博碩士論文 108083608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.189.170.227
姓名 蔡明信(Thai Minh Tin)  查詢紙本館藏   畢業系所 環境科技博士學位學程
論文名稱
(Advancements in Satellite-Based Drought Monitoring Methods: Novel Indices and Their Applications at Various Scales)
相關論文
★ 區域發展對土地利用變遷之影響-以桃園縣客家地區為例★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究
★ WVR、GPS及氣球探空觀測可降水量之比較★ GPS斷層掃描估算大氣濕折射係數模式
★ GPS觀測大氣閃爍之研究★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 36.5 GHz微波輻射器接收模組之研製★ GPS 氣象中地面氣象模式之改進
★ 由GPS信號反演大氣濕折射度之數值模擬★ 發展遙測資料反演可感熱與潛熱通量之研究
★ GPS信號估算可降水量與降雨關係之研究★ 近即時GPS觀測可降水技術之研究
★ 利用水氣資訊改善降水估計之研究★ GPS掩星觀測反演與反演誤差探討
★ 微波輻射計數位相關器之設計與實現★ GPS與探空氣球資料觀測可降水量 與降雨之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 乾旱是一種嚴重的自然災害,對全球的生態系統、環境和人類生活產生廣泛的影響。近期台灣的乾旱情況引起了重大關注,尤其是對半導體晶片生產這樣的重要產業。本研究使用衛星基礎指數來監測及分析乾旱狀態,因為準確乾旱評估在有效的水資源管理中起著關鍵作用。溫度-植被乾旱指數(TVDI),使用經驗技術結合地表溫度(LST)和植被覆蓋分數(FVC),被廣泛使用。然而,其在植被稀疏地區的適用性受到限制,促使我們探索替代方法。最近發展的溫度-土壤水分乾旱指數(TMDI),用標準化差異潛熱指數(NDLI)替代植被指數,顯示出做為一種合適替代品的潛力。研究的第一個關鍵部分介紹了使用從NDLI衍生出的新的表面水分可用性(FSWA)對TMDI的改進。該部分深入探討了在LST-FSWA空間內精煉邊緣選擇以觀察乾旱。已經採用了一種實用的方法來準確地識別這個空間內的乾和濕邊緣。為了評估TMDI的可靠性,該研究使用各種指標進行了全面的評估,包括由地表能量平衡算法(SEBAL)衍生的蒸散量(ET)、作物水分壓力指數(CWSI)、初級生產力(GPP)和降水數據。結果顯示,TMDI與SEBAL衍生的CWSI、ET和GPP之間的相關性高於TVDI。此外,TMDI與降水之間的強關聯突顯了其捕捉乾旱模式的有效性。該部分還提出了一個標準的TMDI閾值,用於評估2014年至2021年台灣西南部的乾旱。本文的後續部分應用新穎的 FSWA 來監測全國範圍內的農業缺水和乾旱狀況。 FSWA 與其他兩個指數一起用於分析 2001 年至 2022 年澳洲的年度乾旱模式。在澳洲的大多數農業地區,FSWA 顯示出與土壤濕度 (SM)、ET 和降雨量的強大時間相關性。鑑於SWAT的簡化計算和全國範圍的適用性,其實際利用已在全球範圍內進行評估。研究發現SWAT可以代表土壤水分並生成高分辨率的乾旱地圖。此外,SWAT被應用於評估2011年至2022年的全球乾旱狀況。基於SWAT指數的乾旱分佈和趨勢分析顯示出不同土地覆蓋類型之間的廣泛變化。總的來說,TMDI和SWAT都作為實際運行的乾旱指數。先進的TMDI,依賴於僅兩個變量的整合:FSWA和LST,在區域範圍的乾旱監測中表現出色,特別是在農業區。另一方面,由於其更廣泛的規模適用性和更簡單的方法,基於衛星的SWAT指數提供了一種實用的替代方案。
摘要(英) Drought, a detrimental natural disaster, has extensive impacts on ecosystems, the environment, and human life globally. Its recent emergence in Taiwan has sparked significant concerns, especially for vital industries like semiconductor chip production. This dissertation uses satellite-based indices to monitor drought status, given the crucial role of accurate drought assessment in effective water management. The Temperature-Vegetation Dryness Index (TVDI), which combines Land Surface Temperature (LST) and Fractional Vegetation Cover (FVC) using empirical techniques, is widely utilized. However, its applicability is limited in regions with sparse vegetation, prompting the exploration of alternative methods. The recently introduced Temperature-Soil Moisture Dryness Index (TMDI), which substitutes the vegetation index with the Normalized Difference Latent Heat Index (NDLI), shows potential as a suitable alternative. The first key section of the dissertation presents advancements in the TMDI using the new Fractional Surface Water Availability (FSWA) derived from the NDLI. This section delves into refining edge selection within the LST–FSWA space to observe drought. A practical method has been adopted to accurately identify the dry and wet edges within this space. To evaluate the reliability of TMDI, the study conducted comprehensive assessments using various indicators, including the evapotranspiration (ET), Crop Water Stress Index (CWSI) derived from the Surface Energy Balance Algorithm for Land (SEBAL), Gross Primary Productivity (GPP), and precipitation data. The results reveal high correlations between the TMDI and SEBAL-derived CWSI, ET, and GPP, surpassing those obtained with TVDI. Moreover, strong associations between the TMDI and precipitation underscore its effectiveness in capturing drought patterns. This section also proposes a standard TMDI threshold for assessing drought in southwestern Taiwan from 2014 to 2021. The subsequent section of this dissertation applies the novel FSWA to monitor agricultural water stress and drought status at the national scale. The FSWA is employed alongside two other indices to analyze annual drought patterns in Australia from 2001 to 2022. The analyses reveal high correlations between the FSWA against soil moisture (SM), ET, and rainfall. Across most agricultural regions in Australia, the FSWA shows robust temporal correlations with the SM, ET, and rainfall. Furthermore, given the SWAT’s simplified calculations and wide applicability, its practical utilization has been evaluated at the global scale. It is found that the SWAT can represent SM and generate high-resolution drought maps. The SWAT was applied to assess global drought conditions from 2011 to 2022. The analysis of drought distributions and trends based on the SWAT index exhibited wide variations across different land cover types. In conclusion, both the TMDI and SWAT function as practically operational drought indices. The advanced TMDI, relying on the integration of only two variables: FSWA and LST, excels in regional-scale drought monitoring, particularly in agricultural zones. On the other hand, the satellite-based SWAT index, due to its broader scale applicability and more straightforward methodology, offers a viable alternative to empirical models.
