博碩士論文 111621010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.136.23.252
姓名 尤嬿臻(Yhen-Jhen You)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 臺灣熱浪的特徵分析
(Characterization of heat wave events in Taiwan)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響★ 開發適用於大氣邊界層觀測的無人機系統
★ 雲林地區細懸浮微粒的來源解析★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響★ 探討地下水參數化對於臺灣地表水文過程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 隨著全球暖化的加劇,熱浪的發生頻率逐漸增加,而熱浪的發生和高壓系統有關。臺灣在夏季時受到西北副熱帶太平洋高壓(Western North Pacific Subtropical High, WNPSH)的影響,經常會有連續性的高溫事件發生。因此探討WNPSH的變化對於臺灣熱浪的分析是至關重要的。
透過EOF分析850百帕的重力位高度,以及針對各模態進行氣象場的回歸分析之後,前三個影響WNPSH的模態分別為熱帶大西洋暖化、P-J pattern的負相位、以及ENSO。在暖化的影響下,WNPSH的強度在東亞區域增強,且在熱帶大西洋暖化的影響下,位置相對西伸;在P-J pattern的負相位影響下,臺灣有一氣旋式距平,此距平回歸使得在降水距平增加,不利於WNPSH的增強;在ENSO的影響之下,在西北太平洋有一反氣旋式的系統增強,主要是和ENSO消退其間所引發的Kelvin wave所引發之負渦度切變造成WNPSH增強有關。綜上所述,在熱帶大西洋暖化、P-J pattern正相位、ENSO消退期間為對於WNPSH的增強有利的情境。
在探討有利於WNPSH發展的模態後,本研究針對過去43年的觀測資料進行分析,將天氣型態分為四類,分別為弱西南季風(C1)、強西南季風(C2)、弱WNPSH (C3)、及強WNPSH (C4),探討出在水氣量較少的條件下,較有利於熱浪事件的發展。接續,本研究針對在三個模態當中的4個分類下的熱浪天數進行分析,在熱帶大西洋海溫增加、P-J pattern正相位、以及反聖嬰年時的熱浪持續天數以及頻率都相較正常年多,而強度則並沒有明顯差異,因此臺灣熱浪主要是透過多天數以及高頻率的條件所造成。最後探討各天氣型態天數統計上與三個模態的關聯,其中在C4的天數上和PC1有著顯著正相關,C1及C2有著顯著的負相關,表示在暖化的情境下,西南季風有所減弱以及WNPSH的天數有所增加,因而使得臺灣在過去43年的熱浪天數有所增加。透過上述分析,整合了在暖化中以及年際變化下的大尺度環流對於WNPSH的影響,並探討如何影響臺灣的熱浪事件。
摘要(英) As global warming intensifies, the frequency of heatwaves is gradually increasing, and heatwaves are associated with high-pressure systems. During the summer, Taiwan is influenced by the Western North Pacific Subtropical High (WNPSH), which often leads to prolonged high-temperature events. Therefore, investigating the changes in WNPSH is crucial for analyzing heatwaves in Taiwan.
Through EOF analysis of the 850 hPa geopotential height and regression analysis of meteorological fields for each mode, the first three modes influencing the WNPSH are identified as tropical Atlantic warming, the negative phase of the Pacific-Japan (P-J) pattern, and ENSO. Under the influence of warming, the intensity of the WNPSH strengthens in the East Asia region, and under the impact of tropical Atlantic warming, its position shifts westward. In the negative phase of the P-J pattern, a cyclonic anomaly develops over Taiwan, and the regression of this anomaly leads to increased precipitation anomalies, which are unfavorable for the strengthening of WNPSH. During ENSO′s decay phase, an anticyclonic system strengthens in the Northwest Pacific, primarily related to the negative vorticity shear caused by the Kelvin wave triggered by the ENSO decay, resulting in the enhancement of WNPSH. In summary, conditions that favor WNPSH strengthening occur during tropical Atlantic warming, the positive phase of the P-J pattern, and the decay phase of ENSO.
