參考文獻 |
Aissat, A., Courcot, D., Cousin, R., & Siffert, S. (2011). VOCs removal in the presence of NOx on Cs–Cu/ZrO2 catalysts. Catalysis Today, 176(1), 120-125.
Amoatey, P., Omidvarborna, H., Baawain, M. S., & Al-Mamun, A. (2019). Emissions and exposure assessments of SOx, NOx, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Safety and Environmental Protection, 123, 215-228.
Asghar, U., Rafiq, S., Anwar, A., Iqbal, T., Ahmed, A., Jamil, F., Khurram, M. S., Akbar, M. M., Farooq, A., & Shah, N. S. (2021). Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. Journal of Environmental Chemical Engineering, 9(5), 106064.
Atkinson, R. (1991). Atmospheric lifetimes of dibenzo-p-dioxins and dibenzofurans. Science of the Total Environment, 104(1-2), 17-33.
Beeckman, J. W., & Hegedus, L. L. (1991). Design of monolith catalysts for power plant nitrogen oxide emission control. Industrial & Engineering Chemistry Research, 30(5), 969-978.
Bertinchamps, F., Grégoire, C., & Gaigneaux, E. M. (2006). Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part I: Identification of the optimal main active phases and supports. Applied Catalysis B: Environmental, 66(1), 1-9.
Bertinchamps, F., Treinen, M., Blangenois, N., Mariage, E., & Gaigneaux, E. M. (2005). Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene. Journal of Catalysis, 230(2), 493-498.
Bertinchamps, F., Treinen, M., Eloy, P., Dos Santos, A.M., Mestdagh, M., & Gaigneaux, E. M. (2007). Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 70(1-4), 360-369.
Booth, S., Hui, J., Alojado, Z., Lam, V., Cheung, W., Zeller, D., Steyn, D., & Pauly, D. (2013). Global deposition of airborne dioxin. Marine Pollution Bulletin, 75(1-2), 182-186.
Chai, Y., Zhang, G., He, H., & Sun, S. (2020). Theoretical study of the catalytic activity and anti-so2 poisoning of a MoO3/V2O5 selective catalytic reduction catalyst. ACS Omega, 5(42), 26978-26985.
Chang, Y.M., Hung, C.Y., Chen, J.H., Chang, C.T., & Chen, C.H. (2009). Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials, 161(2-3), 1436-1443.
Charbotel, B., Fervers, B., & Droz, J. (2014). Occupational exposures in rare cancers: A critical review of the literature. Critical Reviews in Oncology/Hematology, 90(2), 99-134.
Chauhan, S. K., Saini, N., & Yadav, V. B. (2014). Recent trends of volatile organic compounds in ambient air and its health impacts: A review. International Journal Technology Research Engineering 1(8), 667.
Chen, J. C., Wey, M. Y., Yeh, C. L., & Liang, Y.S. (2004). Simultaneous treatment of organic compounds, CO, and NOx in the incineration flue gas by three-way catalyst. Applied Catalysis B: Environmental, 48(1), 25-35.
Chen, Y., Chen, Z., Zhang, C., Chen, L., Tang, J., Liao, Y., & Ma, X. (2022). Multiple pollutants control of NO, benzene and toluene from coal-fired plant by Mo/Ni impregnated TiO2-based NH3-SCR catalyst: A DFT supported experimental study. Applied Surface Science, 599, 153986.
Cheng, J., Zhang, Y., Wang, T., Xu, H., Norris, P., & Pan, W.P. (2018). Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates. Fuel, 225, 554-562.
Cho, C. H., & Ihm, S. K. (2002). Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environmental Science & Technology, 36(7), 1600-1606.
Cieplik, M. K., Carbonell, J. P., Muñoz, C., Baker, S., Krüger, S., Liljelind, P., Marklund, S., & Louw, R. (2003). On dioxin formation in iron ore sintering. Environmental Science & Technology, 37(15), 3323-3331.
Deng, W., Dai, Q., Lao, Y., Shi, B., & Wang, X. (2016). Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 181, 848-861.
Dwyer, H., & Themelis, N. J. (2015). Inventory of US 2012 dioxin emissions to atmosphere. Waste Management, 46, 242-246.
Dyke, P., Foan, C., Wenborn, M., & Coleman, P. (1997). A review of dioxin releases to land and water in the UK. Science of the Total Environment, 207(2-3), 119-131.