關鍵字(中) ★ 乾旱
★ 溫度-土壤水分乾燥指數(TMDI)
★ 溫度-植被乾燥指數(TVDI)
★ 全球乾旱
關鍵字(英) ★ Drought
★ Temperature-Soil Moisture Dryness Index (TMDI)
★ Temperature-Vegetation Dryness Index (TVDI)
★ Global drought
論文目次 摘要 (Abstract) ii
ABSTRACT iv
ACKNOWLEDGMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xiv
SYMBOLS xv
CHAPTER 1. INTRODUCTION 1
1.1. Background and Motivation 1
1.1.1. Background 1
1.1.2. Motivation 3
1.2. Research Objectives 5
1.3. Scientific Contribution and Innovation 6
CHAPTER 2. LITERATURE REVIEW 8
2.1. Dryness and Drought Definitions 8
2.2. Drought Monitoring Methods 10
2.2.1. Univariate Indices 10
2.2.2. Bivariate Indices 11
2.2.3. Trivariate Indices 13
CHAPTER 3. METHODOLOGY 16
3.1. Classification of Land Use/Land Cover 16
3.2. Calculations of the Indices and LST 17
3.3. Estimates of ET and CWSI Based on SEBAL 20
3.4. The Conceptual Framework of the TVDI 24
3.5. The Conceptual Framework of the Original TMDI 24
3.6. The Conceptual Framework of the TVSDI 25
3.7. The Conceptual Framework of the 26
3.8. Assessment of Drought Trends 27
CHAPTER 4. ADVANCEMENTS IN TEMPERATURE-SOIL MOISTURE DRYNESS INDEX (TMDI) FOR REGIONAL DROUGHT ASSESSMENT 28
4.1. Regional Context and Data Acquisition 28
4.1.1. Regional Context of Southwestern Taiwan 28
4.1.2. Data Acquisition 30
4.2. The Original TMDI and Its Results 32
4.2.1. Dry and Wet Edges of Original LST–NDLI Spaces 32
4.2.2. Performance Evaluation of the Drought Indices 34
4.3. Advancements and Validations of the TMDI 37
4.3.1. Advancements of the TMDI 37
4.3.2. Identification of Dry and Wet Edges in Novel LST–FSWA Spaces 41
4.3.3. Verification of the Results 43
4.3.4. Drought Classification Categories 53
4.4. Applications of the Advanced TMDI 55
4.4.1. Yearly Drought Variations in the YCNK region 55
4.4.2. Dryness-Wetness Trends 59
4.5. Summary of Findings 61
CHAPTER 5. FRACTIONAL SURFACE WATER AVAILABILITY (FSWA): A NOVEL SATELLITE INDEX FOR DROUGHT MONITORING 63
5.1. Geographical Context and Data Acquisition 63
5.1.1. Geographical Context of Australia 63
5.1.2. Data Acquisition 64
5.2. The Performance of the Indices and Indicators 66
5.3. Spatiotemporal Correlations Between FSWA and Three RDs 71
5.4. Comparisons of FSWA and RZ SM 73
5.5. RZ SM Mapping Capabilities of the FSWA 76
5.6. Multiyear Dryness-Wetness Conditions in Australia 77
5.7. Summary of Findings 79
CHAPTER 6. SURFACE WATER AVAILABILITY AND TEMPERATURE (SWAT) FOR GLOBAL DROUGHT MONITORING 81
6.1. Regional Context and Data Acquisition 81
6.1.1. Regional Context of Globe 81
6.1.2. Data Acquisition 83
6.2. The Validation of the SWAT Index 85
6.2.1. 3D Space of SWAT with SMAP SM Distribution 85
6.2.2. Drought Indices vs. GLASS SM at the National/Regional Scale 86
6.2.3. Drought Indices vs. SMAP SM at the Continental Scale 87
6.2.4. Spatiotemporal Relationships of SWAT and Drought Indicators 89
6.3. Utilization of SWAT for Global Drought Assessment 91
6.3.1. Yearly Drought Variations Across the Globe 91
6.3.2. Drought Trends Across the Globe 93
6.4. Summary of Findings 94
CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 96
7.1. Conclusions 96
7.2. Recommendations for Future Research 97
REFERENCES 99
參考文獻 [1] M. Xu et al., "Evaluating a new temperature-vegetation-shortwave infrared reflectance dryness index (TVSDI) in the continental United States", J. Hydrol., Vol. 610, pp. 127785–127801, 2022. DOI: 10.1016/j.jhydrol.2022.127785.
[2] I. Rousta et al., "Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan", Remote Sens., Vol. 12(15), pp. 2433–2454, 2020. DOI: 10.3390/rs12152433.
[3] W. Wei et al., "Temperature Vegetation Precipitation Dryness Index (TVPDI)-based dryness-wetness monitoring in China", Remote Sens. Environ., Vol. 248, pp. 111957–111975, 2020. DOI: 10.1016/j.rse.2020.111957.
[4] X. Wang et al., "No trends in spring and autumn phenology during the global warming hiatus", Nat. Commun., Vol. 10(1), pp. 2389, Jun 3 2019. DOI: 10.1038/s41467-019-10235-8.
[5] UNCCD, "Drought in numbers 2022 - Restoration for readiness and resilience", UNCCD’s 15th Conference of Parties, 2022.
[6] M. Amani, B. Salehi, S. Mahdavi, A. Masjedi, and S. Dehnavi, "Temperature-Vegetation-soil Moisture Dryness Index (TVMDI)", Remote Sens. Environ., Vol. 197, pp. 1–14, 2017. DOI: 10.1016/j.rse.2017.05.026.
