博碩士論文 111323078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.140.197.140
姓名 湯翊玄(Yi-Hsuan Tang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以超短脈衝雷射內部刻畫技術實現高品質裂面和高效石英晶圓切割探討
(Exploring the Technology of Achieving Quality Cleavage and Efficient Quartz Wafer Dicing with Ultrashort Pulse Laser Internal Inscription)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-21以後開放)
摘要(中) 石英(Quartz)是一種單晶二氧化矽(SiO2),具有壓電效應並能夠提供穩定的頻率,因此在頻率振盪元件中是不可或缺的材料。隨著科技不斷進步和電子產品需求的日益增長,頻率振盪元件及其所需材料的供應量不斷上升。電子產品的尺寸越來越小,零件需要朝微小化目標前進。為了滿足市場對石英晶圓的需求,減少切割過程中的品質、材料損耗並提升切割速度成為不斷追求的目標。
石英晶圓是一種透明且質地硬脆的材料,傳統的晶粒切割(Dicing)方式主要使用鑽石刀具切割,此法會造成石英晶圓較高比例的損壞,且所需切割道較寬,造成成本增加。因此,非接觸式的雷射加工方式是一種適合於石英晶圓切割的工具。本研究使用波長515 nm、脈寬300 fs的雷射源,對65 μm與80 μm的石英晶圓進行雷射隱形切割研究。在研究中,首先嘗試了三種文獻中提到的雷射切割策略,包括傳統隱形切割、一步驟隱形切割及內部改質搭配表面燒蝕的切割方法。通過分析不同切割策略、比較石英晶圓切割結果的優劣後,提出一道波浪型優化掃描路徑,可在2 mm/s速率下實現表面粗糙度1 μm的切面品質。為使石英晶圓在雷射切割後即可直接實現裂片,本研究採用雷射突發模式(Burst mode)搭配新設計的雷射掃描路徑作為第二道雷射切割方式,形成兩階段的雷射切割策略。首先,以脈衝模式依照波浪型掃描路徑進行石英晶圓內部改質,產生一道弱化的通道;接著再於此通道上,選擇是當地位置以突發模式進行第二道雷射掃描,透過突發模式在材料內部產生裂紋,使石英晶圓沿著預先改質的通道實現晶圓的裂片分離。結果顯示,可以實現不需外力裂片的全雷射石英晶圓切割方式。
摘要(英) Quartz is a single-crystal silicon dioxide (SiO2) known for its piezoelectric ef-fects and ability to provide stable frequencies, making it essential for frequency os-cillation components. With ongoing technological advancements and the increasing demand for electronic and optoelectronic devices, the need for frequency oscillation components and their materials is constantly rising. As electronic products continue to shrink in size, components must be miniaturized accordingly. To meet the market demand for quartz wafers, reducing quality and material loss during the cutting pro-cess while improving cutting speed are crucial goals.
Single-crystalline quartz is a transparent, hard, and brittle material. Traditional dicing methods primarily use diamond tools, which can cause a higher proportion of damage to quartz wafers and require wider cutting kerfs, increasing costs. Therefore, non-contact laser processing is a suitable method for cutting quartz wafers. This study investigates laser stealth dicing of quartz wafers with thicknesses of 65 μm and 80 μm using a laser source with a wavelength of 515 nm and a pulse width of 300 fs. Initially, three laser cutting strategies from the literature were attempted: conventional stealth dicing, one-step stealth dicing, and internal modification com-bined with surface ablation cutting methods. By analyzing the different cutting strategies and comparing the results, a wavy scanning path was proposed and opti-mized, the result could achieve a surface roughness of less than 1 μm at an optimal dicing speed of 2 mm/s.
Furthermore, to enable immediate wafer separation after laser cutting, this study employed burst mode in conjunction with the newly designed wavy laser scanning path as a second stage of laser processing, resulting in a two-stage laser dicing strategy. First, internal modification of the quartz wafer was performed using pulse mode along the wavy scanning path, creating a relatively weakened channel. Next, burst mode was employed for a second laser scan at selected local positions along this channel, generating cracks within the material that facilitated wafer sepa-ration along the pre-modified channel without needing external force.
The results showed that this fully laser-based quartz wafer dicing method could achieve a surface roughness of less than 1 μm and did not require external force for wafer separation.
