博碩士論文 107083603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.119.108.233
姓名 武重皇(Vo Trong Hoang)  查詢紙本館藏   畢業系所 環境科技博士學位學程
論文名稱
(Integrating Remote Sensing Data for Drought Assessment in Taiwan)
相關論文
★ 區域發展對土地利用變遷之影響-以桃園縣客家地區為例★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究
★ WVR、GPS及氣球探空觀測可降水量之比較★ GPS斷層掃描估算大氣濕折射係數模式
★ GPS觀測大氣閃爍之研究★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 36.5 GHz微波輻射器接收模組之研製★ GPS 氣象中地面氣象模式之改進
★ 由GPS信號反演大氣濕折射度之數值模擬★ 發展遙測資料反演可感熱與潛熱通量之研究
★ GPS信號估算可降水量與降雨關係之研究★ 近即時GPS觀測可降水技術之研究
★ 利用水氣資訊改善降水估計之研究★ GPS掩星觀測反演與反演誤差探討
★ 微波輻射計數位相關器之設計與實現★ GPS與探空氣球資料觀測可降水量 與降雨之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 春季乾旱對台灣造成重大影響,對當地的農業、工業和民生領域均有影響。這些乾旱尤其令人擔憂,因為它們對本地和全球經濟都有深遠影響,特別是半導體產業,這是全球科技市場的基石。這一點在2021年春季,台灣積體電路製造股份有限公司(TSMC)的晶片生產中斷中尤為明顯。儘管這些乾旱的嚴重性,當地研究在整合各種乾旱指數方面仍存在明顯差距,這對於全面的乾旱風險評估和管理非常重要。本論文針對這一差距,通過評估春季乾旱的特徵並提出一個創新框架,利用集成學習方法全面評估台灣的乾旱風險。
首先,第3章採用了標準化乾旱指數(SDI)、標準化溫度指數(STI)和歸一化差異水指數(NDWI),研究了1982年至2021年間台灣春季乾旱的特徵和潛在氣候變化影響。該章節結合了遙測技術、統計分析和機器學習技術,並通過地面驗證的遙測數據進行強化。研究結果顯示,台灣的乾旱動態與全球典型模式不同。台灣的水文乾旱對降雨赤字的反應迅速,相關性強(r > 0.8),而農業乾旱的相關性適中(0.4 < r < 0.6)。此外,儘管農業乾旱有所減少,但自2000年代初以來,氣象和水文乾旱有所增加,並出現顯著的變化點;台灣中部和南部地區成為乾旱熱點,每4至6年經歷顯著的溫度-乾旱一致性循環。本章強調了改進乾旱管理策略的重要性,這對台灣的工業經濟尤為重要。
其次,第4章提出了一個綜合框架來評估台灣的乾旱風險,結合了分析網絡過程(ANP)和人工神經網絡(ANN)。本研究的目標是繪製詳細的乾旱風險地圖,同時考慮乾旱災害對農業、工業和民生領域的社會經濟影響。最終的乾旱風險地圖通過實地調查和統計分析進行全面驗證,在評估作物損害、面積轉換和預估經濟損失方面,驗證準確率達到0.717到0.851之間。本章展示了ANP-ANN集成方法的有效性,證明了其在各種生態和社會經濟條件下迅速且準確預測乾旱風險的穩健性。最後,第5章總結了本論文的主要發現和貢獻,並討論所用方法的擴展潛力,以應對該領域的新挑戰。
摘要(英) Spring droughts in Taiwan significantly impact the socio-economic, affecting local agriculture, industry, and domestic sectors. These droughts are particularly concerning due to their far-reaching implications for both local and global economies, especially the semiconductor industry, a cornerstone of global technology markets. This is particularly evident in the disruption of chip production by Taiwan Semiconductor Manufacturing Company Limited (TSMC) in Spring 2021. Despite the critical nature of these droughts, there is a notable gap in the integration of various drought indices in local studies, which is essential for comprehensive drought risk assessment and management. This dissertation addresses this gap by assessing the characteristics of spring droughts and proposing an innovative framework that utilizes an ensemble learning method to comprehensively evaluate drought risk in Taiwan.
