參考文獻 |
[1] Knoops, H.; Baggetto, L.; Langereis, E.; Van De Sanden, M.; Klootwijk, J.; Roozeboom, F.; Niessen, R.; Notten, P.; Kessels, W. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society 2008, 155 (12), G287.
[2] Rossnagel, S. M. Characteristics of ultrathin Ta and TaN films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2002, 20 (6), 2328-2336.
[3] Lane, M.; Dauskardt, R. H.; Krishna, N.; Hashim, I. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. Journal of Materials Research 2000, 15 (1), 203-211.
[4] Frolov, T.; Darling, K.; Kecskes, L.; Mishin, Y. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Materialia 2012, 60 (5), 2158-2168.
[5] Wojcik, H.; Schwiegel, B.; Klaus, C.; Urbansky, N.; Kriz, J.; Hahn, J.; Kubasch, C.; Wenzel, C.; Bartha, J. Cu barrier properties of very thin Ta and TaN films. In IEEE International Interconnect Technology Conference, 2014; IEEE: pp 167-170.
[6] Zhao, J.; Hung, F.; Wu, S. Interface Characteristics, Erosion Behavior, and Thermal Shock Resistance of Al–Ta Alloy Coatings Produced by Arc Spraying. IEEE Transactions on Semiconductor Manufacturing 2022, 35 (4), 698-705.
[7] Kumar, A.; Bhattacharjee, N.; Patel, B.; Laloë, J.-B.; Famodu, O. O.; Ferain, I. Strategies for Reducing Particle Defects in Ti and TiN Thin-Film Deposition Processes. IEEE Transactions on Semiconductor Manufacturing 2018, 32 (1), 48-53.
[8] Ichou, H.; Arrousse, N.; Berdimurodov, E.; Aliev, N. Exploring the advancements in physical vapor deposition coating: a review. Journal of Bio-and Tribo-Corrosion 2024, 10 (1), 3.
[9] Yang, S.-S.; Lai, H.-L.; Chen, C.-C.; Lu, S.-T.; Dai, Y.-M.; Cheng, W.-C.; Fuh, Y.-K.; Li, T. T. Wire-arc spray directed energy deposition: Correlation of chamber kits refurbishing and particle defects reduction in Ta/TaN thin-film physical deposition processes. Journal of Materials Research and Technology 2024, 30, 2754-2767.
[10] Köhler, M.; Fiebig, S.; Hensel, J.; Dilger, K. Wire and arc additive manufacturing of aluminum components. Metals 2019, 9 (5), 608.
[11] Rodriguez, R. M. P.; Paredes, R. S.; Wido, S. H.; Calixto, A. Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surface and Coatings Technology 2007, 202 (1), 172-179.
[12] Mwema, F. M.; Oladijo, O. P.; Akinlabi, S. A.; Akinlabi, E. T. Properties of physically deposited thin aluminium film coatings: A review. Journal of alloys and compounds 2018, 747, 306-323.
[13] Gedzevicius, I.; Valiulis, A. V. Analysis of wire arc spraying process variables on coatings properties. Journal of Materials Processing Technology 2006, 175 (1-3), 206-211.
[14] Shah, A.; Aliyev, R.; Zeidler, H.; Krinke, S. A review of the recent developments and challenges in wire arc additive manufacturing (WAAM) process. Journal of Manufacturing and Materials Processing 2023, 7 (3), 97.
[15] Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology 2015, 81, 465-481.
[16] Vaz, R. F.; Pukasiewicz, A. G.; Fals, H. D.; Lourençato, L. A.; Paredes, R. S. Study of particle properties of different steels sprayed by arc spray process. Coatings 2020, 10 (4), 417.
[17] Dobrzański, L.; Dobrzański, L.; Dobrzańska-Danikiewicz, A. Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. Journal of Achievements in Materials and Manufacturing Engineering 2020, 99 (1), 14-41.
[18] Lett, S.; Quet, A.; Hémery, S.; Cormier, J.; Meillot, E.; Villechaise, P. Residual stresses development during cold spraying of Ti-6Al-4V combined with in situ shot peening. Journal of Thermal Spray Technology 2023, 32 (4), 1018-1032.
[19] Syrek-Gerstenkorn, B.; Paul, S.; Davenport, A. J. Sacrificial thermally sprayed aluminium coatings for marine environments: A review. Coatings 2020, 10 (3), 267.
[20] WANG, Hong; HE, Yongxiang; STOW, Clifford C. Method of cleaning a coated process chamber component. U.S. Patent No 6,902,628, 2005.
[21] Hartmann, F.; Katz, C. Structural analysis with finite elements; Springer Science & Business Media, 2013.
[22] Łyczkowska-Widłak, E.; Lochyński, P.; Nawrat, G. Electrochemical polishing of austenitic stainless steels. Materials 2020, 13 (11), 2557.
[23] Baicheng, Z.; Xiaohua, L.; Jiaming, B.; Junfeng, G.; Pan, W.; Chen-nan, S.; Muiling, N.; Guojun, Q.; Jun, W. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Materials & Design 2017, 116, 531-537.
[24] Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization; Springer, 2018.