[7] F. Kogan, W. Guo, and W. Yang, "Drought and food security prediction from NOAA new generation of operational satellites", Geomatics Nat. Hazards Risk, Vol. 10(1), pp. 651–666, 2019. DOI: 10.1080/19475705.2018.1541257.
[8] J. Zeng et al., "Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018", Weather Clim. Extremes, Vol. 35, pp. 100412–100426, 2022. DOI: 10.1016/j.wace.2022.100412.
[9] X. Zhang and X. Yan, "Spatiotemporal change in geographical distribution of global climate types in the context of climate warming", Clim. Dyn., Vol. 43(3-4), pp. 595-605, 2013. DOI: 10.1007/s00382-013-2019-y.
[10] Q. Wang et al., "Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale", Quat. Int., Vol. 349, pp. 10-21, 2014. DOI: 10.1016/j.quaint.2014.06.021.
[11] Y.-A. Liou and M.-T. Thai, "Surface Water Availability and Temperature (SWAT): An Innovative Index for Remote Sensing of Drought Observation", IEEE Trans. Geosci. Remote Sens., Vol. 61, pp. 1–12, 2023. DOI: 10.1109/tgrs.2023.3321910.
[12] A. Dai, K. E. Trenberth, and T. Qian, "A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming", J. Hydrometeorol., Vol. 5(6), pp. 1117–1130, 2004. DOI: 10.1175/JHM-386.1.
[13] S. T. Chen, T. C. Yang, C. M. Kuo, C. H. Kuo, and P. S. Yu, "Probabilistic drought forecasting in Southern Taiwan using El Niño-Southern oscillation index", Terr., Oceanic Atmos. Sci., Vol. 24(5), pp. 911–924, 2013. DOI: 10.3319/TAO.2013.06.04.01(Hy).
[14] V. C. Patil et al., "Assessing Agricultural Water Productivity in Desert Farming System of Saudi Arabia", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 8(1), pp. 284–297, 2015. DOI: 10.1109/jstars.2014.2320592.
[15] D. Casanova, G. Epema, and J. Goudriaan, "Monitoring rice reflectance at field level for estimating biomass and LAI", Field Crops Res., Vol. 55(1–2), pp. 83–92, 1998. DOI: 10.1016/S0378-4290(97)00064-6.
[16] R. Li, A. Tsunekawa, and M. Tsubo, "Assessment of agricultural drought in rainfed cereal production areas of northern China", Theor. Appl. Climatol., Vol. 127(3–4), pp. 597–609, 2015. DOI: 10.1007/s00704-015-1657-x.
[17] M. M. Getachew and Y.-A. Liou, "Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapotranspiration Index for the Upper Blue Nile Basin", Water, Vol. 12(3), pp. 643, 2020. DOI: 10.3390/w12030643.
[18] Y. A. Liou and M. M. Getachew, "Spatio-temporal assessment of drought in Ethiopia and the impact of recent intense droughts", Remote Sens., Vol. 11(15), pp. 1828–1847, 2019. DOI: 10.3390/rs11151828.
[19] S. T. Chen, C. C. Kuo, and P. S. Yu, "Historical trends and variability of meteorological droughts in Taiwan", Hydrol. Sci. J., Vol. 54(3), pp. 430–441, 2009. DOI: 10.1623/hysj.54.3.430.
[20] H. F. Yeh and H. L. Hsu, "Stochastic model for drought forecasting in the Southern Taiwan Basin", Water, Vol. 11(10), pp. 2041–2056, 2019. DOI: 10.3390/w11102041.
[21] P. S. Yu, T. C. Yang, and C. C. Kuo, "Evaluating long-term trends in annual and seasonal precipitation in Taiwan", Water Resour. Manage., Vol. 20(6), pp. 1007-1023, 2006. DOI: 10.1007/s11269-006-9020-8.
[22] M. H. Yen, D. W. Liu, Y. C. Hsin, C. E. Lin, and C. C. Chen, "Application of the deep learning for the prediction of rainfall in Southern Taiwan", Sci. Rep., Vol. 9(1), pp. 12774–12783, Sep 4 2019. DOI: 10.1038/s41598-019-49242-6.
[23] C. C. Wu et al., "Application of social vulnerability indicators to climate change for the southwest coastal areas of Taiwan", Sustainability, Vol. 8(12), pp. 1270–1288, 2016. DOI: 10.3390/su8121270.
[24] F. Y. Cheng and Y. Chen, "Variations in soil moisture and their impact on land–air interactions during a 6-month drought period in Taiwan", Geosci. Lett., Vol. 5(1), pp. 1–14, 2018. DOI: 10.1186/s40562-018-0125-8.
[25] N. P. Singh, C. Bantilan, and K. Byjesh, "Vulnerability and policy relevance to drought in the semi-arid tropics of Asia–A retrospective analysis", Weather Clim. Extremes, Vol. 3, pp. 54–61, 2014. DOI: 10.1016/j.wace.2014.02.002.
[26] J. T. Shiau and Y. Y. Hsiao, "Water-deficit-based drought risk assessments in Taiwan", Nat. Hazard., Vol. 64(1), pp. 237–257, 2012. DOI: 10.1007/s11069-012-0239-9.
[27] P. Tarolli and W. Zhao, "Drought in agriculture: Preservation, adaptation, migration", The Innovation Geoscience, Vol. 1(1), pp. 100002, 2023. DOI: 10.59717/j.xinn-geo.2023.100002.
[28] I. Livada and V. D. Assimakopoulos, "Spatial and temporal analysis of drought in greece using the Standardized Precipitation Index (SPI)", Theor. Appl. Climatol., Vol. 89(3–4), pp. 143–153, 2006. DOI: 10.1007/s00704-005-0227-z.
[29] S. Mehravar et al., "Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-year drought monitoring in Iran using satellite imagery within Google Earth Engine", Adv. Space Res., Vol. 68(11), pp. 4573–4593, 2021. DOI: 10.1016/j.asr.2021.08.041.
