博碩士論文 111326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.21.246.53
姓名 廖峻頡(Jyun-Jie Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 SCR觸媒應用於氣流中同時去除NO、戴奧辛及VOC之效率探討
(Achieving multiple pollutants control via SCR catalyst)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 選擇性催化還原(Selective Catalytic Reduction, SCR)技術因其可同時去除NO、VOC和PCDD/Fs的能力而引起了廣泛關注。對於面臨設備升級挑戰的傳統產業而言,同時去除技術能夠有效節省成本並符合排放標準,非常具有吸引力。燒結過程是包括NO、VOC和PCDD/Fs在內的主要空氣污染物來源。然而,不同污染物在同時去除過程中的相互作用會影響其去除效果。因此,本研究旨在評估三種SCR觸媒對氣流中NO、甲苯和PCDD/Fs同時去除的潛力。氣流包含200 ppm的NO、200 ppm的NH₃、50 ppm的SO₂、3%的O₂、14%的H₂O(g)和1 ng-TEQ/Nm³的PCDD/Fs,以5000 h⁻¹ 的氣體小時空速(GHSV)和220°C的溫度進行評估。為了研究VOC的同時去除,將固定濃度的甲苯(380 ppm)注入氣流中進行測試。應用了三種不同的商業V2O5-MoO3/TiO2 (VMT)觸媒。XRF、BET和XRD分析結果顯示,這三種VMT觸媒在比表面積和鉬含量上存在明顯的差異。研究結果表明,這些觸媒確實具有同時去除三種污染物的能力。具有最高MoO₃ 含量的Cat-1,在三種同時去除的污染物中表現出最佳的去除效率,戴奧辛達到93.1%、NO達到83.3%、甲苯達到81.1%。另外也觀察到具有較高抗硫成分(如SiO₂、WO₃)的Cat-2儘管其鉬含量較低,但在H₂O(g)和SO₂存在時顯示出較高的NO和PCDD/Fs去除效率,這可能歸因於含硫抗性物質引起的表面酸性增加,影響了氨和PCDD/Fs在觸媒表面的吸附。然而,對戴奧辛的破壞效率及甲苯轉化率而言,僅與觸媒比表面積大小及活性金屬含量呈正相關。同時,對於高氯數的OCDD及OCDF物種,發現在220℃的操作溫度下僅能實現較有限的吸附與破壞。本研究結果指出各污染物在多污染物控制 (multipollutant control, MPC) 過程中受不同氣流條件的變化影響,並呈現良好的同步去除效率。
摘要(英) Selective Catalytic Reduction (SCR) technology has garnered widespread attention due to its capability to simultaneously remove NO, VOCs, and PCDD/Fs. Industries are facing the challenge, of equipment upgrade to meet the stringent emission standards and multi-pollutant control (MPC) technology is highly attractive as it effectively reduces the costs and space. Sintering process is a major source of air pollutants, including NO, VOCs, and PCDD/Fs. However, the interactions among different pollutants during the simultaneous removal process can affect the removal efficiency. Therefore, this study aims to evaluate the potential of three SCR catalysts for simultaneous removal of NO, toluene, and PCDD/Fs from gas stream. The gas stream contains 200 ppm NO, 200 ppm NH₃, 50 ppm SO₂, 3% O₂, 14% H₂O(g), and 1 ng-TEQ/Nm³ PCDD/Fs. The experimental tests were conducted at a gas hourly space velocity (GHSV) of 5000 h⁻¹ and a temperature of 220°C. To investigate the simultaneous removal of VOCs, toluene (380 ppm) was added to the gas stream for testing. Three different commercial V2O5-MoO3/TiO2 catalysts were applied. The results of XRF, BET, and XRD analysis indicated significant differences in specific surface area and molybdenum content among three VMT catalysts. The experimental results showed that these catalysts indeed possess the capability to simultaneously remove three pollutants from gas stream. Cat-1, with the highest MoO3 content, exhibited the best removal efficiency among the three pollutants, achieving 93.1% for dioxins, 83.3% for NO, and 81.1% for toluene. Additionally, Cat-2, which contains higher sulfur-resistant components such as SiO₂ and WO3, demonstrated higher removal efficiency for NO and PCDD/Fs in the presence of H₂O(g) and SO₂, despite its lower molybdenum content. This might be attributed to the increased acidity caused by sulfur-resistant materials, which influenced the adsorption of ammonia and PCDD/Fs on the catalyst. Destruction efficiency of dioxins and the conversion rate of toluene were positively correlated with the catalyst′s specific surface area and active metal content. Furthermore, limited adsorption and destruction were achieved at the operating temperature of 220°C for highly chlorinated OCDD and OCDF species. The results highlight the variations in pollutant removal efficiency under different gas stream conditions in the MPC process, demonstrating good overall removal efficiency.
