參考文獻 |
REFERENCES
Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. H., & Mahmood, R. (2018). Comparison of various drought indices to monitor drought status in Pakistan. Climate dynamics, 51(5), 1885-1899.
Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. B. (2018). A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing, 10(6), 975.
Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the Role of Climate Characteristics in Drought Propagation. Water Resources Research, 53(11), 9304-9329. https://doi.org/https://doi.org/10.1002/2017WR021445
Atkinson, P. M., & Tatnall, A. R. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699-709.
Babatolu, J. S., & Akinnubi, R. T. (2013). Surface temperature anomalies in the river Niger basin development authority areas, Nigeria. Atmospheric, 2013.
Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31.
Berg, A., & Sheffield, J. (2018). Climate change and drought: the soil moisture perspective. Current Climate Change Reports 4, 180-191.
Bergman, K., Sabol, P., & Miskus, D. (1988). Experimental indices for monitoring global drought conditions. Proceedings of the 13th annual climate diagnostics workshop, Cambridge, MA, USA,
Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli terrain of India. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey,
Boyle, J. S., & Chen, G. T. J. (1987). Synoptic aspects of the wintertime East Asian monsoon. In.
Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16-46.
Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of hydrology, 58(1-2), 11-27.
Carrao, H., Russo, S., Sepulcre, G., & Barbosa, P. (2013). Agricultural Drought Assessment In Latin America Based On A Standardized Soil Moisture Index. ESA Living Planet Symposium,
Chang, C.-C., Jan, M.-Y., & Cheng, C.-C. (2015). Water Governance for Drought/Water-Scarcity in Taiwan – a Multi-Layer Management System. ICID Conference.
Chen, C.-S., & Chen, Y.-L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323-1341.
Chen, S.-T., Kuo, C.-C., & Yu, P.-S. (2009). Historical trends and variability of meteorological droughts in Taiwan / Tendances historiques et variabilité des sécheresses météorologiques à Taiwan. Hydrological Sciences Journal, 54(3), 430-441. https://doi.org/10.1623/hysj.54.3.430
Chen, T. C., Yen, M. C., Hsieh, J. C., & Arritt, R. W. (1999). Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. In (Vol. 80, pp. 2299-2312).
Chen, T. C., Yen, M. C., Huang, W. R., & Gallus, W. A. (2002). An East Asian cold surge: Case study. In (Vol. 130, pp. 2271-2290).
Cheng, C.-H., Nnadi, F., & Liou, Y.-A. (2015). A regional land use drought index for Florida. Remote Sensing, 7(12), 17149-17167.
Chou, J., Xian, T., Zhao, R., Xu, Y., Yang, F., & Sun, M. (2019). Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability, 11(16). https://doi.org/10.3390/su11164463
Chung, S.-H., Lee, A. H., & Pearn, W.-L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International journal of production economics, 96(1), 15-36.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3(1), 52-58.
De Martonne, E. (1925). Traite de geographie physique: ouvrage couronne par l′Academie des sciences, Prix Binoux, et par la Societe de geographie de Paris (Vol. 3). A. Colin.
Deltares. (2018). Global inventory of drought hazard and risk modeling tools. In (2018 ed., pp. 31): Deltares.
Dorjsuren, M., Liou, Y.-A., & Cheng, C.-H. (2016). Time series MODIS and in situ data analysis for Mongolia drought. Remote Sensing, 8(6), 509.
Dracup, J. A., Lee, K. S., & Paulson Jr, E. G. (1980). On the definition of droughts. Water Resources Research, 16(2), 297-302.
Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2014). Analytic network process in risk assessment and decision analysis. Computers & Operations Research, 42, 58-74.
Erian, W., Pulwarty, R., Vogt, J., AbuZeid, K., Bert, F., Bruntrup, M., El-Askary, H., de Estrada, M., Gaupp, F., & Grundy, M. (2021). GAR special report on drought 2021.
Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140-145.
