博碩士論文 110323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.223.43.106
姓名 李敬得(Jing-Der Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
(Research on Magnetic Field-Assisted Electrochemical Polishing of Array Microholes in Stainless Steel)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-23以後開放)
摘要(中) 本研究提出使用電化學加工(Electrochemical Machining, ECM)結合永久性環狀磁鐵所形成之磁場,用以輔助加工去除金屬工件微孔之毛邊,以及孔壁表面之拋光,並以此研究工件加工後孔內之平整度。所得實驗數據包括表面粗糙度Ra、擴孔量、表面形貌以及氧化膜量測等結果,並為後續進行陣列孔加工研究取得適當之加工參數,最終希望能有高產能、高品質之陣列孔電化學加工與內壁拋光製程之成果。實驗將以SUS 304不銹鋼為主要的加工研究材料,進行單孔與陣列孔電化學拋光時,所需要之製程規劃與參數研究。為因應各種產品對於陣列孔加工之去毛邊與內孔壁拋光之需求,本研究將提出以電化學加工法於不銹鋼工件上之陣列微特徵內孔壁拋光,由於陣列微孔數量多、孔徑小,透過電極模具的設計與製作,以及有限元素模型建立流場、電場等狀態分析,並探討其不同參數之設定,例如磁場有無、磁場強度、磁場方向、電解液流速、加工電壓電流等參數變化對加工效果之影響,達到高加工精度以及提高加工效率之效果。而從實驗結果可知,在單孔參數實驗中,磁場強度與電場強度在加工時有著密切關連,磁場越強且加工電壓越高時,拋光加工效率則有所提升,在陣列孔加工實驗中,有加入磁場相比未加入磁場之陣列孔電化學拋光實驗,孔徑均勻度改善了4.33%,而孔壁表面粗糙均勻度則改善了9.72%。另外,此加工法還有望顯著減少加工工件夾持治具的開發週期,提升加工品質,進一步滿足大規模快速生產、高效率和高產能的特性,為電化學微孔的加工技術之研究和發展提供有力的支持。
摘要(英) This study proposes using Electrochemical Machining (ECM) combined with a magnetic field generated by permanent ring magnets to assist in removing burrs from metal workpieces′ micro-holes and polishing the hole wall surfaces. The research aims to evaluate the surface flatness of the workpieces after machining. Experimental data includes surface roughness (Ra), hole expansion amount, surface morphology, and oxidation film measurements. The study seeks to establish appropriate machining parameters for subsequent research on array hole processing, ultimately aiming for high productivity and quality in array hole electrochemical machining and inner wall polishing processes. The experiments will use SUS 304 stainless steel as the primary material for processing research, focusing on process planning and parameter studies required for single-hole and array hole electrochemical polishing. To meet various product requirements for burr removal and inner wall polishing of array holes, this research will propose an electrochemical machining method for polishing the inner walls of array micro-features on stainless steel workpieces. Given the numerous small-diameter array micro-holes, the study will involve designing and fabricating electrode molds and establishing finite element models to analyze fluid flow and electric fields. It will investigate the effects of various parameters, such as the presence and intensity of the magnetic field, magnetic field direction, electrolyte flow rate, machining voltage, and current, on machining outcomes to achieve high precision and improved efficiency. From the experimental results, it is evident that in single-hole parameter experiments, there is a close relationship between magnetic field strength and electric field intensity during machining. Higher magnetic field strength and machining voltage enhance polishing efficiency. In array hole machining experiments, adding a magnetic field improved hole diameter uniformity by 33.3% compared to experiments without a magnetic field, and the surface roughness of the hole walls improved by 6.45%. Additionally, this machining method is expected to significantly reduce the development cycle of workpiece fixtures, enhance machining quality, and further meet the characteristics of large-scale rapid production, high efficiency, and high productivity, providing strong support for research and development in electrochemical micro-hole machining technology.
