博碩士論文 91322082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.225.56.78
姓名 孫彬修(Pin-Hsiu Sun)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 線性複合模式應用於變遷偵測之研究
(Application of Linear Mixing Model for Change Detection)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 改良式變異向量分析法於變遷偵測之探討★ 區塊分割變遷偵測法於多時期衛星影像之應用
★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)★ 空間資料挖掘方法應用於土地利用變遷之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著衛星影像的持續接收,利用衛星影像進行土地變遷偵測更趨頻繁,為使變遷偵測朝向高精度及高效率,變遷偵測的方法不斷的提出。本論文使用多時期分類法進行變遷偵測,以線性複合模式作為分類器,最小二乘子空間投影法作為求解方式,產生變遷類別影像,稱為單層次線性複合模式變遷偵測法。但由於單層次線性複合模式具有變遷組合類別數必須小於合併影像波段數限制,因此本論文進一步以多層次(Multi-Level)線性複合模式進行變遷偵測。本論文測試3組影像,使用多層次線性複合模式進行變遷偵測,其模擬影像變遷偵測整體精度達到90%以上,SPOT衛星影像變遷偵測整體精度達到80%以上。因此預期多時期衛星影像,以複性複合模式作為變遷偵測方式,不失為一個可實際應用的方法。
摘要(英) The usage of satellite images for land cover change detection has been an important task for environment monitoring. In this paper, we use multi-temporal satellite images and classifier to detect change regions. The classifier is Linear Mixing Model (LMM) with Least Square Orthogonal Subspace Projection (LSOSP). LMM is a model to descript classes in the image, and LSOSP is one of the methods to solution the LMM. It is proposed to detect the signal of the desired land-cover materials and eliminate the undesired signatures. Finally, an intensity image would be obtained to represent the intension of the desired signatures. However, this method cannot discriminate classes more than the number of bands of the combined image. Therefore, we proposed multi-level linear mixing model to solve this problem. The test data of this study include one simulation image and two SPOT4 satellite images. The overall accuracy is about 80%, and the kappa coefficient is about 0.6. Simulated data and real SPOT images are used for testing, and the results indicate that change detection using LMM is workable.
關鍵字(中) ★ 變遷偵測
★ 線性複合模式
關鍵字(英) ★ Linear Mixing Model
★ Change Detection
論文目次 ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 影像相減法 3
1.2.2 影像比例法 5
1.2.3 分類後比較法 6
1.2.4 Chi-Square變遷偵測法 7
1.2.5 影像區塊分割變遷偵測法 8
1.2.6 主軸轉換分析法 10
1.2.7 多時期分類法 11
1.3 研究目的與方法概述 12
1.4 章節介紹 14
第二章 線性複合模式 15
2.1 線性複合模式 16
2.2 最小二乘子空間投影法 22
2.2.1 材質訊號投影過程 23
2.3.2 正交子空間投影法 27
2.3.3 最大訊雜比 29
第三章 線性複合模式於變遷偵測 33
3.1 單層次線性複合模式 34
3.1.1多時期影像合併 38
3.1.2類別決定及材質矩陣 39
3.1.3線性複合模式求解 40
3.1.4二元化影像 40
3.1.5 影像標定 40
3.2 多層次線性複合模式 42
3.2.1 多層次線性複合模式 42
3.2.2 多時期影像合併 44
3.2.3 類別決定 44
3.2.4材質群聚產生 45
3.2.5 線性複合模式求解 48
3.2.6 影像二元化及影像標記 49
3.2.7線性複合模式再求解 50
第四章 測試及成果討論 52
4.1 模擬影像 53
4.1.1影像說明 53
4.1.2 測試成果 56
4.2 SPOT衛星影像 65
4.2.1 影像說明 65
4.2.2 SPOT影像Ⅰ 67
4.2.3 SPOT影像Ⅱ 73
4.3 成果討論 80
4.3.1 模擬影像 80
4.3.2 SPOT影像 81
第五章 結論及未來展望 83
5.1 結論 83
5.2 建議 84
文獻回顧 86
參考文獻 莊雲翔,”線性複合式於衛星影像中雲層之自動化辨識”,國立中央大學土木工程研究所碩士論文,中壢,1999
Borel, C.C., and S.A.W. Gerstl, “Nonlinear Spectral Mixing Models for Vegetative and Soil Surfaces”, Remote Sensing Environ., Vol.47, 1994
