結果 75
3.2.7 統計分析結果 83
4 第四章 結論與建議 89
4.1 結論 89
4.2 建議 91
參考文獻 93
附錄 106
附錄一 有機物平滑曲線 106
附錄二 ASV組內菌相比較分析 107
附錄三 現地菌相分析補充 108
附錄四 縮模實驗甲烷頂空濃度 112
附錄五 次世代定序定序科(family)層級菌種分析 114
附錄六 相對定量(第0天為基準) 116
附錄七 Melting curve 119
附錄八 培養實驗反應瓶照片 120
附錄九 學位考試委員意見回覆表 124
參考文獻 1. Smedley, P.L. and D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 2002. 17(5): p. 517-568.
2. Hudson, N., A. Baker, and D. Reynolds, Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River research and applications, 2007. 23(6): p. 631-649.
3. Podgorski, J. and M. Berg, Global threat of arsenic in groundwater. Science, 2020. 368(6493): p. 845-850.
4. Smith, A.H., E.O. Lingas, and M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the world health organization, 2000. 78(9): p. 1093-1103.
5. Mori, S., E.J. Lowenstein, and C. Steffen, The largest mass poisoning in history: arsenic contamination of well water in Bangladesh. Skinmed, 2018. 16(4): p. 265-267.
6. Tseng, C.-H., et al., Lipid profile and peripheral vascular disease in arseniasis-hyperendemic villages in Taiwan. Angiology, 1997. 48(4): p. 321-335.
7. Chen, C.-J., et al., Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and applied pharmacology, 2005. 206(2): p. 198-206.
8. Liao, P.-J., et al., Low-to-moderate arsenic exposure and urothelial tract cancers with a long latent period of follow-up in an arseniasis Area. Journal of Epidemiology and Global Health, 2023. 13(4): p. 807-815.
9. Yang, C.-Y., et al., Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environmental Research, 2003. 91(1): p. 29-34.
10. Karagas, M.R., et al., Association of rice and rice-product consumption with arsenic exposure early in life. JAMA pediatrics, 2016. 170(6): p. 609-616.
11. Tseng, C.-H., et al., Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicology and applied pharmacology, 2005. 206(3): p. 299-308.
12. Chiou, H.-Y., et al., Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. American journal of epidemiology, 2001. 153(5): p. 411-418.
13. Kendall, C., Tracing nitrogen sources and cycling in catchments, in Isotope tracers in catchment hydrology. 1998, Elsevier. p. 519-576.
14. IARC, G., related effects: an updating of selected IARC monographs from volumes 1 to 42. Monographs on the Evaluation of Carcinogenic Risks to Humans, 1987. 6.
15. Chappell, W., et al., Inorganic arsenic: a need and an opportunity to improve risk assessment. Environmental health perspectives, 1997. 105(10): p. 1060-1067.
16. Al Lawati, W.M., et al., Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan. Journal of Hazardous Materials, 2013. 262: p. 970-979.
17. Liu, C.-W. and M.-Z. Wu, Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain, Taiwan. Journal of hydrology, 2019. 577: p. 123975.
18. Tseng, W., et al., A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Memoire College Med., National Taiwan University, 1961. 7: p. 1-18.
19. Lu, F.J., Fluorescent humic substances and blackfoot disease in Taiwan. Applied organometallic chemistry, 1990. 4(3): p. 191-195.
20. Liang, C.-P., et al., Spatial analysis of human health risk due to arsenic exposure through drinking groundwater in Taiwan’s Pingtung Plain. International Journal of Environmental Research and Public Health, 2017. 14(1): p. 81.
21. Chen, K.-Y. and T.-K. Liu, Major factors controlling arsenic occurrence in the groundwater and sediments of the Chianan coastal plain, SW Taiwan. Terrestrial, 2007(5).
22. Huang, Y.-K., et al., Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology, 2003. 41(11): p. 1491-1500.
23. Liang, C.-P., et al., Comprehensive assessment of the impact of land use and hydrogeological properties on the groundwater quality in Taiwan using factor and cluster analyses. Science of The Total Environment, 2022. 851: p. 158135.
24. Wang, S.-J., et al., Evaluation of climate change impact on groundwater recharge in groundwater regions in Taiwan. Water, 2021. 13(9): p. 1153.
25. Tate III, R.L., Encyclopedia of Soils in the Environment: Volume 1-4. 2005, LWW.
26. 石再添, 張瑞津, and 林雪美, 臺灣東部河口地區之地形學研究. 國立臺灣師範大學地理研究報告, 1995(24): p. 1-38.