關鍵字(中) ★ 電化學拋光加工
★ 微孔陣列
★ 磁場輔助
關鍵字(英) ★ Electrochemical polishing
★ micro-hole arrays
★ magnetic-field assistance
論文目次 目 錄
摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 4
1-4 論文架構 13
第二章 實驗基礎理論 14
2-1 電化學加工的基礎理論 14
2-1-1 法拉第定律 17
2-1-2 歐姆定律 18
2-1-3 靜電場公式 18
2-1-4 流場公式 19
2-1-5 右手開掌定則 20
2-1-6 磁場勞倫茲力 20
2-2 電化學拋光的基礎理論 21
2-2-1 電解拋光極化曲線 21
第三章 實驗設備與材料 25
3-1 實驗方法 25
3-2 基礎實驗相關設備 26
3-2-1 電化學加工機設備 26
3-2-2 單孔實驗用夾治具 28
3-2-3 流態陣列孔實驗用夾治具 30
3-2-4 非流態陣列孔實驗用夾治具 33
3-2-5 超音波洗淨機 34
3-2-6 脈衝式電源供應器 35
3-2-7 金相研磨拋光機 36
3-2-8 線切割放電加工機 37
3-2-9 雷射共軛焦暨白光干涉儀 38
3-2-10 掃描式電子顯微鏡 39
3-3 實驗材料 40
3-3-1 不銹鋼試片 40
3-3-2 不銹鋼管工具電極 41
3-3-3 電解液 42
3-3-4 釹鐵硼磁鐵 43
3-4 實驗流程 45
3-4-1 單孔電化學拋光流程 45
3-4-2 流態陣列孔電化學拋光流程 46
3-4-3非流態陣列孔電化學拋光流程 48
3-5 試片處理 49
3-5-1 單孔電化學拋光實驗試片處理 49
3-5-2 陣列孔電化學拋光實驗試片處理 51
第四章 加工模擬 53
4-1 模型描述 53
4-2 電場 54
4-3 流場 55
4-4 磁場 56
第五章 結果與討論 57
5-1 不同參數下對單孔特徵之影響 57
5-1-1 加工磁場對孔徑變化之影響 58
5-1-2 加工磁場對孔內壁表面之影響 73
5-1-3 雷射共軛焦暨白光干涉儀量測實驗結果 82
5-2 不同參數下對陣列孔特徵之影響 91
5-2-1 電解液流場對於加工均勻度之影響 92
5-2-2 加工電壓對於加工均勻度之影響 101
5-2-3加工磁場對於加工均勻度之影響 110
5-2-4磁場兩極方向對於加工均勻度之影響 119
5-3 氧化膜檢測 128
5-4 模擬結果 130
第六章 結論 141
未來展望 143
參考文獻 144
參考文獻 參考文獻
[1] J. Cheng, R. Kang, Z. Dong, S. Gao, “A new polishing method for complex structural parts Moist particle”, Electrochem. Commun. 150(2023)107475
[2] M. Datta, D. Landolt, “Fundamental aspects and applications of electrochemical,” Electrochimica. Acta. 45 (2000) 2535-2558,
[3] 沈哲墉,超音波輔助電化學加工微孔陣列之研究, 國立中央大學, 2020.
[4] M.H. Wang, D. Zhu, “Fabrication of multiple electrodes and their application for micro-holes array in ECM”, Int. J. Adv. Manuf. Technol. 41 (2009) 42-47.
[5] K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro-Physical and Chemical Processes”, CIRP Ann-Manuf. Technol. 55 (2006) 643-666.
[6] S. Skoczypiec, “Discussion of ultrashort voltage pulses electrochemical micromachining: a review”, Int. J. Adv. Manuf. Technol. 87 (2016) 177-187.
[7] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, Int. J. Mach. Tools Manuf. 44 (2004) 1577-1589.
[8] B. Bhattacharyya, B. Doloi, P.S. Sridhar, “Electrochemical micro-machining: new possibilities for micro-manufacturing”, J. Mater. Process. Technol. 113 (2001) 301-305.
[9] T. Koyano, A. Hosokawa, T. Furumoto, “Analysis of electrochemical machining process with ultrashort pulses considering stray inductance of pulse power supply”, J. Adv. Mech. Des. Syst. Manuf. 12 (2018) JAMDSM0098-JAMDSM0098.