關鍵字(中) ★ 石英
★ 石英振盪器
★ 飛秒雷射
★ 微精密加工
★ 雷射隱形切割
★ 突發模式
★ 兩階段石英裂片法
關鍵字(英) ★ Quartz
★ Quartz Oscillator
★ Femtosecond Laser
★ Micro-precision Machining
★ Laser Stealth Dicing
★ Burst Mode
★ Two-stage laser dicing strategy
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xv
Chapter 1 緒論 1
1-1 前言 1
1-2 單晶石英簡介 2
1-2-1 合成石英生長方式演進 3
1-2-2 石英晶體分類及不同切割方向的種類介紹與應用 4
1-3 研究背景、動機及目的 7
1-3-1 石英振盪元件的發展 8
1-3-2 石英振盪器製作流程 9
1-3-3 石英晶圓雷射切割(Dicing)技術 10
Chapter 2 文獻回顧與基礎理論 12
2-1 石英晶圓切割(Dicing)方式 12
2-1-1 機械切割 12
2-1-2 雷射切割 14
2-2 飛秒脈衝雷射切割 17
2-2-1 飛秒脈衝雷射切割機制 17
2-2-2 雷射突發模式裂紋延伸機制 21
2-2-3 飛秒雷射晶圓切割方式 23
2-3 傳承與創新 30
Chapter 3 實驗流程與方法 32
3-1 實驗流程 32
3-2 實驗材料準備 33
3-2-1 實驗材料 33
3-2-2 試片製備 33
3-3 雷射切割 34
3-3-1 實驗設備架構 34
3-3-2 加工策略規劃 38
3-4 表面形貌和結構分析設備介紹 42
3-4-1 雷射共軛焦顯微鏡 42
3-4-2 場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 44
3-5 實驗儀器設備清單 44
Chapter 4 結果與討論 45
4-1 多種隱形切割方式測試及新掃描路徑設計 45
4-1-1 直線性隱形切割方法對橫截面影響分析 45
4-1-2 一步驟直線性隱形切割方法對橫截面影響分析 49
4-1-3 內部直線性改質搭配表面燒蝕雷射切割法對橫截面影響分析 56
4-1-4 新掃描圖形制訂與優化 61
4-2 突發模式(Burst Mode)晶圓分離方法 66
4-2-1 突發模式對橫向裂紋長度影響分析 67
4-2-2 突發模式對縱向裂紋長度影響分析 71
4-2-3 波浪型掃描路徑搭配雷射突發模式進行隱形切割 73
4-3 波浪型掃描路徑進行兩步驟雷射晶圓切割 77
Chapter 5 結論 79
參考文獻 81
碩士論文口試委員問題集 85
參考文獻 [1] G. NEWSWIRE. "Global Quartz Market Report (2022 to 2027) - Industry Trends, Share, Size, Growth, Opportunity and Forecasts." https://www.globenewswire.com/en/news-release/2022/09/15/2516588/28124/en/Global-Quartz-Market-Report-2022-to-2027-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts.html (accessed.
[2] A. Ballato, "Basic Material Quartz and Related Innovations," in Piezoelectricity: Evolution and Future of a Technology, W. Heywang, K. Lubitz, and W. Wersing Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 9-35.
[3] M. S. Ghiorso, I. S. E. Carmichael, and L. K. Moret, "Inverted high-temperature quartz," Contributions to Mineralogy and Petrology, vol. 68, no. 3, pp. 307-323, 1979/03/01 1979, doi: 10.1007/BF00371553.
[4] D. Th, Y. Jeanvoine, J. Hafner, and J. G. Ángyán, "Polymorphism in silica studied in the local density and generalized-gradient approximations," Journal of Physics: Condensed Matter, vol. 11, no. 19, p. 3833, 1999/05/17 1999, doi: 10.1088/0953-8984/11/19/306.
[5] P. Saha, N. Annamalai, and A. K. Guha, "Synthetic Quartz Production and Applications," Transactions of the Indian Ceramic Society, vol. 50, no. 5, pp. 129-135, 1991/01/01 1991, doi: 10.1080/0371750X.1991.10804507.
[6] F. Iwasaki and H. Iwasaki, "Historical review of quartz crystal growth," Journal of crystal growth, vol. 237, pp. 820-827, 2002.
[7] L. A. Thomas, N. Wooster, and W. A. Wooster, "The hydrothermal synthesis of quartz," Discussions of the Faraday Society, 10.1039/DF9490500341 vol. 5, no. 0, pp. 341-345, 1949, doi: 10.1039/DF9490500341.
[8] C. S. Brown, R. C. Kell, L. A. Thomas, N. Wooster, and W. A. Wooster, "Growth of Large Quartz Crystals," Nature, vol. 167, no. 4258, pp. 940-941, 1951/06/01 1951, doi: 10.1038/167940a0.
[9] G. Spezia, "Atti. accad. sci," Torino, vol. 40, p. 254, 1905.
[10] J. F. Alder and J. J. McCallum, "Piezoelectric crystals for mass and chemical measurements. A review," Analyst, 10.1039/AN9830801169 vol. 108, no. 1291, pp. 1169-1189, 1983, doi: 10.1039/AN9830801169.
[11] L. A. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson, "Bonding in alpha-quartz (SiO2): A view of the unoccupied states," American Mineralogist, vol. 85, no. 5-6, pp. 732-738, 2000.