[30] A. F. Van Loon, "Hydrological drought explained", WIREs Water, Vol. 2(4), pp. 359–392, 2015. DOI: 10.1002/wat2.1085.
[31] H. West, N. Quinn, and M. Horswell, "Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities", Remote Sens. Environ., Vol. 232, pp. 111291–111305, 2019. DOI: 10.1016/j.rse.2019.111291.
[32] Z. Bian et al., "An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought", Remote Sens. Environ., Vol. 284, pp. 113330–113347, 2023. DOI: 10.1016/j.rse.2022.113330.
[33] G. Yin and H. Zhang, "A new integrated index for drought stress monitoring based on decomposed vegetation response factors", J. Hydrol., Vol. 618, pp. 129252–129268, 2023. DOI: 10.1016/j.jhydrol.2023.129252.
[34] A. F. Van Loon et al., "Drought in the Anthropocene", Nat. Geosci., Vol. 9(2), pp. 89–91, 2016. DOI: 10.1038/ngeo2646.
[35] M. S. Le and Y.-A. Liou, "Spatio-Temporal Assessment of Surface Moisture and Evapotranspiration Variability Using Remote Sensing Techniques", Remote Sens., Vol. 13(9)(9), pp. 1667–1682, 2021. DOI: 10.3390/rs13091667.
[36] M.-J. Um, Y. Kim, and D. Park, "Evaluation and modification of the Drought Severity Index (DSI) in East Asia", Remote Sens. Environ., Vol. 209, pp. 66–76, 2018. DOI: 10.1016/j.rse.2018.02.044.
[37] F. N. Kogan, "Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data", Bull. Am. Meteorol. Soc., Vol. 76(5), pp. 655–668, 1995. DOI: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.
[38] F. N. Kogan, "Application of vegetation index and brightness temperature for drought detection", Adv. Space Res., Vol. 15(11), pp. 91–100, 1995. DOI: 10.1016/0273-1177(95)00079-T.
[39] A. Ghulam, Q. Qin, and Z. Zhan, "Designing of the perpendicular drought index", Environ. Geol., Vol. 52(6), pp. 1045–1052, 2007. DOI: 10.1007/s00254-006-0544-2.
[40] A. Ghulam, Q. Qin, T. Teyip, and Z.-L. Li, "Modified perpendicular drought index (MPDI): a real-time drought monitoring method", ISPRS J. Photogramm. Remote Sens., Vol. 62(2), pp. 150–164, 2007. DOI: 10.1016/j.isprsjprs.2007.03.002.
[41] A. Zhang and G. Jia, "Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data", Remote Sens. Environ., Vol. 134, pp. 12–23, 2013. DOI: 10.1016/j.rse.2013.02.023.
[42] B.-C. Gao, "NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space", Remote Sens. Environ., Vol. 58(3), pp. 257–266, 1996.
[43] Y. A. Liou, M. S. Le, and H. Chien, "Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes", IEEE Trans. Geosci. Remote Sens., Vol. 57(3), pp. 1423–1433, 2019. DOI: 10.1109/tgrs.2018.2866555.
[44] W. Wei et al., "Reconstruction and application of the temperature-vegetation-precipitation drought index in mainland China based on remote sensing datasets and a spatial distance model", J. Environ. Manage., Vol. 323, pp. 116208, 2022. DOI: 10.1016/j.jenvman.2022.116208.
[45] T.-Y. Chang, Y.-A. Liou, C.-Y. Lin, S.-C. Liu, and Y.-C. Wang, "Evaluation of surface heat fluxes in Chiayi plain of Taiwan by remotely sensed data", Int. J. Remote Sens., Vol. 31(14), pp. 3885–3898, 2010. DOI: 10.1080/01431161.2010.483481.
[46] Z. Gao, W. Gao, and N.-B. Chang, "Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images", Int. J. Appl. Earth Obs. Geoinf., Vol. 13(3), pp. 495–503, 2011. DOI: 10.1016/j.jag.2010.10.005.
[47] R. D. Jackson, S. B. Idso, R. J. Reginato, and P. J. Pinter, "Canopy temperature as a crop water stress indicator", Water Resour. Res., Vol. 17(4), pp. 1133–1138, 1981. DOI: 10.1029/WR017i004p01133.
[48] J. J. Bai, Y. Yu, and L. Di, "Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China", J. Integr. Agric., Vol. 16(2), pp. 389–397, 2017. DOI: 10.1016/s2095-3119(15)61302-8.
[49] R. Tang, Z.-L. Li, and B. Tang, "An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation", Remote Sens. Environ., Vol. 114(3), pp. 540–551, 2010. DOI: 10.1016/j.rse.2009.10.012.
[50] I. Sandholt, K. Rasmussen, and J. Andersen, "A simple interpretation of the Surface Temperature/Vegetation Index space for assessment of surface moisture status", Remote Sens. Environ., Vol. 79(2–3), pp. 213–224, 2002. DOI: 10.1016/S0034-4257(01)00274-7.
[51] R. Tang and Z.-L. Li, "An End-Member-Based Two-Source Approach for Estimating Land Surface Evapotranspiration From Remote Sensing Data", IEEE Trans. Geosci. Remote Sens., Vol. 55(10), pp. 5818–5832, 2017. DOI: 10.1109/tgrs.2017.2715361.
[52] Z. L. Li et al., "Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications", Rev. Geophys., Vol. 61(1)2023. DOI: 10.1029/2022rg000777.
[53] Z.-L. Li, P. Leng, C. Zhou, K.-S. Chen, F.-C. Zhou, and G.-F. Shang, "Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future", Earth Sci. Rev., Vol. 218, pp. 103673–103697, 2021. DOI: 10.1016/j.earscirev.2021.103673.
[54] M. Liu et al., "Separating soil evaporation from vegetation transpiration by remotely sensed one-phase and two-phase trapezoids", Agric. For. Meteorol., Vol. 3272022. DOI: 10.1016/j.agrformet.2022.109215.