[10] L. Xu, J. Wang, C. Zhao, “Electrochemical Micromachining Using Real Pulse Signals”, J. Electrochem. Soc. 168 (2021) 083504.
[11] C. Zhang, “Effects of a Magnetic field Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes”, Int. J. Electrochem. Sci. (2020) 1148-1159.
[12] I. Mogi, “Electrochemical studies in steady high magnetic field fields”, Phys. B Condens. Matter. 216 (1996) 396-398.
[13] Z. Fan, T. Wang, L. Zhong, “The mechanism of improving machining accuracy of ECM by magnetic field field”, J. Mater. Process. Technol. 149 (2004) 409-413.
[14] B.J. Ma, Z.J. Fan, D.J. Stephenson, “Influence of Magnetic field Field Distribution on ECM Process”, Key Eng. Mater. 339 (2007) 50-58.
[15] V. Gatard, J. Deseure, M. Chatenet, “Use of magnetic field fields in electrochemistry: A selected review”, Curr. Opin. Electrochem. 23 (2020) 96-105.
[16] L. Tang, W.M. Gan, “Experiment and simulation study on concentrated magnetic field field-assisted ECM S-03 special stainless steel complex cavity”, Int. J. Adv. Manuf. Technol. 72 (2014) 685-692.
[17] D. Baczyzmalski, F. Karnbach, X. Yang, G. Mutschke, M. Uhlemann, K. Eckert, C. Cierpka, “On the Electrolyte Convection around a Hydrogen Bubble Evolving at a Microelectrode under the Influence of a Magnetic field Field”, J. Electrochem. Soc. 163 (2016) E248.
[18] S. Ayyappan, K. Sivakumar, M. Kalaimathi, “Electrochemical machining of 20MnCr5 alloy steel with magnetic field flux assisted vibrating tool”, J. Mech. Eng. Sci. 231 (2016) 1956-1965.
[19] L. Long, M.A. Baoji, “Effect of magnetic field field on the electrochemical machining localization”, Int. J. Adv. Manuf Technol.(2019) 949-956.
[20] L. Long, M.A. Baoji, W. Ruifeng, D. Lingqi, “The coupled effect of magnetic field field, electric field, and electrolyte motion on the material removal amount in electrochemical machining”, Int. J. Adv. Manuf. Technol. 91 (2017) 2995-3006.
[21] L. Long, M.A. Baoji, “Effect of magnetic field field on anodic dissolution in electrochemical machining”, Int. J. Adv. Manuf. Technol. 94 (2018) 1177-1187.
[22] C. Bradley, J. Samuel, “Controlled Phase Interactions Between Pulsed Electric Fields, Ultrasonic Motion, and Magnetic field Fields in an Anodic Dissolution Cell”, J. Manuf. Sci. Eng. 140 (2018) 041010.
[23] S. R. Peruri, P.K. Chaganti, “A review of magnetic field‑assisted machining processes”, J. Braz. Soc. Mech. Sci. Eng. 41 (2019) 1-17.
[24] 胡啟章,電化學原理與方法,五南出版社,2002。
[25] J.A. McGeough, “Principles of Electrochemical Machining”, Chapman and Hall, London, 1974.
[26] 張朝洋,朱荻,納秒脈衝電流提高微細電化學加工精度的研究, 中國機械工程,Vol. 19,pp1716-1723,2008。
[27] 張遼遠,劉堯,電化學加工微電極的工藝研究,兵工學報,Vol.26,pp129-132,2005。
[28] 朱樹敏,電化學加工(ECM)及相關特種加工工藝技術,電化學加工(ECM)及相關特種加工工藝技術研討會,台大慶齡工業研究中心,1997。
[29] A. Gołąbczak, A. Konstantynowicz, M. Gołąbczak, “Comparative analysis of the surface roughness parameters due to the machining uniformity”, DEFECT DIFFUS FORUM. 367(2016) 25-33.
指導教授 洪榮洲(Jung-Chou Hung) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明