[12] C. Ltd, " Crystal Quartz (SiO2) Data Sheet," 2018. [Online]. Available: https://www.crystran.co.uk/optical-materials/crystal-quartz-sio2.
[13] R. W. Ward, "The constants of alpha quartz," in 14th Piezoelectric devices conference and exhibition, 1992, pp. 3-4.
[14] P. M.-O. Inc. "Crystal Quartz." https://www.pmoptics.com/quartz_crystal.html (accessed.
[15] E. Notes. "Quartz Crystal Cuts." https://www.electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/crystal-resonator-cuts-at-bt-sc-ct.php (accessed.
[16] I. UniversityWafer. "Single Crystal Quartz Substrates for Research/Production." https://www.universitywafer.com/quartz-single-crystal.html (accessed.
[17] Y. Jun-Ichi, "Production and Applications of Synthetic Quartz," in Recent Advances in Mineralogy, R. Miloš Ed. Rijeka: IntechOpen, 2023, p. Ch. 7.
[18] Y. Xue, Y. Zhang, and H. Xiang, "Development and Research Progress of Crystal Oscillator," in 7th International Conference on Computing, Control and Industrial Engineering (CCIE 2023), Singapore, Y. S. Shmaliy and A. Nayyar, Eds., 2023// 2023: Springer Nature Singapore, pp. 265-279.
[19] W. J. Spencer, "Transverse Thickness Modes in BT‐Cut Quartz Plates," The Journal of the Acoustical Society of America, vol. 41, no. 4B, pp. 994-1001, 1967, doi: 10.1121/1.1910454.
[20] I. F. P. Ltd. "A short primer on AT-cut quartz crystals." https://www.iqdfrequencyproducts.com/blog/2015/06/29/a-short-primer-on-at-cut-quartz-crystals/ (accessed.
[21] T. CORPORATION. "TECHNICAL TERMINOLOGY." https://txccrystal.com/term.html (accessed.
[22] N. Bujanos, "Choosing the Right Crystal for Your Oscillator," Circuit Cellar Ink Feb, pp. 66-70, 1998.
[23] J. Curie and P. Curie, "Développement par compression de l′électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880.
[24] W. G. Cady, "The Piezo-Electric Resonator," Proceedings of the Institute of Radio Engineers, vol. 10, no. 2, pp. 83-114, 1922, doi: 10.1109/JRPROC.1922.219800.
[25] A. Tutorial and J. R. Vig, "QUARTZ CRYSTAL RESONATORS AND OSCILLATORS," 2000.
[26] TXC. "Process." https://www.txccorp.com/process/ (accessed.
[27] I. Jauch Quartz America. "QUARTZ CRYSTAL MANUFACTURING PROCESS." https://www.jauch.com/en-US/know_how/quartz_crystal_manufacturing_process (accessed.
[28] S. Nisar, L. Li, and M. Sheikh, "Laser glass cutting techniques—A review," Journal of laser applications, vol. 25, no. 4, 2013.
[29] V. I. Kondrashov, L. A. Shitova, V. A. Litvinov, and V. V. Surkov, "Characteristics of Cutting Parameters and Their Effect on the Glass Edge Quality," Glass and Ceramics, vol. 58, no. 9, pp. 303-305, 2001/09/01 2001, doi: 10.1023/A:1013926908241.
[30] C. Gaudiuso, A. Volpe, and A. Ancona, "One-step femtosecond laser stealth dicing of quartz," Micromachines, vol. 11, no. 3, p. 327, 2020.
[31] D. J. Garibotti, "Dicing of micro-semiconductors," ed: Google Patents, 1963.
[32] H. U. Zuhlke, G. Eberhardt, and R. Ullmann, "TLS-Dicing - An innovative alternative to known technologies," in 2009 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 10-12 May 2009 2009, pp. 28-32, doi: 10.1109/ASMC.2009.5155947.
[33] D. Lewke, M. Cerezuela Barreto, K. O. Dohnke, H. U. Zühlke, C. Belgardt, and M. Schellenberger, "TLS-Dicing for SiC - Latest Assessment Results," Materials Science Forum, vol. 924, pp. 547-551, 2018, doi: 10.4028/www.scientific.net/MSF.924.547.
[34] A. R. Collins, D. Milne, C. Prieto, and G. M. O′Connor, "Thin glass processing with various laser sources," in Laser-based Micro-and Nanoprocessing IX, 2015, vol. 9351: SPIE, pp. 354-363.
[35] W. Schulz, U. Eppelt, and R. Poprawe, "Review on laser drilling I. Fundamentals, modeling, and simulation," Journal of Laser Applications, vol. 25, no. 1, p. 012006, 2013, doi: 10.2351/1.4773837.
