博碩士論文 111621004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.144.7.9
姓名 呂峻宇(Jun-Yu Lu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用衛星資料推估東亞地區排放量並探討境外污染傳 輸對臺灣影響
(Estimating East Asia Emissions Using Satellite to Investigate Transboundary Pollution Transport to Taiwan)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響★ 開發適用於大氣邊界層觀測的無人機系統
★ 雲林地區細懸浮微粒的來源解析★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響★ 探討地下水參數化對於臺灣地表水文過程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 臺灣的空氣污染在不同的季節具有相當迥異的時空間特性,是當前臺灣國人 需要共同面對的嚴肅科學議題。空氣污染分為境內與境外,除了臺灣境內污染源如工業源、移動污染源及其他污染源外,若適當的環境風場盛行時,來自東亞大陸上游的空氣污染物會透過長程傳輸經過臺灣,導致環境品質下降,對人類健康與生態系統造成負面影響。為可以提前掌握污染物未來濃度趨勢,CMAQ (Community Multiscale Air Quality)模式在模擬過程中使用具可信度的資料及標準的程序,以利於增強臺灣對空氣污染問題的管理及控制能力。然而模式的準確率除了和氣象場及解析度有關,污染源實際的排放趨勢也是主要的因素,當前模式使用的東亞大陸排放量為MIX 2010,已是相對過時的排放量數據,對於模擬近年的境外污染傳輸事件誤差也較大。 本研究透過TROPOMI 衛星觀測以及使用CMAQ 模式,去耦合直接法 (Decoupled Direct Method, DDM),可提供污染物及排放量之間的非線性關係,用於推估地面氮氧化物(NOX)人為排放量。針對2023年1月1日至3月5日的東亞排放量進行平均推估,並挑選實驗期間臺灣三個顯著的境外污染事件,評估其排放量改善之效益。

個案一為2023年1月18日至1月22日。個案期間的大氣條件屬於東北季風盛行之環境,1月18日冷高壓逐漸自蒙古地區東移至黃河中上游流域,華北一帶的污染物傳輸至華中地區,使華中一帶PM2.5平均濃度高達100μg/m3。1月19日,來自華北及華中上風處的人為污染物傳輸至臺灣內陸,此時境外污染已開始影響臺灣各空品區,富貴角測站可量測到30μg/m3的PM2.5濃度,同時,修正組較Base組再多2至3μg/m3。個案二為三個個案中最顯著的境外污染事件,2月18日冷高壓逐漸自西伯利亞東移,強勁的風場使大量中國華北及華中工業區的污染物帶至海面上,並在2月19日移入臺灣北方,惡化北部的空氣品質,而挾帶進來的污染 物也對中南部東北季風的尾流弱風區形成一系列的光化反應,加劇該區域的空氣品質狀況,Base組的中南部PM2.5濃度大約平均為40μg/m3,而在修正組中提升2至3μg/m3。個案三在2月28日至3月2日,有兩波冷高壓中心自東亞地區東移至韓國海面,在2月28日時整體的大氣環境為弱綜觀,因此臺灣主要以境內污染為主,而後的3月1日冷高壓中心往東南方移動,使環境風場從東風轉為東北風,污染趨勢轉為境外污染,各地測站PM2.5濃度大約平均為45μg/m3。而不同的冷高壓風向也對中南部的沿海及內陸區域有不同的污染物分布情況。整體使用修正過後的東亞排放量來模擬境外傳輸對臺灣之 PM2.5濃度影響有改善之效益,三個個案PM2.5濃度皆呈現上升之趨勢,尤其以境外傳輸進來的硝酸鹽上升最為顯著,以及境外所帶入的污染物在光化反應下生成的污染物也能夠在修正的排放量中得到顯著的模擬成效。
摘要(英) Air pollution in Taiwan exhibits significantly different spatiotemporal characteristics across various seasons, making it a critical scientific issue that the people of Taiwan must face together. Air pollution can be classified into domestic and external sources. In addition to domestic sources, such as industrial, mobile, and other pollution sources, pollutants from upstream regions of East Asia can be transported over long distances to Taiwan during favorable meteorological conditions, leading to a decline in environmental quality and causing negative impacts on human health and ecosystems. To predict future pollutant concentration trends in advance, the CMAQ (Community Multiscale Air Quality) model employs reliable data and standardized procedures during simulations, which aids in enhancing Taiwan′s ability to manage and control air pollution. However, the model′s accuracy is not only related to meteorological fields and resolution, but also to the actual emission trends of pollution sources. The East Asian emission inventory currently used in the model is the MIX 2010, which is relatively outdated, leading to larger errors in simulating recent cross-border pollution transport events.