Firstly, Chapter 3 employs Standardized Drought Indices (SDI), the Standardized Temperature Index (STI), and the Normalized Difference Water Index (NDWI) to investigate the characteristics of spring droughts from 1982 to 2021 in Taiwan. It utilizes a combination of remote sensing, machine learning techniques, and statistical analysis, enhanced by the assimilation of ground-validated remote sensing data. The results reveal that drought dynamics in Taiwan are distinct from typical global patterns. Hydrological droughts in Taiwan show a rapid response to rainfall deficits, with strong correlations (r > 0.8), whereas agricultural droughts demonstrate moderate correlations (0.4 < r < 0.6). Additionally, while agricultural droughts have seen a decline, meteorological and hydrological droughts have increased since the early 2000s, featuring a significant change point. The central and southern regions of Taiwan emerge as drought hotspots, experiencing notable air temperature-drought coherence in 4–6-year cycles. This chapter underscores the importance of advancing drought management strategies, particularly vital for Taiwan′s industrial economy. Secondly, Chapter 4 introduces a comprehensive framework to assess drought risk in Taiwan, utilizing a combination of the Analytic Network Process (ANP) and Artificial Neural Network (ANN). The research objectives of this study are to generate a detailed map of drought risk while considering the impacts of drought hazards on the socio-economic domains of agriculture, industry, and domestic sectors. The final drought risk map was thoroughly validated through fieldwork and statistical analysis, achieving high validation accuracies ranging from 0.717 to 0.851 in evaluating crop damage, area conversion, and estimated economic losses. This chapter highlights the effectiveness of the ANP-ANN ensemble method, proving its robustness in rapidly and accurately predicting drought risk under various ecological and socioeconomic conditions. Finally, Chapter 5 concludes the dissertation by summarizing its principal discoveries and contributions. The chapter also discusses the potential for expanding the methodologies employed, to address emerging challenges in the field.
關鍵字(中) ★ 乾旱
★ 氣候變化
★ 遙測
★ 標準化乾旱指數
★ ANP-ANN
★ 災害
關鍵字(英) ★ Drought
★ climate change
★ remote sensing
★ standardized drought indices
★ ANP-ANN
★ hazard
論文目次 Table of Contents
CHAPTER 1: INTRODUCTION 1
1.1. Overview 1
1.2. Motivation and Objectives 3
1.2.1. Statement of the problem 3
1.2.2. Research questions and objectives 8
1.3. Research contribution and innovation 9
1.4. Literature Review 10
1.4.1. Drought monitoring 10
1.4.2. Drought risk assessment 13
1.5. Dissertation structure 18
1.6. Methodology 19
CHAPTER 2: STUDY AREA 20
2.1. Geography characteristic of Taiwan 20
2.2. Rainfall characteristic of Taiwan 22
CHAPTER 3: DROUGHT MONITORING IN TAIWAN 28
3.1. Introduction 28
3.2. Data 30
2.1.1. CHIRPS 31
2.1.2. FLDAS 31
2.1.3. LANDSAT 31
2.1.4. SENTINEL-2 32
2.1.5. IN-SITU DATA 32
3.3. Method 33
3.2.1. Standardized anomaly index 33
3.2.2. Standardized drought index 34
3.2.3. Land use/land cover classification 36
3.2.4. Mapping surface water body 39
3.2.5. Temporal trend and correlation analysis 40
3.2.6. Wavelet transform coherence analysis 40
3.4. Results 42
3.4.1. Spatiotemporal distribution of droughts 42
3.4.2. Response of hydrological/agricultural drought to meteorological drought 47
3.4.3. Spatial distribution of trend of droughts 51
3.4.4. Relationship between climate change and drought in Taiwan 52
3.5. Discussion 56
3.6. Summary 59
CHAPTER 4: DROUGHT RISK ASSESSMENT IN TAIWAN 61
4.1. Introduction 61
4.2. Data and methodology 65
4.2.1. Data sources 65
4.2.2. Methodology 67
4.3. Results and discussions 71
4.3.1 Selecting and calculating indicators 71
4.3.2. Drought risk assessment using the ANP-ANN ensemble model 86
4.3.3. Validation 106
4.3.4. Limitations 109
4.4. Summary 110
CHAPTER 5: CONCLUSION AND FUTURE OPPORTUNITIES 112
5.1. The research questions answered 112
5.1.1. Drought monitoring 112
5.1.2. Drought risk assessment 113
5.1.3. Propose strategies 116
5.2 Limitations of this research 118
5.3. Future opportunities 120
5.4. Conclusion 121
REFERENCES 123
參考文獻 REFERENCES
Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. H., & Mahmood, R. (2018). Comparison of various drought indices to monitor drought status in Pakistan. Climate dynamics, 51(5), 1885-1899.
Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. B. (2018). A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing, 10(6), 975.
Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the Role of Climate Characteristics in Drought Propagation. Water Resources Research, 53(11), 9304-9329. https://doi.org/https://doi.org/10.1002/2017WR021445
Atkinson, P. M., & Tatnall, A. R. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699-709.
Babatolu, J. S., & Akinnubi, R. T. (2013). Surface temperature anomalies in the river Niger basin development authority areas, Nigeria. Atmospheric, 2013.
Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31.
Berg, A., & Sheffield, J. (2018). Climate change and drought: the soil moisture perspective. Current Climate Change Reports 4, 180-191.
Bergman, K., Sabol, P., & Miskus, D. (1988). Experimental indices for monitoring global drought conditions. Proceedings of the 13th annual climate diagnostics workshop, Cambridge, MA, USA,
Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli terrain of India. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey,
Boyle, J. S., & Chen, G. T. J. (1987). Synoptic aspects of the wintertime East Asian monsoon. In.
Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16-46.
Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of hydrology, 58(1-2), 11-27.
Carrao, H., Russo, S., Sepulcre, G., & Barbosa, P. (2013). Agricultural Drought Assessment In Latin America Based On A Standardized Soil Moisture Index. ESA Living Planet Symposium,
Chang, C.-C., Jan, M.-Y., & Cheng, C.-C. (2015). Water Governance for Drought/Water-Scarcity in Taiwan – a Multi-Layer Management System. ICID Conference.
Chen, C.-S., & Chen, Y.-L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323-1341.
Chen, S.-T., Kuo, C.-C., & Yu, P.-S. (2009). Historical trends and variability of meteorological droughts in Taiwan / Tendances historiques et variabilité des sécheresses météorologiques à Taiwan. Hydrological Sciences Journal, 54(3), 430-441. https://doi.org/10.1623/hysj.54.3.430
Chen, T. C., Yen, M. C., Hsieh, J. C., & Arritt, R. W. (1999). Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. In (Vol. 80, pp. 2299-2312).
Chen, T. C., Yen, M. C., Huang, W. R., & Gallus, W. A. (2002). An East Asian cold surge: Case study. In (Vol. 130, pp. 2271-2290).
Cheng, C.-H., Nnadi, F., & Liou, Y.-A. (2015). A regional land use drought index for Florida. Remote Sensing, 7(12), 17149-17167.
Chou, J., Xian, T., Zhao, R., Xu, Y., Yang, F., & Sun, M. (2019). Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability, 11(16). https://doi.org/10.3390/su11164463
Chung, S.-H., Lee, A. H., & Pearn, W.-L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International journal of production economics, 96(1), 15-36.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3(1), 52-58.
De Martonne, E. (1925). Traite de geographie physique: ouvrage couronne par l′Academie des sciences, Prix Binoux, et par la Societe de geographie de Paris (Vol. 3). A. Colin.
Deltares. (2018). Global inventory of drought hazard and risk modeling tools. In (2018 ed., pp. 31): Deltares.
Dorjsuren, M., Liou, Y.-A., & Cheng, C.-H. (2016). Time series MODIS and in situ data analysis for Mongolia drought. Remote Sensing, 8(6), 509.
Dracup, J. A., Lee, K. S., & Paulson Jr, E. G. (1980). On the definition of droughts. Water Resources Research, 16(2), 297-302.
Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2014). Analytic network process in risk assessment and decision analysis. Computers & Operations Research, 42, 58-74.
