博碩士論文 111323090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.216.70.205
姓名 宋依亭(Yi-Ting Sung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 陰離子交換膜水電解單元之傳輸現象分析
(Analysis of transport phenomenon in Anion Exchange Membrane Water Electrolyzer)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 本研究利用COMSOL Multiphysics建構一個三維、非等溫模型,探討陰陽極皆使用多孔傳輸層作為流道的陰離子交換膜水電解單元。該模型耦合了兩相流、物種傳輸、電化學反應、離子和電子傳輸與熱傳。首先對水電解單元內部進行傳輸現象分析,包括陰極流域中的兩相體積分數分佈及熱傳分析,接著對影響水電解性能的各種因素進行參數分析,包含幾何參數、材料性質及操作參數,得出不同參數對電流密度與液體消耗的影響,以及比較2V下之氣體分佈結果,並且對參數影響電解性能之原因進行說明解釋。
由傳輸現象分析結果發現,隨著電壓增加,流道中平均H_2體積分數逐漸上升,從1.4V上升至2V,於流道出口截面之H2體積分數增加約2.8倍。此外,從陰極流域出口截面可發現H_2傾向於積聚在肋條下方的觸媒層邊緣。從溫度分佈結果可得知陽極因O_2氣泡密度較大且析氧反應有較高的過電位,因此陽極溫度的上升幅度會比陰極更顯著。此外,參數分析結果表明,提高流道孔隙率、膜含水量、操作溫度與 KOH 入口流速皆能使水電解性能提升。
摘要(英) This study utilizes COMSOL Multiphysics to construct a three-dimensional, non-isothermal model to investigate an anion exchange membrane water electrolysis unit, wherein both the anode and cathode utilize porous transport layers as flow channels. The model integrates two-phase flow, species transport, electrochemical reactions, ion and electron transfer as well as heat transfer. Initially, an analysis of transport phenomena within the electrolysis unit is performed, including the distribution of two-phase volume fractions in the cathode flow field and thermal analysis. Subsequently, a parametric analysis of various factors affecting the performance of water electrolysis is conducted. This includes geometric parameters, material properties, and operational parameters, examining their impact on current density and liquid consumption, as well as comparing gas distribution results at 2V, and elucidating the reasons for these parameter effects on electrolysis performance.
From the transport phenomena analysis, it was found that as the voltage increases, the average H₂ volume fraction in the flow channels gradually rises, increasing approximately 2.8 times from 1.4V to 2V at the channel exit cross-section. Additionally, it is observed at the cathode flow field exit cross-section that H₂ tends to accumulate at the edges of the catalyst layer beneath the ribs. From the temperature distribution results, it is evident that the anode temperature increases more significantly than the cathode due to a higher density of O₂ bubbles and a higher overpotential of the oxygen evolution reaction. Moreover, the parametric analysis indicates that enhancing the porosity of the flow channels, membrane water content, operational temperature, and KOH inlet flow rate can all improve the performance of water electrolysis.
關鍵字(中) ★ 陰離子交換膜水電解
★ 多孔傳輸層(PTL)
★ 傳輸現象
★ COMSOL Multiphysics
關鍵字(英) ★ Anion exchange membrane water electrolyzer
★ Porous transport layer (PTL)
★ Transport phenomenon
★ COMSOL Multiphysics
論文目次 摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 X
符號表 XI
第一章 緒論 1
1.1 前言 1
1.2 水電解介紹 2
1.2.1 水電解工作原理 3
1.2.2 水電解單元之組成結構 5
1.2.3 水電解單元之極化現象 7
1.3 研究目的 9
第二章 文獻回顧 11
2.1 燃料電池兩相流研究 11
2.2 水電解兩相流研究 11
2.3 陰離子交換膜FC/WE研究 13
2.4 水電解之氣泡可視化實驗與數值模擬 18
第三章 理論與數值模擬 21
3.1 電化學反應 21
3.2 模型幾何 22
3.3 模型假設 24
3.4 統御方程式 24
3.4.1 質量守恆方程式 25
3.4.2 動量守恆方程式 26
3.4.3 能量守恆方程式 28
3.5 電荷傳輸 29
3.5.1 電化學動力學 29
3.5.2 電流守恆方程式 29
3.5.3 Bruggeman關係式 30
3.5.4 陰離子交換膜離子導電率 31
3.6 邊界條件與物理參數 31
3.6.1 邊界條件 32
3.6.2 材料參數 33
3.6.3 物理參數 34
3.7 數值模擬方法 35
3.7.1 網格收斂性分析 36
3.7.2 參數分析 38
第四章 結果與討論 40
4.1 模型驗證 40
4.2 傳輸現象分析 41
4.3 參數分析 45
4.2.1 幾何參數 45
4.2.2 材料性質參數 48
4.2.3 操作參數 62
第五章 結論與未來建議 69
5.1 結論 69
5.2 未來建議 70
參考文獻 71
參考文獻 [1] H. Guo, Q. Guo, F. Ye, C.F. Ma, X. Zhu, Q. Liao, “Three-dimensional two-phase simulation of a unitized regenerative fuel cell during mode switching from electrolytic cell to fuel cell”, Energy Convers. Manag., 195 (2019), pp. 989-1003.
