博碩士論文 111621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.191.139.131
姓名 吳佳靜(Chia-Jing Wu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 以徑向風聯立方程的直接解改善多都卜勒雷達風場合成技術反演垂直速度之可行性評估
(A feasibility study of improving the retrieved vertical velocity in multiple–Doppler radar wind synthesized technology using the direct solution of radial wind equations)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 由於臺灣具有高密度雷達網的優勢,許多區域能夠同時被三座以上雷達觀測到,本研究採用解三條徑向風和雷達間幾何關係的聯立方程組所獲得的垂直風場資訊,作為多都卜勒雷達合成反演風場技術 (Wind Synthesis System using Doppler Measurements, 簡稱WISSDOM) 的價值函數所使用的資料,以提升WISSDOM系統對垂直速度的反演能力。嘗試解決利用雷達資料反演垂直風場時,由於徑向風方程中z/r分量較小,導致垂直速度普遍低估的問題。本研究會先透過觀測系統模擬實驗 (Observing System Simulation Experiment, 簡稱OSSE) 評估此新價值函數對於提升WISSDOM系統反演垂直速度能力的可行性,接著進一步針對2022年劇烈降水觀測活動TAHOPE IOP #3的真實個案,測試新約束條件在真實大氣情境下的應用效果。結果顯示,此新方法無論是在OSSE模擬個案還是真實個案中,皆可使垂直速度反演結果在量值上有增強的表現。然而,研究過程中也發現,此新方法所解出的垂直風場資訊於徑向風資料的品質要求較高,加上目前可用於驗證垂直速度的觀測資料有限,因此新方法的反演結果仍需進一步驗證其可信度。未來在利用三徑向風方程求解風場的矩陣運算中,幾何矩陣的條件數結果可作為觀測活動中儀器設置的考量,使垂直風場反演結果有直接的觀測資料可進行驗證。
摘要(英) Taiwan has a high-density radar network. Many regions can be monitored simultaneously by more than three radars. This study utilizes vertical wind field information derived from solving the simultaneous equations of the geometric relationship between three radial winds and radar position. This information is then used as a new constraint in WISSDOM (Wind Synthesis System using Doppler Measurements) to improve WISSDOM′s ability to retrieve vertical velocity. This study aims to address a problem that has persisted for over a decade. The vertical velocity retrieved from radar data has been consistently underestimated due to the small z/r component in the radial wind equation.
In this study, an Observing System Simulation Experiment (OSSE) is first used to evaluate the feasibility of the new constraint to improve vertical velocity retrieval in WISSDOM. Subsequently, to test its performance in real atmospheric conditions, the new constraint is applied in the real case using data from the TAHOPE IOP #3 (Heavy Rain Observation Experiment in 2022). The results show that the new method enhances the magnitude of the vertical velocity retrieved, both in OSSE simulations and real case. However, the study also reveals that the vertical wind information derived from this new method is highly sensitive to the quality of the radial wind data. In addition, the vertical velocity observations currently available for verification are limited. Therefore, the retrieval results of this new method still require further validation to confirm their reliability. In the future, the condition number results of the geometric matrix in the matrix operations for solving the wind field using the three radial wind equations can be utilized as a consideration for instrument setup during observational campaigns. This ensures that the retrieved results of the vertical velocity are validated with direct observational data.
關鍵字(中) ★ 垂直風速反演
★ 都卜勒雷達徑向風方程
★ 多都卜勒氣象雷達三維風場合成
關鍵字(英) ★ vertical velocity retrieval
★ Doppler radar radial wind equation
★ multiple–Doppler radar 3D wind synthesis
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
表目錄 vii
圖目錄 viii
第一章、緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文目的與架構 4
第二章 多都卜勒雷達風場合成方法 5
2.1 價值函數 5
2.2 沉浸邊界法 9
第三章 提升垂直速度反演之處理 11
3.1 Beltrami flow 反演結果 11
3.1.1 實驗設計 12
3.1.2 各組實驗結果分析 13
3.2 新價值函數 13
第四章 觀測系統模擬實驗 15
4.1 模式設定 15
4.2 定量校驗方法 16
4.3 實驗設計 16
4.4 結果分析 17
4.4.1 Ret_3equ反演結果 18
4.4.2 RwNC和RwoNC比較 18
第五章 真實個案分析與討論 21
5.1 TAHOPE IOP#3 個案介紹 21
5.2 WISSDOM設定與使用資料 22
5.2.1 WISSDOM設定 22
5.2.2 雷達資料 22
5.2.3 雷達資料品質控管與處理 23
5.3 實驗設計 24
5.3.1 直接解徑向風聯立方程結果 24
5.3.2 各組實驗設定介紹 25
5.4 結果分析與討論 26
5.4.1 反演結果比較 26
5.4.2 水平風場驗證 27
5.4.3 垂直風場結果分析 27
5.4.4 雷達資料時間差敏感度測試 28
第六章 結論與未來展望 30
6.1 結語 30
6.2 未來展望 31
7 參考文獻 32
8 附表 36
9 附圖 37
參考文獻 陳奕安, 2019: 多都卜勒氣象雷達反演之垂直速度的 剖風儀驗證及高解析度三維風場反演 能力的測試, 大氣科學學系, 國立中央大學, 109 pp.
