參考文獻 |
林華毅,2021:鹿林山大氣汞分布變化:氣象因子影響機制分析。國立中央大學大氣物理研究所碩士論文,中壢。
Briz-Redon, A., C. Belenguer-Sapina, and A. Serrano-Aroca (2021), Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study, Journal of Environmental Sciences, 101, 16-26.
Chen, L., M. Liu, Z. Xu, R. Fan, J. Tao, D. Chen, D. Zhang, D. Xie, and J. Sun (2013), Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons, Atmospheric Environment, 77, 757-766.
Chen, T.-C., M.-C. Yen, and S.-Y. Wang (2006), Variations of Atmospheric Pressure Viewed from the Yu-Shan Meteorological Station, Atmospheric Sciences, 34(4), 291-307.
Cheng, B., Y. Ma, F. Feng, Y. Zhang, J. Shen, H. Wang, Y. Guo, and Y. Cheng (2021), Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine, Atmospheric Environment, 255, 118437.
Cho, I.-G., D.-W. Hwang, S. Y. Kwon, and S.-D. Choi (2023), Optimization and application of passive air sampling method for gaseous elemental mercury in Ulsan, South Korea, Environmental Science and Pollution Research, 30(7), 17257-17267.
Denzler, B., C. Bogdal, S. Henne, D. Obrist, M. Steinbacher, and K. Hungerbuhler (2017), Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m), Environmental Science & Technology, 51(5), 2846-2853.
Draxler, R., and G. Hess (1998), An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition, Australian Meteorological Magazine, 47, 295-308.
Duan, L., X. Wang, D. Wang, Y. Duan, N. Cheng, and G. Xiu (2017), Atmospheric mercury speciation in Shanghai, China, Science of The Total Environment, 578, 460-468.
Ebinghaus, R., et al. (1999), International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland, Atmospheric Environment, 33(18), 3063-3073.
Fu, X., X. Feng, P. Liang, Deliger, H. Zhang, J. Ji, and P. Liu (2012), Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmos. Chem. Phys., 12(4), 1951-1964.
Fu, X., H. Zhang, C.-J. Lin, X. Feng, L. Zhou, and S. Fang (2014), Correlation slopes of GEM/CO, GEM/CO 2, and GEM/CH 4 and estimated mercury emissions in China, South Asia, Indochinese Peninsula, and Central Asia derived from observations in northwest and southwest China, Atmospheric Chemistry & Physics Discussions, 14(17), 24985-25026.
Fu, X., H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. Feng (2015), Observations of atmospheric mercury in China: a critical review, Atmospheric Chemistry and Physics, 15(16), 9455-9476.
Gay, D. A., D. Schmeltz, E. Prestbo, M. Olson, T. Sharac, and R. Tordon (2013), The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America, Atmos. Chem. Phys., 13(22), 11339-11349.
Gong, X., S. Hong, and D. A. Jaffe (2018), Ozone in China: Spatial Distribution and Leading Meteorological Factors Controlling O3 in 16 Chinese Cities, Aerosol and Air Quality Research, 18(9), 2287-2300.
Gong, X., A. Kaulfus, U. Nair, and D. A. Jaffe (2017), Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model, Environmental Science & Technology, 51(22), 13216-13223.
Han, Y.-J., T. M. Holsen, S.-O. Lai, P. K. Hopke, S.-M. Yi, W. Liu, J. Pagano, L. Falanga, M. Milligan, and C. Andolina (2004), Atmospheric gaseous mercury concentrations in New York State: relationships with meteorological data and other pollutants, Atmospheric Environment, 38(37), 6431-6446.
Horowitz, H. M., D. J. Jacob, Y. Zhang, T. S. Dibble, F. Slemr, H. M. Amos, J. A. Schmidt, E. S. Corbitt, E. A. Marais, and E. M. Sunderland (2017), A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17(10), 6353-6371.
Huang, J., C.-K. Liu, C.-S. Huang, and G.-C. Fang (2012), Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level, Chemosphere, 87(5), 579-585.
Jiskra, M., et al. (2018), A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nature Geoscience, 11(4), 244-250.
Karthik, R., A. Paneerselvam, D. Ganguly, G. Hariharan, S. Srinivasalu, R. Purvaja, and R. Ramesh (2017), Temporal variability of atmospheric Total Gaseous Mercury and its correlation with meteorological parameters at a high-altitude station of the South India, Atmospheric Pollution Research, 8(1), 164-173.
Kim, K. H., R. J. C. Brown, E. Kwon, I.-S. Kim, and J.-R. Sohn (2016), Atmospheric mercury at an urban station in Korea across three decades, Atmospheric Environment, 131, 124-132.