[25] Teng, X.; Li, F.; Lu, C. Visualization of materials using the confocal laser scanning microscopy technique. Chemical Society Reviews 2020, 49 (8), 2408-2425.
[26] Ji, J.; Khan, M. A.; Zhan, Z.; Yi, R.; Deng, H. Material removal thickness: a universal factor determining the evolution of surface roughness in electrochemical polishing. The International Journal of Advanced Manufacturing Technology 2022, 120 (9), 5755-5762.
[27] Wolters, C. H.; Köstler, H.; Möller, C.; Härdtlein, J.; Anwander, A. Numerical approaches for dipole modeling in finite element method based source analysis. In International Congress Series, 2007; Elsevier: Vol. 1300, pp 189-192.
[28] Moridi, A.; Ruan, H.; Zhang, L.; Liu, M. Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations. International Journal of Solids and Structures 2013, 50 (22-23), 3562-3569.
[29] Fang, W.; Lo, C.-Y. On the thermal expansion coefficients of thin films. Sensors and Actuators A: Physical 2000, 84 (3), 310-314.
[30] Chang, J.; Zhao, G.-P.; Zhou, X.-L.; Liu, K.; Lu, L.-Y. Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. Journal of Applied Physics 2012, 112 (8).
[31] Zhou, L.; Chen, J.; Li, C.; He, J.; Li, W.; Yuan, T.; Li, R. Microstructure tailoring to enhance strength and ductility in pure tantalum processed by selective laser melting. Materials Science and Engineering: A 2020, 785, 139352.
[32] Hou, Y.; Li, R.; Liang, J. Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions. Applied Surface Science 2018, 434, 918-921.
[33] Garrigues, L.; Pebere, N.; Dabosi, F. An investigation of the corrosion inhibition of pure aluminum in neutral and acidic chloride solutions. Electrochimica Acta 1996, 41 (7-8), 1209-1215.
[34] Ma, D.; Li, S.; Liang, C. Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions. Corrosion Science 2009, 51 (4), 713-718.
[35] Yi, R.; Zhang, Y.; Zhang, X.; Fang, F.; Deng, H. A generic approach of polishing metals via isotropic electrochemical etching. International Journal of Machine Tools and Manufacture 2020, 150, 103517.
[36] 林金雄,"鋁表面之電解拋光研究",勤益學報 2005, 23 (1), 29-38.
[37] Bai, Y.; Zhao, C.; Yang, J.; Fuh, J. Y. H.; Lu, W. F.; Weng, C.; Wang, H. Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel. Materials & Design 2020, 193, 108840.
[38] Dibari, G.; Read, H. Electrochemical behavior of high purity aluminum in chloride containing solutions. Corrosion 1971, 27 (11), 483-494.
[39] 陳煥濱,"使用導電高分子工具電解複合磨粒拋光純鋁圓柱面之研究",國立中山大學機械與機電工程學系碩士論文,2017.
[40] Liu, W.; Kunieda, M.; Luo, Z. Three-dimensional simulation and experimental investigation of electrolyte jet machining with the inclined nozzle. Journal of Materials Processing Technology 2021, 297, 117244.
[41] Qu, N.; Fang, X.; Zhang, Y.; Zhu, D. Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. The International Journal of Advanced Manufacturing Technology 2013, 69, 2703-2709.
[42] Ge, Z.; Chen, W.; Zhu, Y. Simulation and experimental study on improving electrochemical machining stability of highly convex structures on casing surfaces using backwater pressure. Chinese Journal of Mechanical Engineering 2022, 35 (1), 98.
[43] Labarga, J.; Bastidas, J.; Feliu, S. A contribution to the study on electropolishing of mild steel and aluminium using alternating current. Electrochimica acta 1991, 36 (1), 93-95.
[44] Sepúlveda, M.; Quintero, D.; Castaño, J.; Echeverría, F. Improved two-step Brytal process for electropolishing of aluminum alloys. Corrosion Science 2018, 136, 386-392.
[45] Kuo, H. S.; Tsai, W. T. Electrochemical behavior of aluminum during chemical mechanical polishing in phosphoric acid base slurry. Journal of The Electrochemical Society 2000, 147 (1), 149.
[46] 鍾岳峻,"電解拋光對積層製造製備鈦合金材表面與機械性質影響",國立中山大學材料與光電科學學系碩士論文,2018.
[47] Han, W.; Fang, F. Fundamental aspects and recent developments in electropolishing. International Journal of Machine Tools and Manufacture 2019, 139, 1-23.
[48] 郭寬淵,"電解拋光鋁合金微流道模具之研究",國立中央大學機械工程學系碩士論文,2008.
[49] Sato, N.; Okamoto, G. Electrochemical passivation of metals. Electrochemical Materials Science 1981, 193-245.
[50] Acquesta, A.; Monetta, T.; Franchitti, S.; Borrelli, R.; Viscusi, A.; Perna, A. S.; Penta, F.; Esposito, L.; Carrino, L. Green electrochemical polishing of EBM Ti6Al4V samples with preliminary fatigue results. The International Journal of Advanced Manufacturing Technology 2023, 126 (9), 4269-4282. |