關鍵字(中) ★ 多重污染物控制
★ 戴奧辛
★ 甲苯
★ 選擇性觸媒還原
★ NO
關鍵字(英) ★ multi-pollutant control
★ PCDD/Fs
★ NO
★ VOC
★ SCR
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 戴奧辛之基本特性 3
2.1.1 戴奧辛物化特性以及對人體之危害 3
2.1.2 戴奧辛之來源 7
2.1.3 戴奧辛生成機制 10
2.1.4 戴奧辛控制技術 12
2.2 氮氧化物之特性與來源 14
2.2.1 氮氧化物生成機制 15
2.2.2 氮氧化物控制技術 17
2.3 VOCs之定義 18
2.3.1 VOCs之危害性 19
2.3.2 VOCs控制技術 20
2.4 燒結廠的排放與限制 22
2.5 雙效觸媒特性 24
2.5.1 雙效觸媒材料 24
2.6 觸媒反應機制 29
2.6.1 同步去除機制間的相互影響 31
第三章 研究方法 35
3.1 研究流程與架構 35
3.2 觸媒材料之物化特性分析 36
3.3 戴奧辛母樣配置 38
3.4 觸媒脫除效率測試系統 38
3.5 實驗材料、試劑及設備 40
3.5.1 實驗材料 40
3.5.2 實驗試劑 41
3.5.3 實驗設備 42
3.6 樣品前處理與分析 43
3.6.1 戴奧辛前處理程序 43
3.6.2 戴奧辛類樣品淨化程序 44
3.6.3 高解析氣相層析/高解析質譜儀(HRGC/HRMS)分析 46
3.6.4 反應系統尾氣之NO濃度測量 47
3.7 研究使用相關之計算公式 47
第四章 結果與討論 49
4.1 觸媒基本物化特性分析 49
4.1.1 XRF分析 49
4.1.2 BET分析 51
4.2 系統穩定度測試 52
4.3 不同氣流條件下同步去除之戴奧辛去除效率 54
4.3.1 氣流不含H2O(g)、SO2時之戴奧辛去除效率 54
4.3.2 氣流含SO2之戴奧辛去除效率 56
4.3.3 氣流含H2O(g) 時之戴奧辛去除效率 60
4.3.4 氣流含H2O(g) 與SO2時之戴奧辛去除效率與破壞效率 63
4.4 不同條件下之NO轉化率 69
4.5 同步去除下甲苯去除效率 71
4.6 MPC之尾氣分析 72
第五章 結論與建議 75
5.1 結論 75
5.2 建議 76
參考文獻 77
參考文獻 Aissat, A., Courcot, D., Cousin, R., & Siffert, S. (2011). VOCs removal in the presence of NOx on Cs–Cu/ZrO2 catalysts. Catalysis Today, 176(1), 120-125.
Amoatey, P., Omidvarborna, H., Baawain, M. S., & Al-Mamun, A. (2019). Emissions and exposure assessments of SOx, NOx, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Safety and Environmental Protection, 123, 215-228.
Asghar, U., Rafiq, S., Anwar, A., Iqbal, T., Ahmed, A., Jamil, F., Khurram, M. S., Akbar, M. M., Farooq, A., & Shah, N. S. (2021). Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. Journal of Environmental Chemical Engineering, 9(5), 106064.
Atkinson, R. (1991). Atmospheric lifetimes of dibenzo-p-dioxins and dibenzofurans. Science of the Total Environment, 104(1-2), 17-33.
Beeckman, J. W., & Hegedus, L. L. (1991). Design of monolith catalysts for power plant nitrogen oxide emission control. Industrial & Engineering Chemistry Research, 30(5), 969-978.