[2] A. Rajora, J. W. Haverkort, “An Analytical Model for Liquid and Gas Diffusion Layers in Electrolyzers and Fuel Cells”, J. Electrochem. Soc, 2021, 168.
[3] Xiong Peng, Pongsarun Satjaritanun, “Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra-Low Iridium Loadings”, Adv. Sci. 2021, 8, 2102950.
[4] Wang, Z., Xu, C., Wang, X. et al. Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell. Sci. China Technol. Sci. 64, 1555–1566 (2021).
[5] Y Xu, G Zhang, L Wu, Z Bao, B Zu, K Jiao, “A 3-D multiphase model of proton exchange membrane electrolyzer based on open-source CFD”, Digital Chemical Engineering, 2021, 1, 100004
[6] Upadhyay, Mukesh Kim, Ayeon Paramanantham, SalaiSargunan S. Kim, Heehyang Lim, Dongjun Lee, Sunyoung Moon, Sangbong Lim, Hankwon., “Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition”, Applied Energy, 2022, Volume 306, article id. 118016.
[7] Bilal Amoury et al, “Two-Phase Flow Through the PTL of PEM Water Electrolyzer: MRI Experiments and Numerical Modeling Using Phase-Field Theory”, ECS Trans., 112 167.
[8] Steffen Hess et al, “Numerical Two-Phase Simulations of Alkaline
Water Electrolyzers”, 2023 ECS Trans., 112 419.
[9] L. An, T.S. Zhao, Z.H. Chai, P. Tan, L. Zeng, “Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production”, International Journal of Hydrogen Energy, 39, 2014, 19869-19876.
[10] Asa Logan Roy et al, “Determining Electro-Osmotic Drag of Water in Anion Exchange Membrane Fuel Cells”,2018 Meet. Abstr. MA2018-01 1755.
[11] Lauren N. Stanislaw et al, “Modeling Electrolyte Composition Effects on Anion-Exchange-Membrane Water Electrolyzer Performance”, 2019, ECS Trans, 92, 767.
[12] Mrinmay Mandal, “Recent Advancement on Anion Exchange Membranes for Fuel Cell and Water Electrolysis”, Chem Electro Chem, Volume 8, Issue 1, p. 36-45.
[13] Garrett Huang et al, “Ionomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Hydrogen Evolution Electrode”, Journal of The Electrochemical Society, Volume 168, Number 2.
[14] Dongguo Li et al, “Durability of anion exchange membrane water electrolyzers”, Energy Environ. Sci., 2021,14, 3393-3419.
[15] Chaochao Cheng, Zirong Yang, Zhi Liu, Chasen Tongsh, Guobin Zhang, Biao Xie, Shaoqing He, Kui Jiao, “Numerical investigation on the feasibility of metal foam as flow field in alkaline anion exchange membrane fuel cell”, Applied Energy, 302, 2021, 117555.
[16] Joy Marie Mora, Mrittunjoy Sarker, Zabihollah Najafianashrafi, Md. Azimur Rahman, Ami C. Yang-Neyerlin, Bryan Pivovar, Po-Ya Abel Chuang, “Analytical-based simulation approach for an anion exchange membrane fuel cell”, Energy Conversion and Management, 273, 2022, 116382.