Fooladi, M., Golmohammadi, M. H., Safavi, H. R., Mirghafari, R., & Akbari, H. (2021). Trend analysis of hydrological and water quality variables to detect anthropogenic effects and climate variability on a river basin scale: a case study of Iran. Journal of hydro-environment research, 34, 11-23.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266.
Ghorbanzadeh, O., Feizizadeh, B., & Blaschke, T. (2018). Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomatics, Natural Hazards and Risk, 9(1), 127-151. https://doi.org/10.1080/19475705.2017.1413012
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., & Blankenship, D. D. (2019). The climate data toolbox for MATLAB. Geochemistry, Geophysics, Geosystems, 20(7), 3774-3781.
Guo, H., Bao, A., Liu, T., Ndayisaba, F., Jiang, L., Zheng, G., Chen, T., & De Maeyer, P. (2019). Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sensing of Environment, 231, 111220. https://doi.org/https://doi.org/10.1016/j.rse.2019.111220
Guobin, L. (2021, April 20). Remarkable satellite images reveal the shrinking size of Shimen and Zengwen reservoirs. FTV News Network. https://ynews.page.link/MNUuz
Gusyev, M., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., & Lee, S. (2015). Drought assessment in the Pampanga River basin, the Philippines–Part 1: Characterizing a role of dams in historical droughts with standardized indices. Proceedings of the 21st international congress on modelling and simulation (MODSIM 2015), November 29th–December 4th, Queensland, Australia,
Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.
Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., & Sebesvari, Z. (2019). Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab225d
Hao, Z., Hao, F., Singh, V. P., Xia, Y., Ouyang, W., & Shen, X. (2016). A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in Water Resources, 92, 240-247. https://doi.org/10.1016/j.advwatres.2016.04.010
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., & Bauer-Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748.
HRL. (2015). Standardized Drought Analysis Toolbox (SDAT). In
Huang, S., Huang, Q., Chang, J., Leng, G., & Xing, L. (2015). The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China. Agricultural Water Management, 159, 45-54. https://doi.org/https://doi.org/10.1016/j.agwat.2015.05.023
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213.
Hung, C.-w., & Shih, M.-F. (2019). Analysis of Severe Droughts in Taiwan and its Related Atmospheric and Oceanic Environments. Atmosphere, 10(3), 159. https://www.mdpi.com/2073-4433/10/3/159
Imprex. (2020). Drought, Preparedness, Mitigration, and Management - Innovative approaches for the agricultural sector. In: UN.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Vol. In Press). Cambridge University Press. https://doi.org/10.1017/9781009157896
Jiao, W., Wang, L., & McCabe, M. F. (2021). Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 256, 112313. https://doi.org/https://doi.org/10.1016/j.rse.2021.112313
Klemeš, V. (1987). One hundred years of applied storage reservoir theory. Water resources management, 1(3), 159-175.
Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., & Djaman, K. (2017). Trend analysis in standardized precipitation index and standardized anomaly index in the context of climate change in Southern Togo. Atmospheric Climate Sciences, 7(04), 401.
Le, M. S., & Liou, Y.-A. (2021). Temperature-Soil Moisture Dryness Index for Remote Sensing of Surface Soil Moisture Assessment. 19, 1-5.
Li, J., Wang, Y., Li, Y., Ming, W., Long, Y., & Zhang, M. (2021). Relationship between meteorological and hydrological droughts in the upstream regions of the Lancang–Mekong River. Journal of Water and Climate Change, 13(2), 421-433. https://doi.org/10.2166/wcc.2021.445
Liou, Y.-A., Le, M. S., & Chien, H. (2018). Normalized difference latent heat index for remote sensing of land surface energy fluxes. IEEE Transactions on Geoscience Remote Sensing, 57(3), 1423-1433.
Liou, Y.-A., & Nguyen, K.-A. (2022). Assessment of Drought Vulnerability in Taiwan. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium,
Liou, Y.-A., & Thai, M.-T. (2023). Surface Water Availability and Temperature (SWAT): An Innovative Index for Remote Sensing of Drought Observation. IEEE Transactions on Geoscience and Remote Sensing.