27. Liu, C.-W., C.-S. Jang, and C.-M. Liao, Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment, 2004. 321(1-3): p. 173-188.
28. Selim Reza, A., et al., A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environmental geochemistry and health, 2011. 33: p. 235-258.
29. Lewis, C., D. Ray, and K.-K. Chiu, Primary geologic sources of arsenic in the Chianan Plain (Blackfoot disease area) and the Lanyang Plain of Taiwan. International Geology Review, 2007. 49(10): p. 947-961.
30. Liu, C.-W., et al., Hydrogeochemical and mineralogical investigations of arsenic-and humic substance-enriched aquifers. Journal of hydrology, 2013. 498: p. 59-75.
31. Marshall, G., et al., Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute, 2007. 99(12): p. 920-928.
32. Yang, T.-N., et al., Paleohydrological changes in northeastern Taiwan over the past 2 ky inferred from biological proxies in the sediment record of a floodplain lake. Palaeogeography, palaeoclimatology, palaeoecology, 2014. 410: p. 401-411.
33. 王天慧, 2005年宜蘭雙主震之震源機制解:應用近場波形反演法探討區域地震機制, in 地質科學研究所. 2007, 國立臺灣大學: 台北市. p. 79.
34. Hsu, C.-H., et al., Constructing the comprehensive subsurface structure of Lanyang plain. Journal of Marine Science and Technology, 2012. 20(2): p. 10.
35. Jean, J.-S., et al., The Taiwan crisis: a showcase of the global arsenic problem. 2011: CRC Press.
36. Liao, V.H.-C., et al., Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of contaminant hydrology, 2011. 123(1-2): p. 20-29.
37. Kim, M.-J., J. Nriagu, and S. Haack, Carbonate ions and arsenic dissolution by groundwater. Environmental Science & Technology, 2000. 34(15): p. 3094-3100.
38. DeVore, C.L., et al., Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Science: Processes & Impacts, 2019. 21(3): p. 456-468.
39. 陳艾荻, 台灣溫泉水中溶解氣成分研究. 2010.
40. Hsu, L., Pleistocene formation with dissolved-in-water type gas in the Chianan plain, Taiwan. Petroleum Geology of Taiwan, 1984. 20: p. 199-213.
41. Kao, Y.-H., et al., Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: Evidence from a sulfur isotope study. Journal of Hydrology, 2015. 528: p. 523-536.
42. Zobrist, J., et al., Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 2000. 34(22): p. 4747-4753.
43. Islam, F.S., et al., Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004. 430(6995): p. 68-71.
44. Johnston, S.G., E.D. Burton, and E.M. Moon, Arsenic mobilization is enhanced by thermal transformation of schwertmannite. Environmental Science & Technology, 2016. 50(15): p. 8010-8019.
45. Zhu, W., et al., Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochimica et Cosmochimica Acta, 2008. 72(21): p. 5243-5250.
46. 林柏成, 五價砷還原菌Citrobacter sp. strain L2之特性分析, in 生物環境系統工程學研究所. 2010, 國立臺灣大學. p. 1-63.
47. Mirza, B.S., et al., New arsenate reductase gene (arrA) PCR primers for diversity assessment and quantification in environmental samples. Applied and environmental microbiology, 2017. 83(4): p. e02725-16.
48. Giloteaux, L., et al., Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. The ISME journal, 2013. 7(2): p. 370-383.
49. Saltikov, C.W. and D.K. Newman, Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences, 2003. 100(19): p. 10983-10988.
50. Luu, Y.-S. and J.A. Ramsay, Microbial mechanisms of accessing insoluble Fe (III) as an energy source. World Journal of Microbiology and Biotechnology, 2003. 19: p. 215-225.
51. Perez, J.P.H., et al., Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite. ACS Earth and Space Chemistry, 2019. 3(6): p. 884-894.
52. Stuckey, J.W., et al., Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 2016. 9(1): p. 70-76.
53. Wallis, I., et al., The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020. 13(4): p. 288-295.
54. Harvey, C.F., et al., Arsenic mobility and groundwater extraction in Bangladesh. Science, 2002. 298(5598): p. 1602-1606.
55. Islam, F., et al., Interactions between the Fe (III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe (II). Applied and Environmental Microbiology, 2005. 71(12): p. 8642-8648.