Erian, W., Pulwarty, R., Vogt, J., AbuZeid, K., Bert, F., Bruntrup, M., El-Askary, H., de Estrada, M., Gaupp, F., & Grundy, M. (2021). GAR special report on drought 2021.
Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140-145.
Fooladi, M., Golmohammadi, M. H., Safavi, H. R., Mirghafari, R., & Akbari, H. (2021). Trend analysis of hydrological and water quality variables to detect anthropogenic effects and climate variability on a river basin scale: a case study of Iran. Journal of hydro-environment research, 34, 11-23.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266.
Ghorbanzadeh, O., Feizizadeh, B., & Blaschke, T. (2018). Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomatics, Natural Hazards and Risk, 9(1), 127-151. https://doi.org/10.1080/19475705.2017.1413012
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., & Blankenship, D. D. (2019). The climate data toolbox for MATLAB. Geochemistry, Geophysics, Geosystems, 20(7), 3774-3781.
Guo, H., Bao, A., Liu, T., Ndayisaba, F., Jiang, L., Zheng, G., Chen, T., & De Maeyer, P. (2019). Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sensing of Environment, 231, 111220. https://doi.org/https://doi.org/10.1016/j.rse.2019.111220
Guobin, L. (2021, April 20). Remarkable satellite images reveal the shrinking size of Shimen and Zengwen reservoirs. FTV News Network. https://ynews.page.link/MNUuz
Gusyev, M., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., & Lee, S. (2015). Drought assessment in the Pampanga River basin, the Philippines–Part 1: Characterizing a role of dams in historical droughts with standardized indices. Proceedings of the 21st international congress on modelling and simulation (MODSIM 2015), November 29th–December 4th, Queensland, Australia,
Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.
Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., & Sebesvari, Z. (2019). Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab225d
Hao, Z., Hao, F., Singh, V. P., Xia, Y., Ouyang, W., & Shen, X. (2016). A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in Water Resources, 92, 240-247. https://doi.org/10.1016/j.advwatres.2016.04.010
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., & Bauer-Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748.
HRL. (2015). Standardized Drought Analysis Toolbox (SDAT). In
Huang, S., Huang, Q., Chang, J., Leng, G., & Xing, L. (2015). The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China. Agricultural Water Management, 159, 45-54. https://doi.org/https://doi.org/10.1016/j.agwat.2015.05.023
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213.
Hung, C.-w., & Shih, M.-F. (2019). Analysis of Severe Droughts in Taiwan and its Related Atmospheric and Oceanic Environments. Atmosphere, 10(3), 159. https://www.mdpi.com/2073-4433/10/3/159
Imprex. (2020). Drought, Preparedness, Mitigration, and Management - Innovative approaches for the agricultural sector. In: UN.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Vol. In Press). Cambridge University Press. https://doi.org/10.1017/9781009157896
Jiao, W., Wang, L., & McCabe, M. F. (2021). Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 256, 112313. https://doi.org/https://doi.org/10.1016/j.rse.2021.112313
Klemeš, V. (1987). One hundred years of applied storage reservoir theory. Water resources management, 1(3), 159-175.
Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., & Djaman, K. (2017). Trend analysis in standardized precipitation index and standardized anomaly index in the context of climate change in Southern Togo. Atmospheric Climate Sciences, 7(04), 401.
Le, M. S., & Liou, Y.-A. (2021). Temperature-Soil Moisture Dryness Index for Remote Sensing of Surface Soil Moisture Assessment. 19, 1-5.
Li, J., Wang, Y., Li, Y., Ming, W., Long, Y., & Zhang, M. (2021). Relationship between meteorological and hydrological droughts in the upstream regions of the Lancang–Mekong River. Journal of Water and Climate Change, 13(2), 421-433. https://doi.org/10.2166/wcc.2021.445
Liou, Y.-A., Le, M. S., & Chien, H. (2018). Normalized difference latent heat index for remote sensing of land surface energy fluxes. IEEE Transactions on Geoscience Remote Sensing, 57(3), 1423-1433.
Liou, Y.-A., & Nguyen, K.-A. (2022). Assessment of Drought Vulnerability in Taiwan. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium,
Liou, Y.-A., & Thai, M.-T. (2023). Surface Water Availability and Temperature (SWAT): An Innovative Index for Remote Sensing of Drought Observation. IEEE Transactions on Geoscience and Remote Sensing.