Liu, W., & Kogan, F. (1996). Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing, 17(14), 2761-2782.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology,
McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-Lidard, C. D., & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4(1), 170012. https://doi.org/10.1038/sdata.2017.12
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21, 223-233.
Mulualem, G. M., & Liou, Y.-A. (2020). Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the Upper Blue Nile basin. Water Resources Management, 12(3), 643.
Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1), 69-88. https://doi.org/https://doi.org/10.1016/j.agrformet.2005.07.012
Nedic, V., Despotovic, D., Cvetanovic, S., Despotovic, M., & Babic, S. (2014). Comparison of classical statistical methods and artificial neural network in traffic noise prediction. Environmental Impact Assessment Review, 49, 24-30.
Nguyen, K.-A., & Liou, Y.-A. (2019a). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the total environment, 664, 995-1004.
Nguyen, K.-A., & Liou, Y.-A. (2019b). Mapping global eco-environment vulnerability due to human and nature disturbances. MethodsX, 6, 862-875.
Nguyen, K.-A., & Liou, Y.-A. (2024). Rethinking our world: a perspective on a cleaner globe emerging from reduced anthropogenic activities. Geoscience Letters, 11(1), 9. https://doi.org/10.1186/s40562-024-00322-0
Nguyen, K.-A., Liou, Y.-A., & Terry, J. P. (2019). Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Science of the total environment, 682, 31-46.
Nguyen, K.-A., Liou, Y.-A., Vo, T.-H., Cham, D. D., & Nguyen, H. S. (2021). Evaluation of urban greenspace vulnerability to typhoon in Taiwan. Urban Forestry & Urban Greening, 63, 127191. https://doi.org/https://doi.org/10.1016/j.ufug.2021.127191
Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
Paola, J. D., & Schowengerdt, R. A. (1995). A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, 16(16), 3033-3058.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
PeterRochford. (2023). SkillMetricsToolbox. In (Version 1.8.2.0) [Toolbox]. Matlab. https://github.com/PeterRochford/SkillMetricsToolbox/wiki
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242-268.
Rojas, O., Vrieling, A., & Rembold, F. (2011). Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment, 115(2), 343-352. https://doi.org/https://doi.org/10.1016/j.rse.2010.09.006
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922). RWS publications Pittsburgh.
Saaty, T. L. (2004). Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. Journal of Systems science and Systems engineering, 13, 129-157.
Saaty, T. L., Vargas, L. G., Saaty, T. L., & Vargas, L. G. (2013). The analytic network process. Springer.
Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate dynamics, 31(1), 79-105.
Sheffield, J., & Wood, E. F. J. C. d. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. 31(1), 79-105.
Shiau, J.-T., & Hsiao, Y.-Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64(1), 237-257. https://doi.org/10.1007/s11069-012-0239-9
Shiau, J.-T., & Lin, J.-W. (2016). Clustering quantile regression-based drought trends in Taiwan. Water resources management, 30, 1053-1069.
Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2).
Skapura, D. M. (1996). Building neural networks. Addison-Wesley Professional.
Son, B., Park, S., Im, J., Park, S., Ke, Y., & Quackenbush, L. J. (2021). A new drought monitoring approach: Vector Projection Analysis (VPA). Remote Sensing of Environment, 252, 112145. https://doi.org/https://doi.org/10.1016/j.rse.2020.112145
Staudinger, M., Stahl, K., & Seibert, J. (2014). A drought index accounting for snow. Water Resources Research, 50(10), 7861-7872.
Tao, S., & Chen, L. (1987). A review of recent research on the East Asian summer monsoon in China. In.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2). https://doi.org/https://doi.org/10.1029/2011RG000369
Tarpley, J., Schneider, S., & Money, R. (1984). Global vegetation indices from the NOAA-7 meteorological satellite. Journal of Climate and Applied Meteorology, 491-494.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. https://doi.org/https://doi.org/10.1029/2000JD900719
Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78.