蘇俊瑋, 2016: 利用觀測資料與多都卜勒風場反演系統做垂直速度上的驗證, 大氣科學學系, 國立中央大學, 74 pp.
Armijo, L., 1969: A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. Journal of Atmospheric Sciences, 26, 570-573.
Brandes, E. A., 1977: Flow in Severe Thunderstorms Observed bu Dual-Doppler Radar. Monthly Weather Review, 105, 113-120.
Chong, M., and J. Testud, 1983: Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part III: The Boundary Condition: An Optimum Determination Based on a Variational Concept. Journal of Applied Meteorology and Climatology, 22, 1227-1241.
Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements. Journal of Applied Meteorology and Climatology, 52, 1909-1922.
Dahl, N. A., A. Shapiro, C. K. Potvin, A. Theisen, J. G. Gebauer, A. D. Schenkman, and M. Xue, 2019: High-Resolution, Rapid-Scan Dual-Doppler Retrievals of Vertical Velocity in a Simulated Supercell. Journal of Atmospheric and Oceanic Technology, 36, 1477-1500.
Doviak, R. J., P. S. Ray, R. G. Strauch, and L. J. Miller, 1976: Error Estimation in Wind Fields Derived from Dual-Doppler Radar Measurement. Journal of Applied Meteorology and Climatology, 15, 868-878.
Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A Variational Method for the Analysis of Three-Dimensional Wind Fields from Two Doppler Radars. Monthly Weather Review, 127, 2128-2142.
Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A Three-Dimensional Variational Data Analysis Method with Recursive Filter for Doppler Radars. Journal of Atmospheric and Oceanic Technology, 21, 457-469.
Giangrande, S. E., and Coauthors, 2016: Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5. Journal of Geophysical Research: Atmospheres, 121, 12,891-812,913.
Lee, J.-T., D.-I. Lee, C.-H. You, H. Uyeda, Y.-C. Liou, and I.-S. Han, 2014: Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: a case study. Tellus A: Dynamic Meteorology and Oceanography, 66, 23453.
Lenschow, D. H., 1976: Estimating Updraft Velocity from an Airplane Response. Monthly Weather Review, 104, 618-627.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Applied Meteorology and Climatology, 22, 1065-1092.
Liou, Y.-C., and Y.-J. Chang, 2009: A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval. Monthly Weather Review, 137, 3992-4010.
Liou, Y.-C., S.-F. Chang, and J. Sun, 2012: An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data. Monthly Weather Review, 140, 1603-1619.
Liou, Y.-C., J.-L. Chiou, W.-H. Chen, and H.-Y. Yu, 2014: Improving the Model Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations. Monthly Weather Review, 142, 4017-4035.
Mewes, J. J., and A. Shapiro, 2002: Use of the Vorticity Equation in Dual-Doppler Analysis of the Vertical Velocity Field. Journal of Atmospheric and Oceanic Technology, 19, 543-567.
North, K. W., M. Oue, P. Kollias, S. E. Giangrande, S. M. Collis, and C. K. Potvin, 2017: Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E. Atmos. Meas. Tech., 10, 2785-2806.
O′Brien, J. J., 1970: Alternative Solutions to the Classical Vertical Velocity Problem. Journal of Applied Meteorology and Climatology, 9, 197-203.
Protat, A., and I. Zawadzki, 1999: A Variational Method for Real-Time Retrieval of Three-Dimensional Wind Field from Multiple-Doppler Bistatic Radar Network Data. Journal of Atmospheric and Oceanic Technology, 16, 432-449.
Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and Multiple-Doppler Radar Observations of Tornadic Storms. Monthly Weather Review, 108, 1607-1625.
Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler Observation of a Tornadic Storm. Journal of Applied Meteorology and Climatology, 14, 1521-1530.
Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978: Triple-Doppler Observations of a Convective Storm. Journal of Applied Meteorology and Climatology, 17, 1201-1212.
Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution. Monthly Weather Review, 137, 603-631.
Scialom, G., and Y. Lemaitre, 1990: A New Analysis for the Retrieval of Three-Dimensional Mesoscale Wind Fields from Multiple Doppler Radar. Journal of Atmospheric and Oceanic Technology, 7, 640-665.
Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler Velocity Retrievals with Phoenix II Data: Clear Air and Microburst Wind Retrievals in the Planetary Boundary Layer. Journal of Atmospheric Sciences, 52, 1265-1287.
Shapiro, A., and J. J. Mewes, 1999: New Formulations of Dual-Doppler Wind Analysis. Journal of Atmospheric and Oceanic Technology, 16, 782-792.
Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. Journal of Atmospheric and Oceanic Technology, 26, 2089-2106.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Monthly Weather Review, 133, 1789-1807.
Tseng, Y.-H., and J. H. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 192, 593-623.
Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail Growth in an Oklahoma Multicell Storm. Journal of Atmospheric Sciences, 40, 1768-1791.
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2024-11-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明