This study uses TROPOMI satellite observations and the Decoupled Direct Method (DDM) provided by the CMAQ model to capture the nonlinear relationship between pollutants and emissions, enabling the estimation of anthropogenic nitrogen oxide (NOx) emissions at the surface level. An average estimation of East Asian emissions was conducted for the period from January 1 to March 5, 2023. Additionally, three significant cross-border pollution events affecting Taiwan during the experimental period were selected to evaluate the benefits of emission reductions.
Case one occurred from January 18 to January 22, 2023. The atmospheric conditions during this period were characterized by the prevailing northeast monsoon. On January 18, a cold high-pressure system gradually moved eastward from Mongolia to North China, causing pollutants from North China to be transported to Central China, worsening air pollution in that region. On January 19, anthropogenic pollutants from the upwind areas of North and Central China were transported to the interior of Taiwan, and at this point, foreign pollution had begun to affect air quality across various regions in Taiwan.
Case two represented the most significant incident of foreign pollution among the three cases. On February 18, a cold high-pressure system gradually moved eastward from Siberia, and strong winds carried a large amount of pollutants from the industrial areas of North and Central China over the sea. On February 19, these pollutants reached northern Taiwan, deteriorating air quality in the northern region. The pollutants brought in also triggered a series of photochemical reactions in the weak wind area of the northeast monsoon′s tailwind in central and southern Taiwan, exacerbating air quality conditions in that area. In Case Three, from February 28 to March 2, two cold high-pressure centers moved eastward from East Asia to the sea near Korea. On February 28, the overall atmospheric environment was characterized by weak synoptic conditions, so Taiwan mainly experienced domestic pollution. On March 1, the high-pressure center moved southeastward, causing the environmental wind field to shift from easterly to northeasterly, changing the pollution trend to transboundary pollution. The different wind directions of the high-pressure systems also led to varying pollutant distributions between coastal and inland areas in central and southern Taiwan.
Overall, using the revised East Asia emission data to simulate the impact of foreign transport on Taiwan showed improvements, particularly in the case of nitrates brought in from abroad. The pollutants generated from photochemical reactions of the imported pollutants also demonstrated significant simulation effectiveness within the revised emission quantities.
關鍵字(中) ★ 境外傳輸
★ 空氣污染
★ CMAQ
★ 衛星觀測反演
關鍵字(英) ★ transboundary pollutant
★ air pollution
★ CMAQ
★ satellite inversion
論文目次 摘要 ............................................................................................................................................................... i
Abstract ....................................................................................................................................................... iii
表目錄 ........................................................................................................................................................ vii
圖目錄 ........................................................................................................................................................ vii
第一章 緒論 ................................................................................................................................................ 1
1-1 前言 .................................................................................................................................................. 1
1-2 文獻回顧 .......................................................................................................................................... 2
1-3研究目的 ........................................................................................................................................... 3
第二章 研究方法與實驗設計 .................................................................................................................... 5
2-1 模式介紹 .......................................................................................................................................... 5
2-1-1 氣象模式 WRF ....................................................................................................................... 5
2-1-2 空氣品質模式CMAQ ............................................................................................................. 5
2-2 排放量推估方法 .............................................................................................................................. 6
2-2-1 有限差分法 Finite Difference Mass Balance Method ............................................................ 6
2-2-2 去耦合直接法 Decouple Direct Method ................................................................................ 7
2-3 資料來源 .......................................................................................................................................... 7
2-3-1氣象模擬相關資料 ................................................................................................................... 7
2-3-2衛星觀測資料 ........................................................................................................................... 8
2-3-3東亞排放量資料 ....................................................................................................................... 8
2-3-4臺灣排放量資料 ....................................................................................................................... 9
2-4 衛星資料先驗剖面調整 .................................................................................................................. 9
第三章 個案選取與模式設定 .................................................................................................................. 11
3-1 個案選取 ........................................................................................................................................ 11
3-1-1高污染事件個案一 ................................................................................................................. 11
3-1-2高污染事件個案二 ................................................................................................................. 11
3-1-3高污染事件個案三 ................................................................................................................. 12