After exploring the modes favorable for WNPSH development, this study analyzes observational data from the past 43 years, classifying weather patterns into four types: weak southwest monsoon (C1), strong southwest monsoon (C2), weak WNPSH (C3), and strong WNPSH (C4). The analysis shows that heatwave events are more likely to develop under conditions with less water vapor. Further analysis of the heatwave duration in the four categories under the three modes indicates that during tropical Atlantic sea surface temperature increases, the positive phase of the P-J pattern, and El Nino decaying years, the heatwave duration and frequency are higher than in normal years, while the intensity does not show significant differences. Therefore, Taiwan′s heatwaves are primarily caused by prolonged duration and high frequency. Finally, the correlation between the number of days in each weather pattern and the three modes is explored. In C4, the number of days shows a significant positive correlation with PC1, while C1 and C2 show significant negative correlations. This suggests that under warming conditions, the southwest monsoon weakens, and the number of WNPSH days increases, leading to an increase in heatwave days in Taiwan over the past 43 years. Through this analysis, the study integrates the influence of large-scale circulation changes due to warming and interannual variations on WNPSH and investigates how it affects Taiwan′s heatwave events.
關鍵字(中) ★ 熱浪
★ 副熱帶高壓
★ EOF
關鍵字(英) ★ Heat wave
★ Western North Pacific Subtropical High (WNPSH)
★ Empirical Orthogenetic Function (EOF)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 3
第二章 資料來源與研究方法 5
2-1 資料來源 5
2-2 研究方法 8
2-2-1 經驗正交函數(Empirical Orthogonal Function, EOF) 8
2-2-2 回歸分析(Regression Analysis) 9
2-2-3 相關係數分析 (Correlation coefficient analysis) 9
2-2-4 K-means 群集分類法 (K-means cluster analysis) 10
第三章 綜觀場資料分析與討論 12
3-1 EOF結果分析 12
3-2 各模態對WNPSH強度及位置影響之分析 26
第四章 臺灣觀測資料分析與討論 44
4-1 臺灣觀測資料近43年熱浪分析 44
4-2 大尺度環流系統與熱浪特徵之關聯性 58
第五章 結論與未來展望 62
5-1 結論 62
5-2 未來展望 64
參考文獻 65
參考文獻 李庭慧, & 許晃雄. (2018). 台灣熱浪特性分析與變遷推估.
駱世豪, & 陳正達. (2021). 臺灣熱浪特性受人為影響的量化歸因分析. 大氣科學, 49(1), 1-31.
林冠宏. (2020). 臺灣地區熱浪與伴隨環境場分析. 臺灣師範大學地球科學系學位論文, 2020, 1-55.
呂芳川, 郭漱泠, & 陳昭銘. (2006). 夏季西北太平洋副高年際變化機制之研究. 大氣科學, 34(1), 25-45.
Chang, T. C., Hsu, H. H., & Hong, C. C. (2016). Enhanced influences of tropical Atlantic SST on WNP–NIO atmosphere–ocean coupling since the early 1980s. Journal of Climate, 29(18), 6509-6525.
Choi, W., & Kim, K. Y. (2019). Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Scientific reports, 9(1), 7865.
Gillett, N. P., Stott, P. A., & Santer, B. D. (2008). Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophysical Research Letters, 35(9).
Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International journal of climatology, 27(9), 1119-1152.
Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied statistics, 28(1), 100-108.
Hong, C. C., Chang, T. C., & Hsu, H. H. (2014). Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. Journal of Geophysical Research: Atmospheres, 119(7), 3715-3722.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., ... & Zhang, H. M. (2017). NOAA extended reconstructed sea surface temperature (ERSST), version 5. NOAA National Centers for Environmental Information, 30(8179-8205), 25.
Huang, G. (2004). An index measuring the interannual variation of the East Asian summer monsoon—The EAP index. Advances in Atmospheric Sciences, 21, 41-52.
Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2023), GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V07, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [08.07.24], 10.5067/GPM/IMERG/3B-MONTH/07
Kent, S. T., McClure, L. A., Zaitchik, B. F., Smith, T. T., & Gohlke, J. M. (2014). Heat waves and health outcomes in Alabama (USA): the importance of heat wave definition. Environmental health perspectives, 122(2), 151-158.
Kosaka, Y., & Nakamura, H. (2006). Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(619), 2009-2030.
Kosaka, Y., & Nakamura, H. (2010). Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. Journal of Climate, 23(19), 5085-5108.
Kubota, H., Kosaka, Y., & Xie, S. P. (2016). A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. International Journal of Climatology, 36(4).