Bosdogianni, P., M. Petrou, and J. Kittler, “Mixture Models with Higher Order Moments”, IEEE Trans. Geosci. Remote Sensing, Vol.35, 1997
Byrne, G.F., P.F. Crapper, and K.K. Mayo, “Monitoring Land-cover Change by Principal Component Analysis of Multitemporal Landsat Data”, Remote Sensing Environ., Vol.10, 175-184, 1980
Harsanyi, J.C., and C.-I. Chang, “ Hyperspectral Image Classification and Dimensionality Reduction: and Orthogonal Subspace Projection Approach”, IEEE Trans. Geosci. Remote Sensing, Vol.32, 1994
Lillesand, T.M., and R.W. Keifer, “Remote Sensing and Image Interpretation”, Second Edition, John Wiley & Sons, 1979
Miller, J.W.V., J.B. Farison, and Y. Shin, “Spatial Invariant Image Sequences”, Remote Sensing Environ., Vol.1, 1992
Richards, J.A., “Thematic Mapping from Multitemporal Image Data using the Principal Components Transformation”, Remote Sensing Environ., Vol.16, 1984
Rubec, C.D., and J. Thie., “Land use Monitoring with Landsat Digital Data in Southwestern Manitoba”, Proceedings of the fifth Canadian Symposium on Remote Sensing, Victoria, BC, 1987, pp. 136-150
Scharf, L.L., “Statistical Signal Processing: Detection Estimation and Time Series Analysis”, Addison-Wesley, MA., 1991
Settle, J. and N. Campbell, “On the Errors of Two Estimators of Sub-pixel Fractional Cover when Mixing is Linear”, IEEE Trans. on Geosci. Remote Sensing, Vol.36, No.1, 1998
Settle, J. and N.A. Drake, “Linear Mixing and the Estimation of Ground Cover Proportions”, Int. J. Remote Sensing, Vol.14, 1993
Singh, A., “Change Detection in the Tropical Forest Environmental of Northern India using Landsat”, Remote Sensing and Tropical Land Management,M.J. Eden and J.T. Parry, Eds. John Wiley & Sons, London, 1986, pp.237-254
Stauffer, M.L. and R.L. McKinney, “Landsat Image Differencing as an Automated Land Cover Change Detection Technique”, Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215 Silver Spring, MD, 1978
Stow, D. A., L. R. Tinney, and J. E. Estes, “Deriving Land Use/Land Cover Change Statistics form Landsat: A Study of Prime Agricultural Land”, Proceeding of the 14th International Symposium on Remote Sensing of Environment, pp. 1227-1237,1980
Tu, T.-M., C.-H. Chen, and C.-I Chang, “ A Posteriori Least Squares Orthogonal Subspace Projection Approach to Desired Signature Extraction and Detection”, IEEE Trans. Geosci. Remote Sensing, Vol.35, No.1., 1997
Weismiller, R.A., S.J. Kristoof, D.K. Scholz, P.E. Anuta, and S.A. Momen, “Change Detection in Coastal Zone Environments”, Photogrammetric Engineering and Remote Sensing”, Vol.43, pp.1533-1539,1977
Wilson, J. R., C. Blackman, and G. W. Spann, “Land use Change Detection using Ladsat Data”, Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullhama,TN, 1976, pp.79-91
Yamamoto, T., and H. Hiroshi, “A Change Detection Method for Remotely Sensed Multispectral and Multitemporal Image using 3-D Segmentation”, IEEE Trans. Geosci. Remote Sensing, Vol.39 , No.5, May 2001
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明