56. Rowland, H., et al., The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology, 2007. 5(3): p. 281-292.
57. Tufano, K.J., et al., Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 2008. 42(22): p. 8283-8289.
58. Valentine, D.L. and W.S. Reeburgh, New perspectives on anaerobic methane oxidation: minireview. Environmental microbiology, 2000. 2(5): p. 477-484.
59. Glodowska, M., et al., Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 2020. 1(1): p. 42.
60. Op den Camp, H.J., et al., Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 2009. 1(5): p. 293-306.
61. Leu, A.O., et al., Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. The ISME Journal, 2020. 14(4): p. 1030-1041.
62. Lipscomb, J.D., Biochemistry of the soluble methane monooxygenase. Annual review of microbiology, 1994. 48(1): p. 371-399.
63. Dedysh, S.N., et al., Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 2000. 50(3): p. 955-969.
64. Ettwig, K.F., et al., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010. 464(7288): p. 543-548.
65. Haroon, M.F., et al., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013. 500(7464): p. 567-570.
66. Stopelli, E., et al., Carbon and methane cycling in arsenic-contaminated aquifers. Water research, 2021. 200: p. 117300.
67. Liu, T.-K., et al., Origin of methane in high-arsenic groundwater of Taiwan–Evidence from stable isotope analyses and radiocarbon dating. Journal of Asian Earth Sciences, 2009. 36(4-5): p. 364-370.
68. Killops, S.D. and V.J. Killops, Introduction to organic geochemistry. 2013: John Wiley & Sons.
69. Chen, Z., et al., Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Science of the total environment, 2017. 574: p. 1684-1694.
70. Glodowska, M., et al., Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of hazardous materials, 2021. 407: p. 124398.
71. Gnanaprakasam, E.T., et al., Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. MBio, 2017. 8(6): p. 10.1128/mbio. 01326-17.
72. Xiu, W., et al., Genome-resolved metagenomic analysis of groundwater: insights into arsenic mobilization in biogeochemical interaction networks. Environmental Science & Technology, 2022. 56(14): p. 10105-10119.
73. Xiu, W., et al., Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: potential importance of ammonium as an electron donor during arsenic mobilization. Environment international, 2020. 136: p. 105489.
74. Pracht, L.E., et al., Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization. Biogeosciences, 2018. 15(6): p. 1733-1747.
75. Zhang, D., et al., In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Journal of hazardous materials, 2017. 321: p. 228-237.
76. Paul, D., et al., Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater. Bioresource technology, 2015. 188: p. 14-23.
77. Zheng, Y., et al., Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 2004. 19(2): p. 201-214.
78. Rowland, H., et al., Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 2006. 37(9): p. 1101-1114.
79. McArthur, J., et al., Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Applied geochemistry, 2004. 19(8): p. 1255-1293.
80. Charlet, L. and D.A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements, 2006. 2(2): p. 91-96.
81. Richards, L.A., et al., Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology, 2018. 557: p. 321-334.
82. Mailloux, B.J., et al., Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proceedings of the National Academy of Sciences, 2013. 110(14): p. 5331-5335.
83. Magnone, D., et al., Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia. Scientific Reports, 2017. 7(1): p. 13093.
84. Anawar, H., et al., Mobilization of arsenic in groundwater of Bangladesh: evidence from an incubation study. Environmental Geochemistry and Health, 2006. 28: p. 553-565.
85. Glodowska, M., et al., Role of in situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). Environmental science & technology, 2020. 54(7): p. 4149-4159.
86. Richards, L.A., et al., Dissolved organic matter tracers reveal contrasting characteristics across high arsenic aquifers in Cambodia: A fluorescence spectroscopy study. Geoscience Frontiers, 2019. 10(5): p. 1653-1667.
87. Yu, K., et al., Anthropogenic influences on dissolved organic matter transport in high arsenic groundwater: Insights from stable carbon isotope analysis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Science of the total environment, 2020. 708: p. 135162.
88. Qiao, W., et al., Molecular evidence of arsenic mobility linked to biodegradable organic matter. Environmental Science & Technology, 2020. 54(12): p. 7280-7290.
89. Huang, S.-b., et al., Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses. Science of the Total Environment, 2015. 529: p. 131-139.
90. Kulkarni, H.V., et al., Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility. Applied Geochemistry, 2017. 77: p. 194-205.
91. Kothawala, D.N., et al., Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Science of the Total Environment, 2012. 433: p. 238-246.