[55] Y. Liu, L. Wu, and H. Yue, "Biparabolic NDVI-Ts Space and Soil Moisture Remote Sensing in an Arid and Semi arid Area", Can. J. Remote Sens., Vol. 41(3), pp. 159–169, 2015. DOI: 10.1080/07038992.2015.1065705.
[56] M. S. Le and Y.-A. Liou, "Temperature-Soil Moisture Dryness Index for Remote Sensing of Surface Soil Moisture Assessment", IEEE Geosci. Remote Sens. Lett., Vol. 19, pp. 1–5, 2021. DOI: 10.1109/lgrs.2021.3095170.
[57] R. Tang, Z.-L. Li, M. Liu, Y. Jiang, and Z. Peng, "A moisture-based triangle approach for estimating surface evaporative fraction with time-series of remotely sensed data", Remote Sens. Environ., Vol. 2802022. DOI: 10.1016/j.rse.2022.113212.
[58] Y. Liu et al., "A dryness index TSWDI based on land surface temperature, sun-induced chlorophyll fluorescence, and water balance", ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 202, pp. 581-598, 2023. DOI: 10.1016/j.isprsjprs.2023.07.005.
[59] Y. Zhang, X. Feng, B. Fu, Y. Chen, and X. Wang, "Satellite-Observed Global Terrestrial Vegetation Production in Response to Water Availability", Remote Sens., Vol. 13(7), pp. 1289, 2021. DOI: 10.3390/rs13071289.
[60] S. Talukdar et al., "Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations–A Review", Remote Sens., Vol. 12(7), pp. 1135–1159, 2020. DOI: 10.3390/rs12071135.
[61] Y. Hu et al., "A physical method for downscaling land surface temperatures using surface energy balance theory", Remote Sens. Environ., Vol. 2862023. DOI: 10.1016/j.rse.2022.113421.
[62] D.-P. Tran and Y.-A. Liou, "Creating a spatially continuous air temperature dataset for Taiwan using thermal remote-sensing data and machine learning algorithms", Ecol. Indic., Vol. 158, pp. 111469–111492, 2024. DOI: 10.1016/j.ecolind.2023.111469.
[63] Z.-L. Li et al., "Satellite-derived land surface temperature: Current status and perspectives", Remote Sens. Environ., Vol. 131, pp. 14–37, 2013. DOI: 10.1016/j.rse.2012.12.008.
[64] S. S. Virnodkar, V. K. Pachghare, V. C. Patil, and S. K. Jha, "Remote sensing and machine learning for crop water stress determination in various crops: a critical review", Precis. Agric., Vol. 21(5), pp. 1121–1155, 2020. DOI: 10.1007/s11119-020-09711-9.
[65] A. Sekertekin and S. Bonafoni, "Land Surface Temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation", Remote Sens., Vol. 12(2), pp. 294-326, 2020. DOI: 10.3390/rs12020294.
[66] K. Mao, Z. Qin, J. Shi, and P. Gong, "A practical split‐window algorithm for retrieving Land Surface Temperature from MODIS data", Int. J. Remote Sens., Vol. 26(15), pp. 3181–3204, 2005. DOI: 10.1080/01431160500044713.
[67] X. Yu, X. Guo, and Z. Wu, "Land Surface Temperature retrieval from Landsat 8 TIRS-Comparison between Radiative Transfer Equation-Based method, Split Window Algorithm and Single Channel method", Remote Sens., Vol. 6(10), pp. 9829–9852, 2014. DOI: 10.3390/rs6109829.
[68] W. Zhao, S.-B. Duan, A. Li, and G. Yin, "A practical method for reducing terrain effect on land surface temperature using random forest regression", Remote Sens. Environ., Vol. 221, pp. 635–649, 2019. DOI: 10.1016/j.rse.2018.12.008.
[69] W. Zhao, H. Wu, G. Yin, and S.-B. Duan, "Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression", ISPRS J. Photogramm. Remote Sens., Vol. 152, pp. 109–118, 2019. DOI: 10.1016/j.isprsjprs.2019.04.008.
[70] Y.-A. Liou and A. W. England, "A land surface process/radiobrightness model with coupled heat and moisture transport in soil", IEEE Trans. Geosci. Remote Sens., Vol. 36(1), pp. 273–286, 1998. DOI: 10.1109/36.655336.
[71] Y.-A. Liou, J. F. Galantowicz, and A. W. England, "A land surface process/radiobrightness model with coupled heat and moisture transport for prairie grassland", IEEE Trans. Geosci. Remote Sens., Vol. 37(4), pp. 1848–1859, 1999. DOI: 10.1109/36.774698.
[72] Y.-A. Liou, S.-F. Liu, and W.-J. Wang, "Retrieving soil moisture from simulated brightness temperatures by a neural network", IEEE Trans. Geosci. Remote Sens., Vol. 39(8), pp. 1662–1672, 2001. DOI: 10.1109/36.942544.
[73] S.-F. Liu, Y.-A. Liou, W.-J. Wang, J.-P. Wigneron, and J.-B. Lee, "Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures", IEEE Trans. Geosci. Remote Sens., Vol. 40(6), pp. 1260–1268, 2002. DOI: 10.1109/TGRS.2002.800277.
[74] W. G. Bastiaanssen, M. Menenti, R. Feddes, and A. Holtslag, "A remote sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation", J. Hydrol., Vol. 212, pp. 198–212, 1998. DOI: 10.1016/S0022-1694(98)00253-4.
[75] S. Liu et al., "Based on the Gaussian Fitting method to derive daily evapotranspiration from remotely sensed instantaneous evapotranspiration", Adv. Meteorol., Vol. 2019, pp. 1–13, 2019. DOI: 10.1155/2019/6253832.
[76] M. C. Anderson, R. G. Allen, A. Morse, and W. P. Kustas, "Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources", Remote Sens. Environ., Vol. 122, pp. 50–65, 2012. DOI: 10.1016/j.rse.2011.08.025.