Fan, C., Li, K., Peng, Y., Duan, R., Hu, F., Jing, Q., Chen, J., & Li, J. (2019). Fe-Doped α-MnO2 nanorods for the catalytic removal of NOx and chlorobenzene: the relationship between lattice distortion and catalytic redox properties. Physical Chemistry Chemical Physics, 21(46), 25880-25888.
Fang, N., Guo, J., Shu, S., Luo, H., Chu, Y., & Li, J. (2017). Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chemical Engineering Journal, 325, 114-123.
Feng, S., Wang, B., Xing, Y., Kong, W., Ma, J., Zhang, C., Li, Z., Shen, B., Wang, Z., Chen, L., & Yang, J. (2023). Investigation on the mechanism of Nb and Si co-doping on low SO3 generation from V-based catalyst during NH3-SCR process. Fuel, 348, 128584.
Fetisov, V., Gonopolsky, A. M., Davardoost, H., Ghanbari, A. R., & Mohammadi, A. H. (2023). Regulation and impact of VOC and CO2 emissions on low‐carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry. Energy Science & Engineering, 11(4), 1516-1535.
Finocchio, E., Baldi, M., Busca, G., Pistarino, C., Romezzano, G., Bregani, F., & Toledo, G. P. (2000). A study of the abatement of VOC over V2O5–WO3–TiO2 and alternative SCR catalysts. Catalysis Today, 59(3), 261-268.
Gómez-García, M., Pitchon, V., & Kiennemann, A. (2005). Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environment International, 31(3), 445-467.
Gallastegi-Villa, M., Aranzabal, A., González-Marcos, J., & González-Velasco, J. (2016). Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 184, 238-245.
Gallastegi-Villa, M., Aranzabal, A., González-Marcos, M., Markaide-Aiastui, B., González-Marcos, J., & González-Velasco, J. (2020). Effect of vanadia loading on acidic and redox properties of VOx/TiO2 for the simultaneous abatement of PCDD/Fs and NOx. Journal of Industrial and Engineering Chemistry, 81, 440-450.
Gan, L., Wang, Y., Chen, J., Yan, T., Li, J., Crittenden, J., & Peng, Y. (2019). The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators. Catalysis Science & Technology, 9(16), 4286-4292.
Gao, Q., Xie, J., Zhang, Y., Bao, L., Zhou, H., & Ye, H. (2022). Mathematical modeling of natural gas injection in iron ore sintering process and corresponding environmental assessment of CO2 mitigation. Journal of Cleaner Production, 332, 130009.
Grabowski, R., Grzybowska, B., Samson, K., Słoczyński, J., Stoch, J., & Wcisło, K. (1995). Effect of alkaline promoters on catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition. Applied Catalysis A: General, 125(1), 129-144.
Guo, S., Hu, M., Peng, J., Wu, Z., Zamora, M. L., Shang, D., Du, Z., Zheng, J., Fang, X., & Tang, R. (2020). Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences, 117(7), 3427-3432.
Hashimoto, Y., Uemichi, Y., & Ayame, A. (2005). Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts. Applied Catalysis A: General, 287(1), 89-97.
Han, L., Cai, S., Gao, M., Hasegawa, J.Y., Wang, P., Zhang, J., Shi, L., & Zhang, D. (2019). Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chemical Reviews, 119(19), 10916-10976.
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 119(7), 4471-4568.
Hsu, W. T., Hung, P. C., & Chang, M. B. (2015). Catalytic destruction vs. adsorption in controlling dioxin emission. Waste Management, 46, 257-264.
Huang, X., Liu, Z., Wang, D., Peng, Y., & Li, J. (2020). The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control. Catalysis Science & Technology, 10(2), 323-326.
Huang, X., Peng, Y., Liu, X., Li, K., Deng, Y., & Li, J. (2015). The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation. Catalysis Communications, 69, 161-164.
Hung, P. C., Lo, W. C., Chi, K. H., Chang, S. H., & Chang, M. B. (2011). Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant. Chemosphere, 82(1), 72-77.
Jain, R., Urban, L., Balbach, H., & Webb, M. (2012). Contemporary issues in environmental assessment. Jain, R.; Urban, L.; Balbach, H, 361-447.
Jin RuiBen, J. R., Liu Yue, L. Y., Wu ZhongBiao, W. Z., Wang HaiQiang, W. H., & Gu TingTing, G. T. (2010). Low-temperature selective catalytic reduction of NO with NH3 over Mn_Ce oxides, supported on TiO2 and Al2O3: a comparative study.