Bertinchamps, F., Grégoire, C., & Gaigneaux, E. M. (2006). Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part I: Identification of the optimal main active phases and supports. Applied Catalysis B: Environmental, 66(1), 1-9.
Bertinchamps, F., Treinen, M., Blangenois, N., Mariage, E., & Gaigneaux, E. M. (2005). Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene. Journal of Catalysis, 230(2), 493-498.
Bertinchamps, F., Treinen, M., Eloy, P., Dos Santos, A.M., Mestdagh, M., & Gaigneaux, E. M. (2007). Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 70(1-4), 360-369.
Booth, S., Hui, J., Alojado, Z., Lam, V., Cheung, W., Zeller, D., Steyn, D., & Pauly, D. (2013). Global deposition of airborne dioxin. Marine Pollution Bulletin, 75(1-2), 182-186.
Chai, Y., Zhang, G., He, H., & Sun, S. (2020). Theoretical study of the catalytic activity and anti-so2 poisoning of a MoO3/V2O5 selective catalytic reduction catalyst. ACS Omega, 5(42), 26978-26985.
Chang, Y.M., Hung, C.Y., Chen, J.H., Chang, C.T., & Chen, C.H. (2009). Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials, 161(2-3), 1436-1443.
Charbotel, B., Fervers, B., & Droz, J. (2014). Occupational exposures in rare cancers: A critical review of the literature. Critical Reviews in Oncology/Hematology, 90(2), 99-134.
Chauhan, S. K., Saini, N., & Yadav, V. B. (2014). Recent trends of volatile organic compounds in ambient air and its health impacts: A review. International Journal Technology Research Engineering 1(8), 667.
Chen, J. C., Wey, M. Y., Yeh, C. L., & Liang, Y.S. (2004). Simultaneous treatment of organic compounds, CO, and NOx in the incineration flue gas by three-way catalyst. Applied Catalysis B: Environmental, 48(1), 25-35.
Chen, Y., Chen, Z., Zhang, C., Chen, L., Tang, J., Liao, Y., & Ma, X. (2022). Multiple pollutants control of NO, benzene and toluene from coal-fired plant by Mo/Ni impregnated TiO2-based NH3-SCR catalyst: A DFT supported experimental study. Applied Surface Science, 599, 153986.
Cheng, J., Zhang, Y., Wang, T., Xu, H., Norris, P., & Pan, W.P. (2018). Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates. Fuel, 225, 554-562.
Cho, C. H., & Ihm, S. K. (2002). Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environmental Science & Technology, 36(7), 1600-1606.
Cieplik, M. K., Carbonell, J. P., Muñoz, C., Baker, S., Krüger, S., Liljelind, P., Marklund, S., & Louw, R. (2003). On dioxin formation in iron ore sintering. Environmental Science & Technology, 37(15), 3323-3331.
Deng, W., Dai, Q., Lao, Y., Shi, B., & Wang, X. (2016). Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 181, 848-861.
Dwyer, H., & Themelis, N. J. (2015). Inventory of US 2012 dioxin emissions to atmosphere. Waste Management, 46, 242-246.
Dyke, P., Foan, C., Wenborn, M., & Coleman, P. (1997). A review of dioxin releases to land and water in the UK. Science of the Total Environment, 207(2-3), 119-131.
Fan, C., Li, K., Peng, Y., Duan, R., Hu, F., Jing, Q., Chen, J., & Li, J. (2019). Fe-Doped α-MnO2 nanorods for the catalytic removal of NOx and chlorobenzene: the relationship between lattice distortion and catalytic redox properties. Physical Chemistry Chemical Physics, 21(46), 25880-25888.
Fang, N., Guo, J., Shu, S., Luo, H., Chu, Y., & Li, J. (2017). Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chemical Engineering Journal, 325, 114-123.
Feng, S., Wang, B., Xing, Y., Kong, W., Ma, J., Zhang, C., Li, Z., Shen, B., Wang, Z., Chen, L., & Yang, J. (2023). Investigation on the mechanism of Nb and Si co-doping on low SO3 generation from V-based catalyst during NH3-SCR process. Fuel, 348, 128584.
Fetisov, V., Gonopolsky, A. M., Davardoost, H., Ghanbari, A. R., & Mohammadi, A. H. (2023). Regulation and impact of VOC and CO2 emissions on low‐carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry. Energy Science & Engineering, 11(4), 1516-1535.