Liu, W., & Kogan, F. (1996). Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing, 17(14), 2761-2782.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology,
McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-Lidard, C. D., & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4(1), 170012. https://doi.org/10.1038/sdata.2017.12
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21, 223-233.
Mulualem, G. M., & Liou, Y.-A. (2020). Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the Upper Blue Nile basin. Water Resources Management, 12(3), 643.
Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1), 69-88. https://doi.org/https://doi.org/10.1016/j.agrformet.2005.07.012
Nedic, V., Despotovic, D., Cvetanovic, S., Despotovic, M., & Babic, S. (2014). Comparison of classical statistical methods and artificial neural network in traffic noise prediction. Environmental Impact Assessment Review, 49, 24-30.
Nguyen, K.-A., & Liou, Y.-A. (2019a). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the total environment, 664, 995-1004.
Nguyen, K.-A., & Liou, Y.-A. (2019b). Mapping global eco-environment vulnerability due to human and nature disturbances. MethodsX, 6, 862-875.
Nguyen, K.-A., & Liou, Y.-A. (2024). Rethinking our world: a perspective on a cleaner globe emerging from reduced anthropogenic activities. Geoscience Letters, 11(1), 9. https://doi.org/10.1186/s40562-024-00322-0
Nguyen, K.-A., Liou, Y.-A., & Terry, J. P. (2019). Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Science of the total environment, 682, 31-46.
Nguyen, K.-A., Liou, Y.-A., Vo, T.-H., Cham, D. D., & Nguyen, H. S. (2021). Evaluation of urban greenspace vulnerability to typhoon in Taiwan. Urban Forestry & Urban Greening, 63, 127191. https://doi.org/https://doi.org/10.1016/j.ufug.2021.127191
Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
Paola, J. D., & Schowengerdt, R. A. (1995). A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, 16(16), 3033-3058.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
PeterRochford. (2023). SkillMetricsToolbox. In (Version 1.8.2.0) [Toolbox]. Matlab. https://github.com/PeterRochford/SkillMetricsToolbox/wiki
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242-268.
Rojas, O., Vrieling, A., & Rembold, F. (2011). Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment, 115(2), 343-352. https://doi.org/https://doi.org/10.1016/j.rse.2010.09.006
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922). RWS publications Pittsburgh.
Saaty, T. L. (2004). Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. Journal of Systems science and Systems engineering, 13, 129-157.
Saaty, T. L., Vargas, L. G., Saaty, T. L., & Vargas, L. G. (2013). The analytic network process. Springer.
Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate dynamics, 31(1), 79-105.
Sheffield, J., & Wood, E. F. J. C. d. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. 31(1), 79-105.
Shiau, J.-T., & Hsiao, Y.-Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64(1), 237-257. https://doi.org/10.1007/s11069-012-0239-9
Shiau, J.-T., & Lin, J.-W. (2016). Clustering quantile regression-based drought trends in Taiwan. Water resources management, 30, 1053-1069.
Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2).
Skapura, D. M. (1996). Building neural networks. Addison-Wesley Professional.
Son, B., Park, S., Im, J., Park, S., Ke, Y., & Quackenbush, L. J. (2021). A new drought monitoring approach: Vector Projection Analysis (VPA). Remote Sensing of Environment, 252, 112145. https://doi.org/https://doi.org/10.1016/j.rse.2020.112145
Staudinger, M., Stahl, K., & Seibert, J. (2014). A drought index accounting for snow. Water Resources Research, 50(10), 7861-7872.
Tao, S., & Chen, L. (1987). A review of recent research on the East Asian summer monsoon in China. In.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2). https://doi.org/https://doi.org/10.1029/2011RG000369
Tarpley, J., Schneider, S., & Money, R. (1984). Global vegetation indices from the NOAA-7 meteorological satellite. Journal of Climate and Applied Meteorology, 491-494.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. https://doi.org/https://doi.org/10.1029/2000JD900719
Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78.