Jiang, W., Yu, Y., Bi, F., Sun, P., Weng, X., & Wu, Z. (2019). Synergistic elimination of NOx and chloroaromatics on a commercial V2O5–WO3/TiO2 catalyst: byproduct analyses and the SO2 effect. Environmental Science & Technology, 53(21), 12657-12667.
Jones, J., & Ross, J. R. H. (1997). The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today, 35(1), 97-105.
Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
Lei, R., Xu, Z., Xing, Y., Liu, W., Wu, X., Jia, T., Sun, S., & He, Y. (2021). Global status of dioxin emission and China’s role in reducing the emission. Journal of Hazardous Materials, 418, 126265.
Li, C., Liu, G., Qin, S., Zhu, T., Song, J., & Xu, W. (2023). Emission reduction of PCDD/Fs by flue gas recirculation and activated carbon in the iron ore sintering. Environmental Pollution, 327, 121520.
Li, G., Shen, K., Wu, P., Zhang, Y., Hu, Y., Xiao, R., Wang, B., & Zhang, S. (2021). SO2 poisoning mechanism of the multi-active center catalyst for chlorobenzene and NOx synergistic degradation at dry and humid environments. Environmental Science & Technology, 55(19), 13186-13197.
Li, G., Wang, L., Wu, P., Zhang, S., Shen, K., & Zhang, Y. (2020). Insight into the combined catalytic removal properties of Pd modification V/TiO2 catalysts for the nitrogen oxides and benzene by: An experiment and DFT study. Applied Surface Science, 527, 146787.
Li, J., He, X., Pei, B., Li, X., Ying, D., Wang, Y., & Jia, J. (2019). The ignored emission of volatile organic compounds from iron ore sinter process. Journal of Environmental Sciences, 77, 282-290.
Li, M., Zhang, Q., Kurokawa, J. i., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., & Carmichael, G. R. (2017). MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2), 935-963.
Lichtenberger, J., & Amiridis, M. D. (2004). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223(2), 296-308.
Lin, K.S., & Chang, N.B. (2008). Control strategy of PCDD/Fs in an industrial fluidized bed incinerator via activated carbon injection. Petroleum Science and Technology, 26(7-8), 764-789.
Liu, Z., Xu, C., Chen, J., Han, L., Wang, B., Xiong, W., & Mei, L. (2020). Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise. China Environmental Science, 40(10), 4292-4303.
Lu, P., Ye, L., Yan, X., Chen, D., Chen, D., Chen, X., Fang, P., & Cen, C. (2021). Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3. Applied Surface Science, 567, 150836.
Lu, Q., Pei, X. q., Wu, Y. w., Xu, M.x., Liu, D. j., & Zhao, L. (2020). Deactivation mechanism of the commercial V2O5–MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants. Energy & Fuels, 34(4), 4865-4873.
Ma, Y., Lai, J., Li, X., Lin, X., Li, L., Jing, H., Liu, T., & Yan, J. (2022). Field study on PCDD/F decomposition over VOx/TiO2 catalyst under low-temperature: Mechanism and kinetics analysis. Chemical Engineering Journal, 429, 132222.
Mackay, D., Shiu, W.Y., & Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press.
Melikian, A. A., O′Connor, R., Prahalad, A. K., Hu, P., Li, H., Kagan, M., & Thompson, S. (1999). Determination of the urinary benzene metabolites S-phenylmercapturic acid and trans, trans-muconic acid by liquid chromatography-tandem mass spectrometry. Carcinogenesis, 20(4), 719-726.
Menad, N., Tayibi, H., Carcedo, F. G., & Hernández, A. (2006). Minimization methods for emissions generated from sinter strands: a review. Journal of Cleaner Production, 14(8), 740-747.
Milbrath, M. O. G., Wenger, Y., Chang, C.W., Emond, C., Garabrant, D., Gillespie, B. W., & Jolliet, O. (2009). Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environmental Health Perspectives, 117(3), 417-425.
Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H., & Louie, P. K. (2016). Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? Environmental Science & Technology, 50(11), 5720-5728.
Pan, Y., Zhao, W., Zhong, Q., Cai, W., & Li, H. (2013). Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3. Journal of Environmental Sciences, 25(8), 1703-1711.
Parmar, G. R., & Rao, N. (2008). Emerging control technologies for volatile organic compounds. Critical Reviews in Environmental Science and Technology, 39(1), 41-78.
Peng, C., Yu, D., Wang, L., Yu, X., & Zhao, Z. (2021). Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants. Journal of Materials Chemistry A, 9(22), 12947-12980.
