參考文獻 |
[1] Alberti, C., Lee, K., & Collins, M. (2019). A BERT Baseline for the Natural
Questions. arXiv preprint arXiv:1901.08634.
[2] Bengio, Y., Ducharme, R., & Vincent, P. (2003). A Neural Probabilistic Language
Model. Advances in Neural Information Processing Systems 13 (NIPS 2000),50-56.
[3] Bochkay, K., & Levine, Carolyn B. (2019). Using MD&A to Improve Earnings
Forecasts. Journal of Accounting, 34(3), 458–482.
[4] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining,785-794.
[5] Choi, J., Suh, Y., & Jung, N. (2020). Predicting Corporate Credit Rating Based on Qualitative Information of MD&A Transformed Using Document Vectorization Techniques.
Data Technologies and Applications, 54(2), 151–168.
[6] Cuconasu, F., Trappolini, G., & Siciliano, F. (2024). The Power of Noise: Redefining Retrieval for RAG Systems. Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 719-729.
[7] Demoulin, N. T. M., & Coussement, D. (2020). Acceptance of Text-Mining Systems: The Signaling Role of Information Quality. Information & Management, 57(1), 78-82.
[8] Durnev, A., & Mangen, C. (2020). The Spillover Effects of MD&A Disclosures for Real Investment: The Role of Industry Competition. Journal of Accounting and Economics, 70(1),
24-32.
[9] Feldman, R., Govindaraj, S., Livnat, J. and Segal, B. (2010). Management’s tone change, post earnings announcement drift and accruals. Review of Accounting Studies, 15(4), 915-953.
[10] Gao, Y., Xiong, Y., & Gao, X. (2024). Retrieval-Augmented Generation for Large
Language Models: A Survey. arXiv preprint arXiv:2312.10997.
[11] Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A Comparative Study of Forecasting Corporate Credit Ratings Using Neural Networks, Support Vector Machines, and Decision
Trees. The North American Journal of Economics and Finance, 54, 77-82.
[12] Golbayani, P., Wang, D., & Florescu, I. (2020). Application of Deep Neural Networks to
Assess Corporate Credit Rating. arXiv preprint arXiv:2003.02334.
[13] Hajek, P. and Michalak, K. (2013).Feature selection in corporate credit rating prediction.
KnowledgeBased Systems, 51(4), 72-84.
[14] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network.
arXiv preprint arXiv:1503.02531.
[15] Huang, Z., Chen, H., Hsu, C.J., Chen, W.H. and Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support
Systems, 37(4), 543-558.
[16] Kim, K., & Ahn, H. (2012). A Corporate Credit Rating Model Using Multi-Class Support Vector Machines with an Ordinal Pairwise Partitioning Approach. Computers & Operations
Research, 39(8), 1800-1811.
[17] Lee, Y. (2007). Application of Support Vector Machines to Corporate Credit Rating
Prediction. Expert Systems with Applications, 33(2), 67-74.
[18] Lewis, P., & Perez, E. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems 33 (NeurIPS 2020),105-124.
[19] Li, J., Yuan, Y., & Zhang, Z. (2024). Enhancing LLM Factual Accuracy with RAG to Counter Hallucinations: A Case Study on Domain-Specific Queries in Private Knowledge-
Bases. arXiv preprint arXiv:2403.10446.
[20] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. arXiv preprint arXiv:1301.3781.
[21] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a Distilled Version of
BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108.
[22] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ?., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing
Systems 30 (NIPS 2017),136-142.
[23] Wang, M., & Ku, H. (2021). Utilizing Historical Data for Corporate Credit Rating
Assessment. Expert Systems With Applications, 165(1),49-57.
[24] Ye, Y., Liu, S., & Li, J. (2008). A Multiclass Machine Learning Approach to Credit Rating
Prediction. IEEE Xplore, 57-61.
[25] Zhang, S., Xu, J., Zhang, Q.J., & Root, D. E. (2016). Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets. IEEE Xplore,1-3. |