[77] J. M. Chen and J. Liu, "Evolution of evapotranspiration models using thermal and shortwave Remote Sensing data", Remote Sens. Environ., Vol. 237, pp. 111594–111614, 2020. DOI: 10.1016/j.rse.2019.111594.
[78] R. G. Allen, M. Tasumi, and R. Trezza, "Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Applications", J. Irrig. Drain. Eng., Vol. 133(4), pp. 380–394, 2007. DOI: 10.1061/(ASCE)0733-9437(2007)133:4(380).
[79] N. Sriwongsitanon, T. Suwawong, S. Thianpopirug, J. Williams, L. Jia, and W. Bastiaanssen, "Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications", J. Hydrol.: Reg. Stud., Vol. 30, pp. 100709–100723, 2020. DOI: 10.1016/j.ejrh.2020.100709.
[80] W. Wolff. Script to calculate daily evapotranspiration for Landsat 8 images in GRASS GIS 7.X. Available: https://github.com/wwolff7/SEBAL_GRASS.(17 November, 2016).
[81] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (no. 9), FAO, Rome, Italy 1998.
[82] N. Alahacoon and M. Edirisinghe, "A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale", Geomatics Nat. Hazards Risk, Vol. 13(1), pp. 762–799, 2022. DOI: 10.1080/19475705.2022.2044394.
[83] R. B. Parinaz, K. Omasa, and Y. Shimizu, "Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran", ISPRS J. Photogramm. Remote Sens., Vol. 68, pp. 1–12, 2012. DOI: 10.1016/j.isprsjprs.2011.10.009.
[84] N. T. Son, C. F. Chen, C. R. Chen, L. Y. Chang, and V. Q. Minh, "Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and Land Surface Temperature data", Int. J. Appl. Earth Obs. Geoinf., Vol. 18, pp. 417–427, 2012. DOI: 10.1016/j.jag.2012.03.014.
[85] S. Shi, F. Yao, J. Zhang, and S. Yang, "Evaluation of Temperature Vegetation Dryness Index on drought monitoring over Eurasia", IEEE Access, Vol. 8, pp. 30050–30059, 2020. DOI: 10.1109/access.2020.2972271.
[86] M. E. Holzman, R. Rivas, and M. C. Piccolo, "Estimating soil moisture and the relationship with crop yield using Surface Temperature and Vegetation Index", Int. J. Appl. Earth Obs. Geoinf., Vol. 28, pp. 181–192, 2014. DOI: 10.1016/j.jag.2013.12.006.
[87] R. Rivas and V. Caselles, "A simplified equation to estimate spatial reference evaporation from Remote Sensing-based Surface Temperature and local meteorological data", Remote Sens. Environ., Vol. 93(1–2), pp. 68–76, 2004. DOI: 10.1016/j.rse.2004.06.021.
[88] S. Veysi, A. A. Naseri, S. Hamzeh, and H. Bartholomeus, "A satellite based crop water stress index for irrigation scheduling in sugarcane fields", Agric. Water Manage., Vol. 189, pp. 70–86, 2017. DOI: 10.1016/j.agwat.2017.04.016.
[89] M. G. Kendall, Rank correlation methods (Rank correlation methods.), Griffin, Oxford, England 1948.
[90] H. B. Mann, "Nonparametric tests against trend", Econometrica: Journal of the econometric society, Vol. 13(3), pp. 245−259, 1945. DOI: 10.2307/1907187.
[91] E. Verhoeven, G. M. Wardle, G. W. Roth, and A. C. Greenville, "Characterising the spatiotemporal dynamics of drought and wet events in Australia", Sci. Total Environ., Vol. 846, pp. 157480, Nov 10 2022. DOI: 10.1016/j.scitotenv.2022.157480.
[92] H. F. Yeh, "Using integrated meteorological and hydrological indices to assess drought characteristics in Southern Taiwan", Hydrol. Res., Vol. 50(3), pp. 901–914, 2019. DOI: 10.2166/nh.2019.120.
[93] Y.-J. Hsu et al., "Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data", Earth Planet. Sci. Lett., Vol. 550, pp. 116532–116547, 2020. DOI: 10.1016/j.epsl.2020.116532.
[94] J.-T. Shiau and J.-W. Lin, "Clustering Quantile Regression-Based Drought Trends in Taiwan", Water Resour. Manage., Vol. 30(3), pp. 1053–1069, 2015. DOI: 10.1007/s11269-015-1210-9.
[95] T.-Y. Chang, Y.-C. Wang, C.-C. Feng, A. D. Ziegler, T. W. Giambelluca, and Y.-A. Liou, "Estimation of Root Zone Soil Moisture Using Apparent Thermal Inertia With MODIS Imagery Over a Tropical Catchment in Northern Thailand", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 5(3), pp. 752–761, 2012. DOI: 10.1109/jstars.2012.2190588.
[96] Y. Zhou, L. Zhang, R. Fensholt, K. Wang, I. Vitkovskaya, and F. Tian, "Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse", Remote Sens., Vol. 7(3), pp. 2449–2470, 2015. DOI: 10.3390/rs70302449.
[97] I. Klein, U. Gessner, and C. Kuenzer, "Regional land cover mapping and change detection in Central Asia using MODIS time-series", Appl. Geogr., Vol. 35(1–2), pp. 219–234, 2012. DOI: 10.1016/j.apgeog.2012.06.016.
[98] Z. Li, Y. Han, and T. Hao, "Assessing the Consistency of Remotely Sensed Multiple Drought Indices for Monitoring Drought Phenomena in Continental China", IEEE Trans. Geosci. Remote Sens., Vol. 58(8), pp. 5490–5502, 2020. DOI: 10.1109/tgrs.2020.2966658.
[99] M. S. Le, Y.-A. Liou, and M. T. Pham, "Crop Response to Disease and Water Scarcity Quantified by Normalized Difference Latent Heat Index", IEEE Access, Vol. 11, pp. 55938–55946, 2023. DOI: 10.1109/access.2023.3283033.