92. Helms, J.R., et al., Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and oceanography, 2008. 53(3): p. 955-969.
93. Giri, A., et al., Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 2013. 20: p. 1281-1291.
94. Arts, D., M. Abdus Sabur, and H.A. Al-Abadleh, Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR: Kinetic studies. The Journal of Physical Chemistry A, 2013. 117(10): p. 2195-2204.
95. Sharma, P., J. Ofner, and A. Kappler, Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental science & technology, 2010. 44(12): p. 4479-4485.
96. Coble, P.G., et al., Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 1990. 348(6300): p. 432-435.
97. Chen, W., et al., Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 2003. 37(24): p. 5701-5710.
98. Larsen, L.G. and C. Woelfle‐Erskine, Groundwater is key to salmonid persistence and recruitment in intermittent Mediterranean‐climate streams. Water Resources Research, 2018. 54(11): p. 8909-8930.
99. Cory, R.M. and D.M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental science & technology, 2005. 39(21): p. 8142-8149.
100. Ghosh, D., J. Routh, and P. Bhadury, Characterization and microbial utilization of dissolved lipid organic fraction in arsenic impacted aquifers (India). Journal of Hydrology, 2015. 527: p. 221-233.
101. Huguet, A., et al., Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 2009. 40(6): p. 706-719.
102. Birdwell, J.E. and A.S. Engel, Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, Central Texas. Journal of Cave and Karst Studies, 2009. 71(2): p. 144-156.
103. Parlanti, E., et al., Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic geochemistry, 2000. 31(12): p. 1765-1781.
104. Wolfe, A.P., et al., Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environmental Science & Technology, 2002. 36(15): p. 3217-3223.
105. Senesi, N., Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part II. The fluorescence spectroscopy approach. Analytica Chimica Acta, 1990. 232: p. 77-106.
106. 柏貫中, 蘭陽平原地下水水溶氣(甲烷)厭氧氧化作用對含水層砷釋出之影響, in 環境工程研究所. 2022, 國立中央大學: 桃園縣. p. 122.
107. Nations, T.U. Transforming our world: the 2030 agenda for sustainable development, Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1 Seventieth session, General Assembly, United Nations. 2015; Available from: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication.
108. Luton, P.E., et al., The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 2002. 148(11): p. 3521-3530.
109. Hallam, S.J., et al., Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and environmental microbiology, 2003. 69(9): p. 5483-5491.
110. Dick, G.J. and P. Lam, Omic approaches to microbial geochemistry. Elements, 2015. 11(6): p. 403-408.
111. McDonald, I.R. and J.C. Murrell, The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS microbiology letters, 1997. 156(2): p. 205-210.
112. Stookey, L.L., Ferrozine---a new spectrophotometric reagent for iron. Analytical chemistry, 1970. 42(7): p. 779-781.
113. 廖炳傑, 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響, in 環境工程研究所. 2014, 國立中央大學: 桃園縣. p. 112.
114. Lovley, D.R. and E.J. Phillips, Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 1987. 53(7): p. 1536-1540.
115. Uhrovčík, J., Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta, 2014. 119: p. 178-180.
116. National Institute of Standards and Technology. Methane.
117. Stedmon, C.A. and R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 2008. 6(11): p. 572-579.
118. Bahram, M., et al., Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics: A Journal of the Chemometrics Society, 2006. 20(3‐4): p. 99-105.
119. Tyagi, S., Imaging intracellular RNA distribution and dynamics in living cells. natuRe methods, 2009. 6(5): p. 331-338.
120. 李杰穎, 季節效應對沼液沼渣中抗生素抗性基因豐度之影響, in 環境工程研究所. 2023, 國立中央大學: 桃園縣. p. 138.
121. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 2001. 25(4): p. 402-408.
122. Frank, J.A., et al., Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and environmental microbiology, 2008. 74(8): p. 2461-2470.
123. Muyzer, G., E.C. De Waal, and A. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 1993. 59(3): p. 695-700.
124. Großkopf, R., P.H. Janssen, and W. Liesack, Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and environmental microbiology, 1998. 64(3): p. 960-969.
125. Nunoura, T., et al., Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS microbiology ecology, 2008. 64(2): p. 240-247.
126. Luesken, F.A., et al., pmoA primers for detection of anaerobic methanotrophs. Applied and environmental microbiology, 2011. 77(11): p. 3877-3880.
127. Cummings, D.E., et al., Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environmental Science & Technology, 1999. 33(5): p. 723-729.