Finocchio, E., Baldi, M., Busca, G., Pistarino, C., Romezzano, G., Bregani, F., & Toledo, G. P. (2000). A study of the abatement of VOC over V2O5–WO3–TiO2 and alternative SCR catalysts. Catalysis Today, 59(3), 261-268.
Gómez-García, M., Pitchon, V., & Kiennemann, A. (2005). Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environment International, 31(3), 445-467.
Gallastegi-Villa, M., Aranzabal, A., González-Marcos, J., & González-Velasco, J. (2016). Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 184, 238-245.
Gallastegi-Villa, M., Aranzabal, A., González-Marcos, M., Markaide-Aiastui, B., González-Marcos, J., & González-Velasco, J. (2020). Effect of vanadia loading on acidic and redox properties of VOx/TiO2 for the simultaneous abatement of PCDD/Fs and NOx. Journal of Industrial and Engineering Chemistry, 81, 440-450.
Gan, L., Wang, Y., Chen, J., Yan, T., Li, J., Crittenden, J., & Peng, Y. (2019). The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators. Catalysis Science & Technology, 9(16), 4286-4292.
Gao, Q., Xie, J., Zhang, Y., Bao, L., Zhou, H., & Ye, H. (2022). Mathematical modeling of natural gas injection in iron ore sintering process and corresponding environmental assessment of CO2 mitigation. Journal of Cleaner Production, 332, 130009.
Grabowski, R., Grzybowska, B., Samson, K., Słoczyński, J., Stoch, J., & Wcisło, K. (1995). Effect of alkaline promoters on catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition. Applied Catalysis A: General, 125(1), 129-144.
Guo, S., Hu, M., Peng, J., Wu, Z., Zamora, M. L., Shang, D., Du, Z., Zheng, J., Fang, X., & Tang, R. (2020). Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences, 117(7), 3427-3432.
Hashimoto, Y., Uemichi, Y., & Ayame, A. (2005). Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts. Applied Catalysis A: General, 287(1), 89-97.
Han, L., Cai, S., Gao, M., Hasegawa, J.Y., Wang, P., Zhang, J., Shi, L., & Zhang, D. (2019). Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chemical Reviews, 119(19), 10916-10976.
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 119(7), 4471-4568.
Hsu, W. T., Hung, P. C., & Chang, M. B. (2015). Catalytic destruction vs. adsorption in controlling dioxin emission. Waste Management, 46, 257-264.
Huang, X., Liu, Z., Wang, D., Peng, Y., & Li, J. (2020). The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control. Catalysis Science & Technology, 10(2), 323-326.
Huang, X., Peng, Y., Liu, X., Li, K., Deng, Y., & Li, J. (2015). The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation. Catalysis Communications, 69, 161-164.
Hung, P. C., Lo, W. C., Chi, K. H., Chang, S. H., & Chang, M. B. (2011). Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant. Chemosphere, 82(1), 72-77.
Jain, R., Urban, L., Balbach, H., & Webb, M. (2012). Contemporary issues in environmental assessment. Jain, R.; Urban, L.; Balbach, H, 361-447.
Jin RuiBen, J. R., Liu Yue, L. Y., Wu ZhongBiao, W. Z., Wang HaiQiang, W. H., & Gu TingTing, G. T. (2010). Low-temperature selective catalytic reduction of NO with NH3 over Mn_Ce oxides, supported on TiO2 and Al2O3: a comparative study.
Jiang, W., Yu, Y., Bi, F., Sun, P., Weng, X., & Wu, Z. (2019). Synergistic elimination of NOx and chloroaromatics on a commercial V2O5–WO3/TiO2 catalyst: byproduct analyses and the SO2 effect. Environmental Science & Technology, 53(21), 12657-12667.
Jones, J., & Ross, J. R. H. (1997). The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today, 35(1), 97-105.
Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
Lei, R., Xu, Z., Xing, Y., Liu, W., Wu, X., Jia, T., Sun, S., & He, Y. (2021). Global status of dioxin emission and China’s role in reducing the emission. Journal of Hazardous Materials, 418, 126265.
Li, C., Liu, G., Qin, S., Zhu, T., Song, J., & Xu, W. (2023). Emission reduction of PCDD/Fs by flue gas recirculation and activated carbon in the iron ore sintering. Environmental Pollution, 327, 121520.