3-2模式設定 ......................................................................................................................................... 12
3-3實驗設計 ......................................................................................................................................... 13
第四章 實驗結果與討論 .......................................................................................................................... 14
4-1 衛星先驗剖面調整結果 ................................................................................................................ 14
4-2 有限差分法推估結果 .................................................................................................................... 14
4-2-1 衛星觀測和模式結果 ............................................................................................................ 14
4-2-2 東亞排放量修正結果 ............................................................................................................ 15
4-3個案一 (2023/01/18-2023/01/21) .................................................................................................. 16
4-3-1氣象模式表現 ......................................................................................................................... 16
4-3-2空品模式表現 ......................................................................................................................... 16
4-4個案二 (2023/02/18-2023/02/21) .................................................................................................. 19
4-4-1氣象模式表現 ......................................................................................................................... 19
4-3-2空品模式表現 ......................................................................................................................... 19
4-5個案三 (2023/02/28-2023/03/03) .................................................................................................. 21
4-5-1氣象模式表現 ......................................................................................................................... 21
4-5-2空品模式表現 ......................................................................................................................... 22
4-6個案總結 ......................................................................................................................................... 24
4-7硝酸鹽濃度模式和觀測結果 ......................................................................................................... 24
第五章 結論與未來展望 .......................................................................................................................... 26
5-1結論................................................................................................................................................. 26
5-2未來展望 ......................................................................................................................................... 27
參考文獻 .................................................................................................................................................... 30
附表 ............................................................................................................................................................ 34
附圖 ............................................................................................................................................................ 37
參考文獻 An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., ... & Ji, Y. (2019). Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences, 116(18), 8657-8666.
Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied mechanics reviews, 59(2), 51-77.
Chen, Y. C., Chou, C. C. K., Liu, C. Y., Chi, S. Y., & Chuang, M. T. (2023). Evaluation of the nitrogen oxide emission inventory with TROPOMI observations. Atmospheric Environment, 298, 119639.
Chuang, M. T., Ooi, M. C. G., Lin, N. H., Fu, J. S., Lee, C. T., Wang, S. H., ... & Huang, W. S. (2020). Study on the impact of three Asian industrial regions on PM2.5 in Taiwan and the process analysis during transport. Atmospheric Chemistry and Physics, 20(23), 14947-14967.
Chuang, M. T., Wu, C. F., Lin, C. Y., Lin, W. C., Chou, C. C. K., Lee, C. T., ... & Kong, S. S. K. (2022). Simulating nitrate formation mechanisms during PM2.5 events in Taiwan and their implications for the controlling direction. Atmospheric Environment, 269, 118856.
Chen, Y. C., Chou, C. C. K., Liu, C. Y., Chi, S. Y., & Chuang, M. T. (2023). Evaluation of the nitrogen oxide emission inventory with TROPOMI observations. Atmospheric Environment, 298, 119639.
Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D. J., ... & Yu, X. (2022). Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics, 22(16), 10809-10826.
Cheng, F. Y., Feng, C. Y., Yang, Z. M., Hsu, C. H., Chan, K. W., Lee, C. Y., & Chang, S. C. (2021). Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmospheric Environment, 244, 117909.
Choi, W. J., Moon, K. J., Yoon, J., Cho, A., Kim, S. K., Lee, S., ... & Kim, J. S. (2018). Introducing the geostationary environment monitoring spectrometer. Journal of Applied Remote Sensing, 12(4), 044005-044005.
Cooper, M., Martin, R. V., Padmanabhan, A., & Henze, D. K. (2017). Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. Journal of Geophysical Research: Atmospheres, 122(8), 4718-4734.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... & Vitart, F. (2011). The ERA?Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.
Dunker, A. M., Yarwood, G., Ortmann, J. P., & Wilson, G. M. (2002). The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency. Environmental Science & Technology, 36(13), 2965-2976.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T. A., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492.
Hsu, C. H., Cheng, F. Y., Chang, H. Y., & Lin, N. H. (2019). Implementation of a dynamical NH3 emissions parameterization in CMAQ for improving PM2.5 simulation in Taiwan. Atmospheric Environment, 218, 116923.
Jeong, Y. C., Yeh, S. W., Jeong, J. I., Park, R. J., & Wang, Y. (2024). Existence of typical winter atmospheric circulation patterns leading to high PM2.5 concentration days in East Asia. Environmental Pollution, 348, 123829.
Jung, J., Choi, Y., Souri, A. H., Mousavinezhad, S., Sayeed, A., & Lee, K. (2022). The Impact of Springtime?Transported Air Pollutants on Local Air Quality With Satellite?Constrained NOx Emission Adjustments Over East Asia. Journal of Geophysical Research: Atmospheres, 127(5), e2021JD035251.