Kueh, M. T., Lin, C. Y., Chuang, Y. J., Sheng, Y. F., & Chien, Y. Y. (2017). Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. Environmental Research Letters, 12(7), 074017.
Lau, N. C., & Nath, M. J. (2012). A model study of heat waves over North America:Meteorological aspects and projections for the twenty-first century. Journal of Climate, 25(14), 4761-4784.
Lau, N. C., & Nath, M. J. (2014). Model simulation and projection of European heat waves in present-day and future climates. Journal of Climate, 27(10), 3713-3730.
Lin, C. Y., Chua, Y. J., Sheng, Y. F., Hsu, H. H., Cheng, C. T., & Lin, Y. Y. (2015). Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology, 35(8).
Ling, S., & Lu, R. (2022). Tropical cyclones over the western north pacific strengthen the East Asia—Pacific pattern during summer. Advances in Atmospheric Sciences, 39(2), 249-259.
Luo, M., & Lau, N. C. (2017). Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. Journal of Climate, 30(2), 703-720.
Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
Nairn, J., Fawcett, R., & Ray, D. (2009, November). Defining and predicting excessive heat events, a national system. In Modelling and understanding high impact weather: extended abstracts of the third CAWCR Modelling Workshop (Vol. 30, pp. 83-86).
Noh, E., Kim, J., Jun, S. Y., Cha, D. H., Park, M. S., Kim, J. H., & Kim, H. G. (2021). The role of the Pacific?Japan pattern in extreme heatwaves over Korea and Japan. Geophysical Research Letters, 48(18), e2021GL093990.
North, G. R., Bell, T. L., Cahalan, R. F., & Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly weather review, 110(7), 699-706.
Perkins, S. E. (2015). A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164, 242-267.
Srinivas, G., Chowdary, J. S., Kosaka, Y., Gnanaseelan, C., Parekh, A., & Prasad, K. V. S. R. (2018). Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. Journal of Climate, 31(10), 3943-3958.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., ... & Powers, J. G. (2008). A description of the advanced research WRF version 3 (No. NCAR/TN-475+ STR), University Corporation for Atmospheric Research. National Center for Atmospheric Research Boulder, Colorado, USA, https://doi. org/10.5065/D68S4MVH.
Sui, C. H., Chung, P. H., & Li, T. (2007). Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophysical research letters, 34(11).
TAO, S. Y. (1987). A review of recent research on the East Asian summer monsoon in China. Monsoon meteorology, 60-92.
Tsai, C. T., Tseng, W. L., & Wang, Y. C. (2024). Linkage between Temperature and Heatwaves in Summer Taiwan to the Pacific Meridional Mode (No. EGU24-14379). Copernicus Meetings.
Tseng, W. L., Lin, S. Y., Wang, Y. C., Lo, S. H., Lo, M. H., Lee, S. Y., ... & Hsu, H. H. (2023). Impact of Pacific–Japan pattern on temperature and heatwave events in summer over Taiwan. International Journal of Climatology, 43(15), 7067-7081.
Vora, P., & Oza, B. (2013). A survey on k-mean clustering and particle swarm optimization. International Journal of Science and Modern Engineering, 1(3), 24-26.
Wang, B., Wu, R., & Fu, X. (2000). Pacific–East Asian teleconnection: how does ENSO affect East Asian climate?. Journal of climate, 13(9), 1517-1536.
Wakabayashi, S., & Kawamura, R. (2004). Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. Journal of the Meteorological Society of Japan. Ser. II, 82(6), 1577-1588.
Wang, B., Xiang, B., & Lee, J. Y. (2013). Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences, 110(8), 2718-2722.
Weller, E., Min, S. K., Cai, W., Zwiers, F. W., Kim, Y. H., & Lee, D. (2016). Human-caused Indo-Pacific warm pool expansion. Science advances, 2(7), e1501719.
Wu, J., Xu, X. F., Jin, F. F., & Guo, P. (2013). Research of the intraseasonal evolution of the East Asia Pacific pattern and the maintenance mechanism. Acta Meteorologica Sinica, 71, 476-491.
Xie, S. P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., & Sampe, T. (2009). Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Nino. Journal of climate, 22(3), 730-747.
Xie, S. P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., & Huang, G. (2016). Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Sciences, 33(4), 411-432.
指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2024-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明