Li, G., Shen, K., Wu, P., Zhang, Y., Hu, Y., Xiao, R., Wang, B., & Zhang, S. (2021). SO2 poisoning mechanism of the multi-active center catalyst for chlorobenzene and NOx synergistic degradation at dry and humid environments. Environmental Science & Technology, 55(19), 13186-13197.
Li, G., Wang, L., Wu, P., Zhang, S., Shen, K., & Zhang, Y. (2020). Insight into the combined catalytic removal properties of Pd modification V/TiO2 catalysts for the nitrogen oxides and benzene by: An experiment and DFT study. Applied Surface Science, 527, 146787.
Li, J., He, X., Pei, B., Li, X., Ying, D., Wang, Y., & Jia, J. (2019). The ignored emission of volatile organic compounds from iron ore sinter process. Journal of Environmental Sciences, 77, 282-290.
Li, M., Zhang, Q., Kurokawa, J. i., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., & Carmichael, G. R. (2017). MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2), 935-963.
Lichtenberger, J., & Amiridis, M. D. (2004). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223(2), 296-308.
Lin, K.S., & Chang, N.B. (2008). Control strategy of PCDD/Fs in an industrial fluidized bed incinerator via activated carbon injection. Petroleum Science and Technology, 26(7-8), 764-789.
Liu, Z., Xu, C., Chen, J., Han, L., Wang, B., Xiong, W., & Mei, L. (2020). Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise. China Environmental Science, 40(10), 4292-4303.
Lu, P., Ye, L., Yan, X., Chen, D., Chen, D., Chen, X., Fang, P., & Cen, C. (2021). Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3. Applied Surface Science, 567, 150836.
Lu, Q., Pei, X. q., Wu, Y. w., Xu, M.x., Liu, D. j., & Zhao, L. (2020). Deactivation mechanism of the commercial V2O5–MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants. Energy & Fuels, 34(4), 4865-4873.
Ma, Y., Lai, J., Li, X., Lin, X., Li, L., Jing, H., Liu, T., & Yan, J. (2022). Field study on PCDD/F decomposition over VOx/TiO2 catalyst under low-temperature: Mechanism and kinetics analysis. Chemical Engineering Journal, 429, 132222.
Mackay, D., Shiu, W.Y., & Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press.
Melikian, A. A., O′Connor, R., Prahalad, A. K., Hu, P., Li, H., Kagan, M., & Thompson, S. (1999). Determination of the urinary benzene metabolites S-phenylmercapturic acid and trans, trans-muconic acid by liquid chromatography-tandem mass spectrometry. Carcinogenesis, 20(4), 719-726.
Menad, N., Tayibi, H., Carcedo, F. G., & Hernández, A. (2006). Minimization methods for emissions generated from sinter strands: a review. Journal of Cleaner Production, 14(8), 740-747.
Milbrath, M. O. G., Wenger, Y., Chang, C.W., Emond, C., Garabrant, D., Gillespie, B. W., & Jolliet, O. (2009). Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environmental Health Perspectives, 117(3), 417-425.
Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H., & Louie, P. K. (2016). Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? Environmental Science & Technology, 50(11), 5720-5728.
Pan, Y., Zhao, W., Zhong, Q., Cai, W., & Li, H. (2013). Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3. Journal of Environmental Sciences, 25(8), 1703-1711.
Parmar, G. R., & Rao, N. (2008). Emerging control technologies for volatile organic compounds. Critical Reviews in Environmental Science and Technology, 39(1), 41-78.
Peng, C., Yu, D., Wang, L., Yu, X., & Zhao, Z. (2021). Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants. Journal of Materials Chemistry A, 9(22), 12947-12980.
Poon, C. S., Qiao, X., Cheeseman, C., & Lin, Z. (2006). Feasibility of using reject fly ash in cement-based stabilization/solidification processes. Environmental Engineering Science, 23(1), 14-23.
Qian, L., Chun, T., Long, H., Li, J., Di, Z., Meng, Q., & Wang, P. (2018). Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Safety and Environmental Protection, 117, 82-91.
Qie, Z., Sun, F., Zhang, Z., Pi, X., Qu, Z., Gao, J., & Zhao, G. (2020). A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO. Chemical Engineering Journal, 389, 124262.