Kang, M., Ahn, M. H., Liu, X., Jeong, U., & Kim, J. (2020). Spectral calibration algorithm for the geostationary environment monitoring spectrometer (GEMS). Remote Sensing, 12(17), 2846.
Lamsal, L. N., Martin, R. V., Padmanabhan, A., Van Donkelaar, A., Zhang, Q., Sioris, C. E., ... & Newchurch, M. J. (2011). Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophysical Research Letters, 38(5).
Li, C., Martin, R. V., Shephard, M. W., Cady?Pereira, K., Cooper, M. J., Kaiser, J., ... & Henze, D. K. (2019). Assessing the iterative finite difference mass balance and 4D?Var methods to derive ammonia emissions over North America using synthetic observations. Journal of Geophysical Research: Atmospheres, 124(7), 4222-4236.
Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., ... & Zheng, B. (2017). MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2), 935-963.
Lin, C. Y., Chou, C. C., Wang, Z., Lung, S. C., Lee, C. T., Yuan, C. S., ... & Liu, S. C. (2012). Impact of different transport mechanisms of Asian dust and anthropogenic pollutants to Taiwan. Atmospheric environment, 60, 403-418.
Lo, W. C., Ho, C. C., Tseng, E., Hwang, J. S., Chan, C. C., & Lin, H. H. (2022). Long-term exposure to ambient fine particulate matter (PM2.5) and associations with cardiopulmonary diseases and lung cancer in Taiwan: a nationwide longitudinal cohort study. International journal of epidemiology, 51(4), 1230-1242.
Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., & Evans, M. J. (2003). Global inventory of nitrogen oxide emissions constrained by space?based observations of NO2 columns. Journal of Geophysical Research: Atmospheres, 108(D17).
Mun, J., Choi, Y., Jeon, W., Lee, H. W., Kim, C. H., Park, S. Y., ... & Kim, D. (2023). Assessing mass balance-based inverse modeling methods via a pseudo-observation test to constrain NOx emissions over South Korea. Atmospheric Environment, 292, 119429.
Qu, Z., Henze, D. K., Worden, H. M., Jiang, Z., Gaubert, B., Theys, N., & Wang, W. (2022). Sector?based top?down estimates of NOx, SO2, and CO emissions in East Asia. Geophysical research letters, 49(2), e2021GL096009.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Streets, D. G., Canty, T., Carmichael, G. R., de Foy, B., Dickerson, R. R., Duncan, B. N., ... & Wecht, K. J. (2013). Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 77, 1011-1042.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., ... & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR technical note, 475(125), 10-5065.
Uno, I., Osada, K., Yumimoto, K., Wang, Z., Itahashi, S., Pan, X., ... & Nishizawa, T. (2017). Importance of long-range nitrate transport based on long-term observation and modeling of dust and pollutants over East Asia. Aerosol and Air Quality Research, 17(12), 3052-3064.
Veefkind, J. P., Aben, I., McMullan, K., Forster, H., De Vries, J., Otter, G., ... & Levelt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote sensing of environment, 120, 70-83.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J. C., Eskes, H. J., Eichmann, K. U., ... & Zehner, C. (2021). Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO 2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmospheric Measurement Techniques, 14(1), 481-510.
Wang, C., Wang, T., Wang, P., & Rakitin, V. (2020). Comparison and Validation of TROPOMI and OMI NO2 Observations over China. Atmosphere, 11(6), 636.
Wang, S. H., Hung, W. T., Chang, S. C., & Yen, M. C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmospheric environment, 126, 76-86.
Williams, J. E., Boersma, K. F., Le Sager, P., & Verstraeten, W. W. (2017). The high-resolution version of TM5-MP for optimized satellite retrievals: Description and validation. Geoscientific Model Development, 10(2), 721-750.
Xing, J., Li, S., Zheng, S., Liu, C., Wang, X., Huang, L., ... & Hao, J. (2022). Rapid inference of nitrogen oxide emissions based on a top-down method with a physically informed variational autoencoder. Environmental Science & Technology, 56(14), 9903-9914.
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of thoracic disease, 8(1), E69.
Zhang, W., Capps, S. L., Hu, Y., Nenes, A., Napelenok, S. L., & Russell, A. G. (2012). Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models. Geoscientific Model Development, 5(2), 355-368.
指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2024-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明