[17] Mehdi Mehrtash, “Parametric Sensitivity Analysis and Performance Evaluation of High-Temperature Anion-Exchange Membrane Fuel Cell”, Processes, 2022, 10, 1315.
[18] Ronit Kumar Panda, Guillaume Serre, Frédéric Fouda Onana, Yann Bultel, Pascal Schott, “Performance evaluation of the Anion exchange membrane based Water electrolysis”, Proceedings of the 10th International Conference on Systems and Control, Marseille, France, November 23-25, 2022.
[19] Daxing Hua et al, “Development of Anion Exchange Membrane Water Electrolysis and the Associated Challenges: A Review”, Chem Electro Chem, Volume 10, Issue 1 e202200999.
[20] Jiangjin Liu, Adam Z. Weber, “Ionomer Optimization for Hydroxide-Exchange-Membrane Water Electrolyzers Operated with Distilled Water: A Modeling Study”,2022, J. Electrochem. Soc. 169 054506.
[21] Susanne Koch et al, “Water management in anion-exchange membrane water electrolyzers under dry cathode operation”, RSC Advances, Volume 12, Issue 32, 14 July 2022, Pages 20778-20784.
[22] Andrew W. Tricker et al, “Design and operating principles for high-performing anion exchange membrane water electrolyzers”, Journal of Power Sources, Volume 567, 30 May 2023, 232967.
[23] Liang An, T. S. Zhao, Z.H. Chai, Peng Tan, Lin Zeng, “Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production”, International Journal of Hydrogen Energy, 39, 35, ,2014.
[24] Abraham Gomez Vidales, Natalie C. Millan, Christina Bock, “Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters”, Chemical Engineering Research and Design, 194 , 2023, 636–648.
[25] Khaled Lawand, Suhas Nuggehalli Sampathkumar, Zoé Mury, Jan Van Herle, “Membrane electrode assembly simulation of anion exchange membrane water electrolysis”, Journal of Power Sources, 595, 2024, 234047.
[26] Prerna Tiwari, George Tsekouras, Klaudia Wagner, Gerhard F. Swiegers, Gordon G. Wallace, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, international journal of hydrogen energy, 44, 2019, 23568-23579.
[27] J.C. Garcia-Navarro, M. Schulze, K.A. Friedrich, “Detecting and modeling oxygen bubble evolution and detachment in proton exchange membrane water electrolyzers”, International Journal of Hydrogen Energy, 44, 2019, 27190-27203.
[28] H. Rajaei, A. Rajora, J.W. Haverkort, “Design of membraneless gas-evolving flow-through porous electrodes”, Journal of Power Sources, Vol. 491, pp. 229364, 2019.
[29] Xiao Ying Wong, Yuting Zhuo, Yansong Shen, “Numerical Analysis of Hydrogen Bubble Behavior in a Zero-Gap Alkaline Water Electrolyzer Flow Channel”, Ind. Eng. Chem. Res, 2021, 60, 12429−12446.
[30] Lizhen Wu, Liang An, Daokuan Jiao, Yifan Xu, Guobin Zhang, Kui Jiao, “Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell”, Applied Energy, 323, 2022, 119651.
[31] Fernando Rocha, Renaud Delmelle, Christos Georgiadis, Joris Proost, “Effect of pore size and electrolyte flow rate on the bubble removal efficiency of 3D pure Ni foam electrodes during alkaline water electrolysis”, Journal of Environmental Chemical Engineering,10, 2022, 107648.
[32] Jonas Görtz et al, “Raising the curtain: Bubble size measurement inside parallel plate electrolyzers”, Chemical Engineering Science, 286 (2024), 119550.
[33] Youngseung Na et al, “Study on gas accumulation in polymer electrolyte membrane water electrolyzer considering two-phase flow”, International Communications in Heat and Mass Transfer, Volume 154, May 2024, 107385.
[34] M. Chandesris, V. Medeau, , N. Guillet, , S. Chelghoum, D. Thoby, F. Fouda-Onana, “Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density”, International Journal of Hydrogen Energy Volume 40, Issue 3, 21 January 2015, Pages 1353-1366.
[35] Ji Eun Park et al, “Effect of pore structures in nickel-based porous transport layers for high-performance and durable anion-exchange membrane water electrolysis”, Int J Energy Res, 2022, 46, 16670–16678.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明