Rao, G., & Vejerano, E. P. (2018). Partitioning of volatile organic compounds to aerosols: A review. Chemosphere, 212, 282-296.
Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2015). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17, 15-27.
Ruenz, M., Bakuradze, T., Eisenbrand, G., & Richling, E. (2016). Monitoring urinary mercapturic acids as biomarkers of human dietary exposure to acrylamide in combination with acrylamide uptake assessment based on duplicate diets. Archives of Toxicology, 90, 873-881.
Schnatter, A. R., Rosamilia, K., & Wojcik, N. C. (2005). Review of the literature on benzene exposure and leukemia subtypes. Chemico-Biological Interactions, 153, 9-21.
Shi, Y.-J., Shu, H., Zhang, Y. H., Fan, H. M., Zhang, Y.-P., & Yang, L.-J. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Processing Technology, 150, 141-147.
Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NOx abatement: A review. Science of the Total Environment, 408(19), 3976-3989.
Song, S., Zhou, X., Guo, C., Zhang, H., Zeng, T., Xie, Y., Liu, J., Zhu, C., & Sun, X. (2019). Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. Ecotoxicology and Environmental Safety, 184, 109608.
Sun, P., Wang, W., Dai, X., Weng, X., & Wu, Z. (2016). Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Applied Catalysis B: Environmental, 198, 389-397.
Talibov, M., Sormunen, J., Hansen, J., Kjaerheim, K., Martinsen, J. I., Sparen, P., Tryggvadottir, L., Weiderpass, E., & Pukkala, E. (2018). Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer Epidemiology, 55, 156-161.
Tang, C., Zhang, H., & Dong, L. (2016). Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Catalysis Science & Technology, 6(5), 1248-1264.
Tian, B., Huang, J., Wang, B., Deng, S., & Yu, G. (2012). Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China. Chemosphere, 89(4), 409-415.
Tuppurainen, K. A., Ruokojärvi, P. H., Asikainen, A. H., Aatamila, M., & Ruuskanen, J. (2000). Chlorophenols as precursors of PCDD/Fs in incineration processes: correlations, PLS modeling, and reaction mechanisms. Environmental Science & Technology, 34(23), 4958-4962.
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., & Haws, L. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223-241.
Wang, B., Fiedler, H., Huang, J., Deng, S., Wang, Y., & Yu, G. (2016). A primary estimate of global PCDD/F release based on the quantity and quality of national economic and social activities. Chemosphere, 151, 303-309.
Wang, D., Chen, J., Peng, Y., Si, W., Li, X., Li, B., & Li, J. (2018). Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. Chemical Communications, 54(16), 2032-2035.
Wang, J., Wang, X., Liu, X., Zhu, T., Guo, Y., & Qi, H. (2015). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catalysis Today, 241, 92-99.
Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., & Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of the Total Environment, 559, 7-14.
Wang, L. C., Lee, W. J., Tsai, P. J., Lee, W.S., & Chang-Chien, G.P. (2003). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere, 50(9), 1123-1129.
Wang, Q., Yeung, K. L., & Bañares, M. A. (2020). Ceria and its related materials for VOC catalytic combustion: A review. Catalysis Today, 356, 141-154.
Wang, R., Wang, X., Cheng, S., Wang, K., Cheng, L., Zhu, J., Zheng, H., & Duan, W. (2022). Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Science of the Total Environment, 809, 151134.
Wang, Y.-H., Lin, C., & Chang-Chien, G. P. (2009). Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection. Aerosol and Air Quality Research, 9(3), 317-322.
Xhrouet, C., & De Pauw, E. (2004). Formation of PCDD/Fs in the sintering process: influence of the raw materials. Environmental Science & Technology, 38(15), 4222-4226.
Xiao, G., Guo, Z., Li, J., Du, Y., Zhang, Y., Xiong, T., Lin, B., Fu, M., Ye, D., & Hu, Y. (2022). Insights into the effect of flue gas on synergistic elimination of toluene and NOx over V2O5-MoO3(WO3)/TiO2 catalysts. Chemical Engineering Journal, 435, 134914.
Xu, Z., Deng, S., Yang, Y., Zhang, T., Cao, Q., Huang, J., & Yu, G. (2012). Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere, 87(9), 1032-1038.