Poon, C. S., Qiao, X., Cheeseman, C., & Lin, Z. (2006). Feasibility of using reject fly ash in cement-based stabilization/solidification processes. Environmental Engineering Science, 23(1), 14-23.
Qian, L., Chun, T., Long, H., Li, J., Di, Z., Meng, Q., & Wang, P. (2018). Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Safety and Environmental Protection, 117, 82-91.
Qie, Z., Sun, F., Zhang, Z., Pi, X., Qu, Z., Gao, J., & Zhao, G. (2020). A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO. Chemical Engineering Journal, 389, 124262.
Rao, G., & Vejerano, E. P. (2018). Partitioning of volatile organic compounds to aerosols: A review. Chemosphere, 212, 282-296.
Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2015). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17, 15-27.
Ruenz, M., Bakuradze, T., Eisenbrand, G., & Richling, E. (2016). Monitoring urinary mercapturic acids as biomarkers of human dietary exposure to acrylamide in combination with acrylamide uptake assessment based on duplicate diets. Archives of Toxicology, 90, 873-881.
Schnatter, A. R., Rosamilia, K., & Wojcik, N. C. (2005). Review of the literature on benzene exposure and leukemia subtypes. Chemico-Biological Interactions, 153, 9-21.
Shi, Y.-J., Shu, H., Zhang, Y. H., Fan, H. M., Zhang, Y.-P., & Yang, L.-J. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Processing Technology, 150, 141-147.
Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NOx abatement: A review. Science of the Total Environment, 408(19), 3976-3989.
Song, S., Zhou, X., Guo, C., Zhang, H., Zeng, T., Xie, Y., Liu, J., Zhu, C., & Sun, X. (2019). Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. Ecotoxicology and Environmental Safety, 184, 109608.
Sun, P., Wang, W., Dai, X., Weng, X., & Wu, Z. (2016). Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Applied Catalysis B: Environmental, 198, 389-397.
Talibov, M., Sormunen, J., Hansen, J., Kjaerheim, K., Martinsen, J. I., Sparen, P., Tryggvadottir, L., Weiderpass, E., & Pukkala, E. (2018). Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer Epidemiology, 55, 156-161.
Tang, C., Zhang, H., & Dong, L. (2016). Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Catalysis Science & Technology, 6(5), 1248-1264.
Tian, B., Huang, J., Wang, B., Deng, S., & Yu, G. (2012). Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China. Chemosphere, 89(4), 409-415.
Tuppurainen, K. A., Ruokojärvi, P. H., Asikainen, A. H., Aatamila, M., & Ruuskanen, J. (2000). Chlorophenols as precursors of PCDD/Fs in incineration processes: correlations, PLS modeling, and reaction mechanisms. Environmental Science & Technology, 34(23), 4958-4962.
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., & Haws, L. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223-241.
Wang, B., Fiedler, H., Huang, J., Deng, S., Wang, Y., & Yu, G. (2016). A primary estimate of global PCDD/F release based on the quantity and quality of national economic and social activities. Chemosphere, 151, 303-309.
Wang, D., Chen, J., Peng, Y., Si, W., Li, X., Li, B., & Li, J. (2018). Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. Chemical Communications, 54(16), 2032-2035.
Wang, J., Wang, X., Liu, X., Zhu, T., Guo, Y., & Qi, H. (2015). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catalysis Today, 241, 92-99.
Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., & Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of the Total Environment, 559, 7-14.
Wang, L. C., Lee, W. J., Tsai, P. J., Lee, W.S., & Chang-Chien, G.P. (2003). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere, 50(9), 1123-1129.
Wang, Q., Yeung, K. L., & Bañares, M. A. (2020). Ceria and its related materials for VOC catalytic combustion: A review. Catalysis Today, 356, 141-154.
Wang, R., Wang, X., Cheng, S., Wang, K., Cheng, L., Zhu, J., Zheng, H., & Duan, W. (2022). Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Science of the Total Environment, 809, 151134.
Wang, Y.-H., Lin, C., & Chang-Chien, G. P. (2009). Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection. Aerosol and Air Quality Research, 9(3), 317-322.
Xhrouet, C., & De Pauw, E. (2004). Formation of PCDD/Fs in the sintering process: influence of the raw materials. Environmental Science & Technology, 38(15), 4222-4226.
Xiao, G., Guo, Z., Li, J., Du, Y., Zhang, Y., Xiong, T., Lin, B., Fu, M., Ye, D., & Hu, Y. (2022). Insights into the effect of flue gas on synergistic elimination of toluene and NOx over V2O5-MoO3(WO3)/TiO2 catalysts. Chemical Engineering Journal, 435, 134914.