UNISDR, U. (2015). Sendai framework for disaster risk reduction 2015–2030. Proceedings of the 3rd United Nations World Conference on DRR, Sendai, Japan,
Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359-392. https://doi.org/10.1002/wat2.1085
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Hannaford, J., Reig, F., Peña-Angulo, D., Tramblay, Y., Trigo, R. M., Mac Donald, N., Luna, M. Y., Mc Carthy, M., Van der Schrier, G., Turco, M., Camuffo, D., Noguera, I., García-Herrera, R., Becherini, F., Della Valle, A., Tomas-Burguera, M., & El Kenawy, A. (2021). Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). International Journal of Climatology, 41(S1), E690-E717. https://doi.org/https://doi.org/10.1002/joc.6719
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., & Morán-Tejeda, E. (2012). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318-332.
Wang, S. T., Cheng, H., & Chao, Y. K. (1984). Natural seasons of the weather in the Taiwan area (in Chinese with English abstract). In (Vol. 11, pp. 101-120).
Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120.
WorldBank. (2019). Assessing drought hazard and risk: principles and implementation guidance. World Bank.
Xu, Y., Zhang, X., Hao, Z., Singh, V. P., & Hao, F. (2021). Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. Journal of Hydrology, 598, 126194. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126194
Yang, T., Chen, C., Kuo, C., Tseng, H., & Yu, P. (2012). Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan. Hydrology and Earth System Sciences Discussions, 9(11), 12395-12433.
Yang, T. C., Chen, C., Kuo, C. M., Tseng, H. W., & Yu, P. S. (2012). Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan. Hydrology and Earth System Sciences Discussions, 9(11), 12395-12433. https://doi.org/10.5194/hessd-9-12395-2012
Yates, T., Si, B., Farrell, R., & Pennock, D. (2007). Time, location, and scale dependence of soil nitrous oxide emissions, soil water, and temperature using wavelets, cross‐wavelets, and wavelet coherency analysis. Journal of Geophysical Research: Atmospheres, 112(D9).
Yeh, H.-F., & Chang, C.-F. (2019). Using standardized groundwater index and standardized precipitation index to assess drought characteristics of the Kaoping River Basin, Taiwan. Water Resources, 46, 670-678.
Yeh, H.-F., Lin, X.-Y., Huang, C.-C., & Chen, H.-Y. (2024). A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan. Geosciences, 14(4). https://doi.org/10.3390/geosciences14040106
Yen, M.-H., Liu, D.-W., Hsin, Y.-C., Lin, C.-E., & Chen, C.-C. (2019). Application of the deep learning for the prediction of rainfall in Southern Taiwan. Scientific Reports, 9(1), 12774. https://doi.org/10.1038/s41598-019-49242-6
Yu, P.-S., Yang, T.-C., Kuo, C.-M., Tseng, H.-W., & Chen, S.-T. (2014). Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate, 3(1), 42-62. https://doi.org/10.3390/cli3010042
Yu, P.-S., Yang, T.-C., & Wu, C.-K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of hydrology, 260(1), 161-175. https://doi.org/https://doi.org/10.1016/S0022-1694(01)00614-X
Zhang, H., Ding, J., Wang, Y., Zhou, D., & Zhu, Q. (2021). Investigation about the correlation and propagation among meteorological, agricultural and groundwater droughts over humid and arid/semi-arid basins in China. Journal of hydrology, 603, 127007. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127007
Zhao, J., Zhang, Q., Zhu, X., Shen, Z., & Yu, H. (2020). Drought risk assessment in China: Evaluation framework and influencing factors. Geography and Sustainability, 1(3), 220-228. https://doi.org/10.1016/j.geosus.2020.06.005
Zhongguang. (2021, April 19). Inadequate Inflow in Shimen Reservoir: Developing an Early Warning Platform. Broadcasting Corporation of China. https://ynews.page.link/V8UE
Zhou, J., Li, Q., Wang, L., Lei, L., Huang, M., Xiang, J., Feng, W., Zhao, Y., Xue, D., Liu, C., Wei, W., & Zhu, G. (2019). Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains. Water, 11(8). https://doi.org/10.3390/w11081602
指導教授 劉說安(Liou, Yuei-An) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明