[36] D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, "Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications," Progress in Materials Science, vol. 76, pp. 154-228, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.pmatsci.2015.09.002.
[37] C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Measurement Science and Technology, vol. 12, no. 11, p. 1784, 2001.
[38] M. Ams et al., "Investigation of Ultrafast Laser--Photonic Material Interactions: Challenges for Directly Written Glass Photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 5, pp. 1370-1381, 2008, doi: 10.1109/JSTQE.2008.925809.
[39] X. Lin, H. Chen, S. Jiang, and C. Zhang, "A Coulomb explosion theoretical model of femtosecond laser ablation materials," Science China Technological Sciences, vol. 55, pp. 694-701, 2012.
[40] N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, "A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion," Applied Physics A, vol. 81, no. 2, pp. 345-356, 2005/07/01 2005, doi: 10.1007/s00339-005-3242-0.
[41] F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, "Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials," in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, 2016, vol. 9740: SPIE, pp. 162-169.
[42] K. Mishchik et al., "Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses," Optics Express, vol. 25, no. 26, pp. 33271-33282, 2017.
[43] A. Yadav, H. Kbashi, S. Kolpakov, N. Gordon, K. Zhou, and E. U. Rafailov, "Stealth dicing of sapphire wafers with near infra-red femtosecond pulses," Applied Physics A, vol. 123, pp. 1-7, 2017.
[44] N. Suzuki and T. Ohba, "Suppression of backside damage in stealth dicing," in 2019 International Conference on Electronics Packaging (ICEP), 2019: IEEE, pp. 437-440.
[45] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi, and K. Fukumitsu, "Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing," IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 259-265, 2007, doi: 10.1109/TSM.2007.901849.
[46] "Laser machining of transparent brittle materials: from machining strategies to applications," Opto-Electronic Advances, vol. 2, no. 1, p. 180017, 2019, doi: 10.29026/oea.2019.180017.
[47] S. M. Eaton, G. Cerullo, and R. Osellame, "Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics," in Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, R. Osellame, G. Cerullo, and R. Ramponi Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3-18.
[48] X. Yu, M. Zhang, and S. Lei, "Multiphoton Polymerization using Femtosecond Bessel Beam for Layerless 3D Printing," Journal of Micro and Nano-Manufacturing, vol. 6, 11/14 2017, doi: 10.1115/1.4038453.
[49] R. Meyer et al., "Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass," Applied Physics Letters, vol. 114, no. 20, p. 201105, 2019, doi: 10.1063/1.5096868.
[50] C. S. M. Lye, Z. Wang, and Y. C. Lam, "Multi-foci laser separation of sapphire wafers with partial thickness scanning," Micromachines, vol. 13, no. 4, p. 506, 2022.
[51] J. Bovatsek, A. Y. Arai, and F. Yoshino, "Transparent material processing with an ultrashort pulse laser," ed: Google Patents, 2013.
[52] Z. Li et al., "Stealth dicing of sapphire sheets with low surface roughness, zero kerf width, debris/crack-free and zero taper using a femtosecond Bessel beam," Optics & Laser Technology, vol. 135, p. 106713, 2021.
[53] R. Albalak, "Dicing saw devices," article from tech library of ADT Co, vol. 12, 2006.
[54] W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, "Internal modification for cutting transparent glass using femtosecond Bessel beams," Optical Engineering, vol. 53, no. 5, pp. 051503-051503, 2014.
[55] A. Industries. "Hybrid Hexapod 6-Axis Stage." https://alioindustries.com/hybrid-hexapod/ (accessed.
[56] L. SIGMAKOKI CO. "Infrared (NIR) Objective Lens / PAL-20-NIR-LC00." https://jp.optosigma.com/en_jp/pal-20-nir-lc00.html (accessed.
[57] K. CORPORATION. "Laser Scanning Confocal Microscope description of surface texture parameters." https://www.keyence.com.tw/ss/products/microscope/roughness/surface/parameters.jsp (accessed.
[58] K. C. O. AMERICA. "Laser Scanning Confocal Microscope." https://www.keyence.com/products/microscope/laser-microscope/laser_microscopes.jsp (accessed.
[59] E. Ohmura, M. Kumagai, M. Nakano, K. Kuno, K. FUKUMITASU, and H. Morita, "Analysis of processing mechanism in stealth dicing of ultra thin silicon wafer," in Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2007.4, 2007: The Japan Society of Mechanical Engineers, p. 9D435.
[60] E. Ohmura, Y. Kawahito, K. Fukumitsu, J. Okuma, and H. Morita, "Analysis of internal crack propagation in silicon due to permeable pulse laser irradiation: study on processing mechanism of stealth dicing," in Fundamentals of Laser-Assisted Micro-and Nanotechnologies 2010, 2011, vol. 7996: SPIE, pp. 12-19.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明