UNISDR, U. (2015). Sendai framework for disaster risk reduction 2015–2030. Proceedings of the 3rd United Nations World Conference on DRR, Sendai, Japan,
Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359-392. https://doi.org/10.1002/wat2.1085
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Hannaford, J., Reig, F., Peña-Angulo, D., Tramblay, Y., Trigo, R. M., Mac Donald, N., Luna, M. Y., Mc Carthy, M., Van der Schrier, G., Turco, M., Camuffo, D., Noguera, I., García-Herrera, R., Becherini, F., Della Valle, A., Tomas-Burguera, M., & El Kenawy, A. (2021). Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). International Journal of Climatology, 41(S1), E690-E717. https://doi.org/https://doi.org/10.1002/joc.6719
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., & Morán-Tejeda, E. (2012). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318-332.
Wang, S. T., Cheng, H., & Chao, Y. K. (1984). Natural seasons of the weather in the Taiwan area (in Chinese with English abstract). In (Vol. 11, pp. 101-120).
Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120.
WorldBank. (2019). Assessing drought hazard and risk: principles and implementation guidance. World Bank.
Xu, Y., Zhang, X., Hao, Z., Singh, V. P., & Hao, F. (2021). Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. Journal of Hydrology, 598, 126194. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126194
Yang, T., Chen, C., Kuo, C., Tseng, H., & Yu, P. (2012). Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan. Hydrology and Earth System Sciences Discussions, 9(11), 12395-12433.
Yang, T. C., Chen, C., Kuo, C. M., Tseng, H. W., & Yu, P. S. (2012). Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan. Hydrology and Earth System Sciences Discussions, 9(11), 12395-12433. https://doi.org/10.5194/hessd-9-12395-2012
Yates, T., Si, B., Farrell, R., & Pennock, D. (2007). Time, location, and scale dependence of soil nitrous oxide emissions, soil water, and temperature using wavelets, cross‐wavelets, and wavelet coherency analysis. Journal of Geophysical Research: Atmospheres, 112(D9).
Yeh, H.-F., & Chang, C.-F. (2019). Using standardized groundwater index and standardized precipitation index to assess drought characteristics of the Kaoping River Basin, Taiwan. Water Resources, 46, 670-678.
Yeh, H.-F., Lin, X.-Y., Huang, C.-C., & Chen, H.-Y. (2024). A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan. Geosciences, 14(4). https://doi.org/10.3390/geosciences14040106
Yen, M.-H., Liu, D.-W., Hsin, Y.-C., Lin, C.-E., & Chen, C.-C. (2019). Application of the deep learning for the prediction of rainfall in Southern Taiwan. Scientific Reports, 9(1), 12774. https://doi.org/10.1038/s41598-019-49242-6
Yu, P.-S., Yang, T.-C., Kuo, C.-M., Tseng, H.-W., & Chen, S.-T. (2014). Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate, 3(1), 42-62. https://doi.org/10.3390/cli3010042
Yu, P.-S., Yang, T.-C., & Wu, C.-K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of hydrology, 260(1), 161-175. https://doi.org/https://doi.org/10.1016/S0022-1694(01)00614-X
Zhang, H., Ding, J., Wang, Y., Zhou, D., & Zhu, Q. (2021). Investigation about the correlation and propagation among meteorological, agricultural and groundwater droughts over humid and arid/semi-arid basins in China. Journal of hydrology, 603, 127007. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127007
Zhao, J., Zhang, Q., Zhu, X., Shen, Z., & Yu, H. (2020). Drought risk assessment in China: Evaluation framework and influencing factors. Geography and Sustainability, 1(3), 220-228. https://doi.org/10.1016/j.geosus.2020.06.005
Zhongguang. (2021, April 19). Inadequate Inflow in Shimen Reservoir: Developing an Early Warning Platform. Broadcasting Corporation of China. https://ynews.page.link/V8UE
Zhou, J., Li, Q., Wang, L., Lei, L., Huang, M., Xiang, J., Feng, W., Zhao, Y., Xue, D., Liu, C., Wei, W., & Zhu, G. (2019). Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains. Water, 11(8). https://doi.org/10.3390/w11081602 |