Xu, Z., Deng, S., Yang, Y., Zhang, T., Cao, Q., Huang, J., & Yu, G. (2012). Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere, 87(9), 1032-1038.
Wauthoz, P., Ruwet, M., Machej, T., & Grange, P. (1991). Influence of the preparation method on the V2O5/TiO2/SiO2 catalysts in selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis, 69(1), 149-167.
Yang, C. C., Chang, S. H., Hong, B. Z., Chi, K. H., & Chang, M. B. (2008). Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5–WO3/TiO2-based catalysts. Chemosphere, 73(6), 890-895.
Yang, X., Liao, Y., Wang, Y., Chen, X., & Ma, X. (2022). Research of coupling technologies on NOx reduction in a municipal solid waste incinerator. Fuel, 314, 122769.
Yao, Y., Masunaga, S., Takada, H., & Nakanishi, J. (2002). Identification of polychlorinated dibenzo‐p‐dioxin, dibenzofuran, and coplanar polychlorinated biphenyl sources in Tokyo Bay, Japan. Environmental Toxicology and Chemistry: An International Journal, 21(5), 991-998.
Ye, B., Jeong, B., Lee, M.j., Kim, T. H., Park, S.S., Jung, J., Lee, S., & Kim, H.D. (2022). Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. Nano Convergence, 9(1), 51.
Ye, B., Lee, M., Jeong, B., Kim, J., Lee, D. H., Baik, J. M., & Kim, H.D. (2019). Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catalysis Today, 328, 300-306.
Ye, L., Lu, P., Chen, X., Fang, P., Peng, Y., Li, J., & Huang, H. (2020). The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental, 277, 119257.
Ye, L., Lu, P., Peng, Y., Li, J., & Huang, H. (2021). Impact of NOx and NH3 addition on toluene oxidation over MnOx-CeO2 catalyst. Journal of Hazardous Materials, 416, 125939.
Yin, D., Cao, Y. D., Chai, D. F., Fan, L. L., Gao, G. G., Wang, M. L., Liu, H., & Kang, Z. (2022). A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. Chemical Engineering Journal, 431, 133287.
Yu, M. F., Li, X. D., Ren, Y., Chen, T., Lu, S. Y., & Yan, J. H. (2016). Low temperature oxidation of PCDD/Fs by TiO2‐based V2O5/WO3 catalyst. Environmental Progress & Sustainable Energy, 35(5), 1265-1273.
Zhan, M. X., Fu, J. Y., Ji, L. J., Deviatkin, I., & Lu, S. Y. (2018). Comparative analyses of catalytic degradation of PCDD/Fs in the laboratory vs. industrial conditions. Chemosphere, 191, 895-902.
Zhang, B., Liebau, M., Suprun, W., Liu, B., Zhang, S., & Gläser, R. (2019). Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst. Catalysis Science & Technology, 9(17), 4759-4770.
Zhang, P., Lu, H., Zhou, Y., Zhang, L., Wu, Z., Yang, S., Shi, H., Zhu, Q., Chen, Y., & Dai, S. (2015). Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nature Communications, 6(1), 8446.
Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., & Boersma, K. F. (2018). Comparing OMI-based and EPA AQS in situ NO2 trends: towards understanding surface NOx emission changes. Atmospheric Measurement Techniques, 11(7), 3955-3967.
Zhang, X., Gao, S., Fu, Q., Han, D., Chen, X., Fu, S., Huang, X., & Cheng, J. (2020). Impact of VOCs emission from iron and steel industry on regional O3 and PM 2.5 pollutions. Environmental Science and Pollution Research, 27, 28853-28866.
Zhang, Z., Jiang, Z., & Shangguan, W. (2016). Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 264, 270-278.
Zhao, H., Meng, P., Gao, S., Wang, Y., Sun, P., & Wu, Z. (2024). Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. Science of the Total Environment, 906, 167553.
Zhao, L., Huang, Y., Zhang, J., Jiang, L., & Wang, Y. (2020). Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 397, 125419.
Zheng, F., Liu, C., Ma, X., Zhou, Z., & Lu, J. (2023). Review on NH3-SCR for simultaneous abating NOx and VOCs in industrial furnaces: Catalysts′ composition, mechanism, deactivation and regeneration. Fuel Processing Technology, 247, 107773.
Zhou, L., Zhang, B., Li, Z., Zhang, X., Liu, R., & Yun, J. (2020). Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 489, 110920. |