128. Plummer, L.N., B.F. Jones, and A.H. Truesdell, WATEQF-a FORTRAN IV version of WATEQ: a computer program for calculating chemical equilibrium of natural waters. Vol. 76. 1976: Department of the Interior, Geological Survey, Water Resources Division.
129. Glynn, P.D. and J. Brown, Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. Reviews in Mineralogy and Geochemistry, 1996. 34(1): p. 377-438.
130. Parkhurst, D.L. and C. Appelo, User′s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. 1999, US Geological Survey.
131. Sracek, O., et al., Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 2004. 19(2): p. 169-180.
132. Williamson, W.M., et al., Groundwater biofilm dynamics grown in situ along a nutrient gradient. Groundwater, 2012. 50(5): p. 690-703.
133. Widdel, F. and F. Bak, Gram-negative mesophilic sulfate-reducing bacteria, in The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 1992, Springer. p. 3352-3378.
134. Tseng, W.-P., Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental health perspectives, 1977. 19: p. 109-119.
135. Fodor, P., Arsenic speciation in the environment, in Trace element speciation for environment, food and health. 2001, Royal Society of Chemistry Cambridge. p. 196-210.
136. Jiang, Z., et al., Arsenic mobilization and transformation by ammonium-generating bacteria isolated from high arsenic groundwater in Hetao Plain, China. International Journal of Environmental Research and Public Health, 2022. 19(15): p. 9606.
137. Tays, C., et al., Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Frontiers in Microbiology, 2018. 9: p. 389703.
138. He, Z., et al., Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Science of the total environment, 2018. 610: p. 759-768.
139. Richards, L.A., et al., High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia. Science of the total environment, 2017. 590: p. 540-553.
140. Héry, M., et al., Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology, 2010. 8(2): p. 155-168.
141. Tsukatani, Y., et al., Parallel electron donation pathways to cytochrome cz in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008. 1777(9): p. 1211-1217.
142. Stollenwerk, K.G., Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. Arsenic in ground water: Geochemistry and occurrence, 2003: p. 67-100.
143. Liu, W., et al., Indices of the dual roles of OM as electron donor and complexing compound involved in As and Fe mobilization in aquifer systems of the Datong Basin. Environmental pollution, 2020. 262: p. 114305.
144. Hu, Y., et al., Irrigation alters source-composition characteristics of groundwater dissolved organic matter in a large arid river basin, Northwestern China. Science of The Total Environment, 2021. 767: p. 144372.
145. 趙浩然, 發展三維螢光光譜技術追蹤污染場址污染來源之可行性. 2015.
146. Beatty, J.T., et al., An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences, 2005. 102(26): p. 9306-9310.
147. Stolz, J.F., et al., Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol., 2006. 60: p. 107-130.
148. Liu, S., et al., Newly Isolated Strain Methylocystis sp. L03 Oxidizes Methane with Nitrite as Terminal Electron Acceptor. Journal of Environmental Engineering, 2023. 149(12): p. 04023084.
149. Lovley, D.R., et al., Geobacter: the microbe electric′s physiology, ecology, and practical applications. Advances in microbial physiology, 2011. 59: p. 1-100.
150. Schwertmann, U., D. Schulze, and E. Murad, Identification of ferrihydrite in soils by dissolution kinetics, differential x‐ray diffraction, and Mössbauer spectroscopy. Soil Science Society of America Journal, 1982. 46(4): p. 869-875.
151. Aeppli, M., et al., Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental science & technology, 2019. 53(15): p. 8736-8746.
152. Yamamura, S. and S. Amachi, Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of bioscience and bioengineering, 2014. 118(1): p. 1-9.
153. Karapınar, N., Removal of heavy metal ions by ferrihydrite: an opportunity to the treatment of acid mine drainage. Water, Air, & Soil Pollution, 2016. 227(6): p. 193.
154. Ohno, T., et al., Molecular weight and humification index as predictors of adsorption for plant‐and manure‐derived dissolved organic matter to goethite. European Journal of Soil Science, 2007. 58(1): p. 125-132.
155. Li, P., et al., Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PloS one, 2015. 10(5): p. e0125844.
156. vanden Hoven, R.N. and J.M. Santini, Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004. 1656(2-3): p. 148-155.
157. Khanal, A., et al., Comparative Genome Analysis of Polar Mesorhizobium sp. PAMC28654 to Gain Insight into Tolerance to Salinity and Trace Element Stress. Microorganisms, 2024. 12(1): p. 120.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2024-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明