[100] Y. A. Liou and S. Kar, "Evapotranspiration estimation with Remote Sensing and various Surface Energy Balance algorithms-A review", Energies, Vol. 7(5), pp. 2821–2849, 2014. DOI: 10.3390/en7052821.
[101] Y. Jiang, R. Tang, and Z.-L. Li, "A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models", Remote Sens. Environ., Vol. 2832022. DOI: 10.1016/j.rse.2022.113306.
[102] J. Wang, R. Tang, Y. Jiang, M. Liu, and Z.-L. Li, "A practical method for angular normalization of global MODIS land surface temperature over vegetated surfaces", ISPRS J. Photogramm. Remote Sens., Vol. 199, pp. 289–304, 2023. DOI: 10.1016/j.isprsjprs.2023.04.015.
[103] Y. Lan and J.-A. Paffenholz, "Soil Moisture Mapping Based on Temperature-Soil Moisture Dryness Index-a case study for the tailing dam in Brumadinho, Brazil", 5th Joint International Symposium on Deformation Monitoring (JISDM), pp. 577–583, 2022.
[104] L. Laipelt et al., "Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing", ISPRS J. Photogramm. Remote Sens., Vol. 178, pp. 81-96, 2021. DOI: 10.1016/j.isprsjprs.2021.05.018.
[105] A. Mokhtari, M. Sadeghi, Y. Afrasiabian, and K. Yu, "OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations", Remote Sens. Environ., Vol. 286, pp. 113443–113460, 2023. DOI: 10.1016/j.rse.2022.113443.
[106] M.-T. Thai and Y.-A. Liou, "Evaluation of Temperature-Soil Moisture Dryness Index for Surface Soil Moisture and Evapotranspiration Analysis", Proc. Conf. Eng. Technol. Appl., pp. 1–4, 2021.
[107] D. P. Turner et al., "Evaluation of MODIS NPP and GPP products across multiple biomes", Remote Sens. Environ., Vol. 102(3-4), pp. 282-292, 2006. DOI: 10.1016/j.rse.2006.02.017.
[108] Y. Zhang and A. Ye, "Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products", Sci. Total Environ., Vol. 783, pp. 146965, Aug 20 2021. DOI: 10.1016/j.scitotenv.2021.146965.
[109] S. Sun et al., "Response of Gross Primary Productivity to Drought Time‐Scales Across China", J. Geophys. Res.: Biogeosci., Vol. 126(4)2021. DOI: 10.1029/2020jg005953.
[110] Q. He et al., "Drought Risk of Global Terrestrial Gross Primary Productivity Over the Last 40 Years Detected by a Remote Sensing‐Driven Process Model", J. Geophys. Res.: Biogeosci., Vol. 126(6)2021. DOI: 10.1029/2020jg005944.
[111] J. Rhee, J. Im, and G. J. Carbone, "Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data", Remote Sens. Environ., Vol. 114(12), pp. 2875–2887, 2010. DOI: 10.1016/j.rse.2010.07.005.
[112] L. Narvaez, S. Janzen, C. Eberle, and Z. Sebesvari, "Technical Report: Taiwan drought," United Nations University, United Nations University2022.
[113] G. Wittwer, "Estimating the Regional Economic Impacts of the 2017 to 2019 Drought on NSW and the Rest of Australia," Victoria University, Centre of Policy Studies/IMPACT Centre, Victoria University, Centre of Policy Studies/IMPACT Centre2020.
[114] K. Hennessy et al., "An assessment of the impact of climate change on the nature and frequency of exceptional climatic events", Bureau of Meteorology and CSIRO, Canberra, Australian Capital Territory, Australia., 2008.
[115] B. Fang, P. Kansara, C. Dandridge, and V. Lakshmi, "Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019", J. Hydrol., Vol. 594, pp. 125960, 2021. DOI: 10.1016/j.jhydrol.2021.125960.
[116] A. I. J. M. van Dijk et al., "The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society", Water Resour. Res., Vol. 49(2), pp. 1040–1057, 2013. DOI: 10.1002/wrcr.20123.
[117] M. Buchhorn, M. Lesiv, N.-E. Tsendbazar, M. Herold, L. Bertels, and B. Smets, "Copernicus Global Land Cover Layers—Collection 2", Remote Sens., Vol. 12(6), pp. 1044–1058, 2020. DOI: 10.3390/rs12061044.
[118] L. He, J. M. Chen, and K.-S. Chen, "Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band", IEEE Trans. Geosci. Remote Sens., Vol. 55(5), pp. 2589–2604, 2017. DOI: 10.1109/tgrs.2017.2648502.
[119] P. Yao et al., "A global daily soil moisture dataset derived from Chinese FengYun Microwave Radiation Imager (MWRI)(2010–2019)", Sci. Data, Vol. 10(1), pp. 133, Mar 14 2023. DOI: 10.1038/s41597-023-02007-3.
[120] C. Wang et al., "All-Season Liquid Soil Moisture Retrieval From SMAP", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 17, pp. 8258–8270, 2024. DOI: 10.1109/jstars.2024.3382315.
[121] N. Shan et al., "A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence", Remote Sens. Environ., Vol. 2522021. DOI: 10.1016/j.rse.2020.112134.
[122] S. I. Seneviratne et al., "Investigating soil moisture–climate interactions in a changing climate: A review", Earth Sci. Rev., Vol. 99(3–4), pp. 125–161, 2010. DOI: 10.1016/j.earscirev.2010.02.004.
[123] A. Al-Yaari et al., "Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates", Remote Sens. Environ., Vol. 149, pp. 181–195, 2014. DOI: 10.1016/j.rse.2014.04.006.
[124] A. Gonsamo, J. M. Chen, L. He, Y. Sun, C. Rogers, and J. Liu, "Exploring SMAP and OCO-2 observations to monitor soil moisture control on photosynthetic activity of global drylands and croplands", Remote Sens. Environ., Vol. 2322019. DOI: 10.1016/j.rse.2019.111314.
[125] L. He, J. M. Chen, J. Liu, S. Bélair, and X. Luo, "Assessment of SMAP soil moisture for global simulation of gross primary production", J. Geophys. Res.: Biogeosci., Vol. 122(7), pp. 1549–1563, 2017. DOI: 10.1002/2016jg003603.