Wauthoz, P., Ruwet, M., Machej, T., & Grange, P. (1991). Influence of the preparation method on the V2O5/TiO2/SiO2 catalysts in selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis, 69(1), 149-167.
Yang, C. C., Chang, S. H., Hong, B. Z., Chi, K. H., & Chang, M. B. (2008). Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5–WO3/TiO2-based catalysts. Chemosphere, 73(6), 890-895.
Yang, X., Liao, Y., Wang, Y., Chen, X., & Ma, X. (2022). Research of coupling technologies on NOx reduction in a municipal solid waste incinerator. Fuel, 314, 122769.
Yao, Y., Masunaga, S., Takada, H., & Nakanishi, J. (2002). Identification of polychlorinated dibenzo‐p‐dioxin, dibenzofuran, and coplanar polychlorinated biphenyl sources in Tokyo Bay, Japan. Environmental Toxicology and Chemistry: An International Journal, 21(5), 991-998.
Ye, B., Jeong, B., Lee, M.j., Kim, T. H., Park, S.S., Jung, J., Lee, S., & Kim, H.D. (2022). Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. Nano Convergence, 9(1), 51.
Ye, B., Lee, M., Jeong, B., Kim, J., Lee, D. H., Baik, J. M., & Kim, H.D. (2019). Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catalysis Today, 328, 300-306.
Ye, L., Lu, P., Chen, X., Fang, P., Peng, Y., Li, J., & Huang, H. (2020). The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental, 277, 119257.
Ye, L., Lu, P., Peng, Y., Li, J., & Huang, H. (2021). Impact of NOx and NH3 addition on toluene oxidation over MnOx-CeO2 catalyst. Journal of Hazardous Materials, 416, 125939.
Yin, D., Cao, Y. D., Chai, D. F., Fan, L. L., Gao, G. G., Wang, M. L., Liu, H., & Kang, Z. (2022). A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. Chemical Engineering Journal, 431, 133287.
Yu, M. F., Li, X. D., Ren, Y., Chen, T., Lu, S. Y., & Yan, J. H. (2016). Low temperature oxidation of PCDD/Fs by TiO2‐based V2O5/WO3 catalyst. Environmental Progress & Sustainable Energy, 35(5), 1265-1273.
Zhan, M. X., Fu, J. Y., Ji, L. J., Deviatkin, I., & Lu, S. Y. (2018). Comparative analyses of catalytic degradation of PCDD/Fs in the laboratory vs. industrial conditions. Chemosphere, 191, 895-902.
Zhang, B., Liebau, M., Suprun, W., Liu, B., Zhang, S., & Gläser, R. (2019). Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst. Catalysis Science & Technology, 9(17), 4759-4770.
Zhang, P., Lu, H., Zhou, Y., Zhang, L., Wu, Z., Yang, S., Shi, H., Zhu, Q., Chen, Y., & Dai, S. (2015). Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nature Communications, 6(1), 8446.
Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., & Boersma, K. F. (2018). Comparing OMI-based and EPA AQS in situ NO2 trends: towards understanding surface NOx emission changes. Atmospheric Measurement Techniques, 11(7), 3955-3967.
Zhang, X., Gao, S., Fu, Q., Han, D., Chen, X., Fu, S., Huang, X., & Cheng, J. (2020). Impact of VOCs emission from iron and steel industry on regional O3 and PM 2.5 pollutions. Environmental Science and Pollution Research, 27, 28853-28866.
Zhang, Z., Jiang, Z., & Shangguan, W. (2016). Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 264, 270-278.
Zhao, H., Meng, P., Gao, S., Wang, Y., Sun, P., & Wu, Z. (2024). Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. Science of the Total Environment, 906, 167553.
Zhao, L., Huang, Y., Zhang, J., Jiang, L., & Wang, Y. (2020). Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 397, 125419.
Zheng, F., Liu, C., Ma, X., Zhou, Z., & Lu, J. (2023). Review on NH3-SCR for simultaneous abating NOx and VOCs in industrial furnaces: Catalysts′ composition, mechanism, deactivation and regeneration. Fuel Processing Technology, 247, 107773.
Zhou, L., Zhang, B., Li, Z., Zhang, X., Liu, R., & Yun, J. (2020). Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 489, 110920.
指導教授 張木彬(Moo-Been Chang) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明