[126] X. B. Ji, J. M. Chen, W. Z. Zhao, E. S. Kang, B. W. Jin, and S. Q. Xu, "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions", Agric. Water Manage., Vol. 192, pp. 1–11, 2017. DOI: 10.1016/j.agwat.2017.06.019.
[127] E. Babaeian, M. Sadeghi, S. B. Jones, C. Montzka, H. Vereecken, and M. Tuller, "Ground, Proximal, and Satellite Remote Sensing of Soil Moisture", Rev. Geophys., Vol. 57(2), pp. 530–616, 2019. DOI: 10.1029/2018rg000618.
[128] T. Jiao, C. A. Williams, J. Rogan, M. G. De Kauwe, and B. E. Medlyn, "Drought Impacts on Australian Vegetation During the Millennium Drought Measured With Multisource Spaceborne Remote Sensing", J. Geophys. Res.: Biogeosci., Vol. 125(2), pp. e2019JG005145, 2020. DOI: 10.1029/2019jg005145.
[129] M. Freund, B. J. Henley, D. J. Karoly, K. J. Allen, and P. J. Baker, "Multi-century cool- and warm-season rainfall reconstructions for Australia′s major climatic regions", Clim. Past, Vol. 13(12), pp. 1751–1770, 2017. DOI: 10.5194/cp-13-1751-2017.
[130] H. Nguyen, M. C. Wheeler, H. H. Hendon, E.-P. Lim, and J. A. Otkin, "The 2019 flash droughts in subtropical eastern Australia and their association with large-scale climate drivers", Weather Clim. Extremes, Vol. 32, pp. 100321, 2021. DOI: 10.1016/j.wace.2021.100321.
[131] IPCC, "Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge, UK., 2022.
[132] NOAA, "US billion-dollar weather and climate disasters," ed. National Centers for Environmental Information: NCEI Washington DC, USA, 2022.
[133] B. Su et al., "Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming", Proc. Natl. Acad. Sci. U.S.A., Vol. 115(42), pp. 10600-10605, Oct 16 2018. DOI: 10.1073/pnas.1802129115.
[134] J. Spinoni et al., "A new global database of meteorological drought events from 1951 to 2016", J. Hydrol.: Reg. Stud., Vol. 22, pp. 100593, Apr 2019. DOI: 10.1016/j.ejrh.2019.100593.
[135] M. Ionita, M. Dima, V. Nagavciuc, P. Scholz, and G. Lohmann, "Past megadroughts in central Europe were longer, more severe and less warm than modern droughts", Commun. Earth Environ., Vol. 2(1), pp. 1–9, 2021. DOI: 10.1038/s43247-021-00130-w.
[136] V. Hari, O. Rakovec, Y. Markonis, M. Hanel, and R. Kumar, "Increased future occurrences of the exceptional 2018-2019 Central European drought under global warming", Sci. Rep., Vol. 10(1), pp. 12207, Aug 6 2020. DOI: 10.1038/s41598-020-68872-9.
[137] M. Ionita et al., "The European 2015 drought from a climatological perspective", Hydrol. Earth Syst. Sci., Vol. 21(3), pp. 1397-1419, 2017. DOI: 10.5194/hess-21-1397-2017.
[138] Y. Zhang et al., "Generation of global 1-km daily soil moisture product from 2000 to 2020 using ensemble learning", Earth Syst. Sci. Data Discuss., pp. 1-37, 2023.
[139] S. Running, Q. Mu, and M. Zhao, "MODIS/terra net evapotranspiration 8-day L4 global 500m SIN grid V061", NASA EOSDIS Land Process. DAAC, Vol. 50672021. DOI: 10.5067/MODIS/MOD16A2.061.
[140] C. Funk et al., "The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes", Sci. Data, Vol. 2, pp. 150066, Dec 8 2015. DOI: 10.1038/sdata.2015.66.
[141] Z. Peng, R. Tang, Y. Jiang, M. Liu, and Z.-L. Li, "Global estimates of 500 m daily aerodynamic roughness length from MODIS data", ISPRS J. Photogramm. Remote Sens., Vol. 183, pp. 336–351, 2022. DOI: 10.1016/j.isprsjprs.2021.11.015.
[142] Z. Peng, R. Tang, M. Liu, Y. Jiang, and Z.-L. Li, "Coupled estimation of global 500m daily aerodynamic roughness length, zero-plane displacement height and canopy height", Agric. For. Meteorol., Vol. 3422023. DOI: 10.1016/j.agrformet.2023.109754.
[143] C. Cammalleri et al., "Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations", Remote Sens. Environ., Vol. 124, pp. 502–515, 2012. DOI: 10.1016/j.rse.2012.06.009.
[144] E. Delogu et al., "Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass", Hydrol. Earth Syst. Sci., Vol. 16(8), pp. 2995–3010, 2012. DOI: 10.5194/hess-16-2995-2012.
[145] T. G. Van Niel et al., "Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias", J. Hydrol., Vol. 468–469, pp. 35–46, 2012. DOI: 10.1016/j.jhydrol.2012.08.005.
[146] R. Tang and Z. L. Li, "An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations", Geophys. Res. Lett., Vol. 44(5), pp. 2319–2326, 2017. DOI: 10.1002/2017gl072621.
[147] R. Tang and Z. L. Li, "Estimating Daily Evapotranspiration From Remotely Sensed Instantaneous Observations With Simplified Derivations of a Theoretical Model", J. Geophys. Res.: Atmos., Vol. 122(19), pp. 10177–10190, 2017. DOI: 10.1002/2017jd027094.
[148] R. Tang, Z.-L. Li, K.-S. Chen, Y. Jia, C. Li, and X. Sun, "Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data", Agric. For. Meteorol., Vol. 174–175, pp. 28–42, 2013. DOI: 10.1016/j.agrformet.2013.01.008.
指導教授 劉說安(Yuei-An Liou) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明