Kim, S. H., Y. J. Han, and T. M. H. S. M. Yi (2009), Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, Atmospheric Environment, 43(20), 3267-3274.
Koenig, A. M., et al. (2022), Mercury in the Free Troposphere and Bidirectional Atmosphere-Vegetation Exchanges – Insights from Maido Mountain Observatory in the Southern Hemisphere Tropics.
Kuo, T.-H., C.-F. Chang, A. Urba, and K. Kvietkus (2006), Atmospheric gaseous mercury in Northern Taiwan, Science of The Total Environment, 368(1), 10-18.
Kwok, L. K., Y. F. Lam, and C. Y. Tam (2017), Developing a statistical based approach for predicting local air quality in complex terrain area, Atmospheric Pollution Research, 8(1), 114-126.
Liu, S., F. Nadim, C. Perkins, R. J. Carley, G. E. Hoag, Y. Lin, and L. Chen (2002), Atmospheric mercury monitoring survey in Beijing, China, Chemosphere, 48(1), 97-107.
Marumoto, K., M. Hayashi, and A. Takami (2015), Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia, Atmospheric Environment, 117, 147-155.
Marumoto, K., et al. (2019), Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan, Atmosphere, 10(7), 362.
Mason, R. P., and G. R. Sheu (2002), Role of the ocean in the global mercury cycle, Global Biogeochemical Cycles, 16.
Nguyen, L. S. P., H.-Y. Huang, T. L. Lei, T. T. Bui, S.-H. Wang, K. H. Chi, G.-R. Sheu, C.-T. Lee, C.-F. Ou-Yang, and N.-H. Lin (2020), Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport, Atmospheric Environment, 241, 117766.
Nguyen, L. S. P., T. D. H. Pham, M. T. Truong, and A. N. Tran (2023), Characteristics of total gaseous mercury at a tropical megacity in Vietnam and influence of tropical cyclones, Atmospheric Pollution Research, 14(8), 101813.
Nguyen, L. S. P., G.-R. Sheu, S.-C. Chang, and N.-H. Lin (2021), Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan, Atmospheric Environment, 261, 118572.
Nguyen, L. S. P., G.-R. Sheu, D.-W. Lin, and N.-H. Lin (2019), Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016, Science of The Total Environment, 686, 1049-1056.
Obrist, D., Y. Agnan, M. Jiskra, C. L. Olson, D. P. Colegrove, J. Hueber, C. W. Moore, J. E. Sonke, and D. Helmig (2017), Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution, Nature, 547(7662), 201-204.
Pacyna, E. G., J. M. Pacyna, F. Steenhuisen, and S. Wilson (2006), Global anthropogenic mercury emission inventory for 2000, Atmospheric Environment, 40(22), 4048-4063.
Ren, X., et al. (2016), Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships, Atmospheric Environment, 146, 141-152.
Selin, N. E., D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode, L. Jaegle, and D. Jaffe (2007), Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research: Atmospheres, 112(D2).
Shah, V., et al. (2016), Origin of oxidized mercury in the summertime free troposphere over the southeastern US, Atmos. Chem. Phys., 16(3), 1511-1530.
Sheu, G.-R., N.-H. Lin, C.-T. Lee, J.-L. Wang, M.-T. Chuang, S.-H. Wang, K. H. Chi, and C.-F. Ou-Yang (2013), Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment, Atmospheric Environment, 78, 174-183.
Sheu, G.-R., N.-H. Lin, J.-L. Wang, C.-T. Lee, C.-F. Ou Yang, and S.-H. Wang (2010), Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmospheric Environment, 44(20), 2393-2400.
Sheu, G.-R., L. S. Phu Nguyen, M. T. Truong, and D.-W. Lin (2019), Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events, Atmospheric Environment, 214, 116827.
Shi, J., et al. (2022), Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors, Atmos. Chem. Phys., 22(17), 11187-11202.
Slemr, F., et al. (2015), Comparison of mercury concentrations measured at several sites in the Southern Hemisphere, Atmos. Chem. Phys., 15(6), 3125-3133.
Sprovieri, F., et al. (2016), Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmospheric Chemistry and Physics, 16(18), 11915-11935.
Sun, P., Z. Song, Y. Qin, Z. Xu, Y. Zhang, S. Zhong, and J. Yu (2024), Declines of gaseous element mercury concentrations at an urban site in eastern China caused by reductions of anthropogenic emission, Atmospheric Environment, 317, 120199.
Tai, A. P. K., L. J. Mickley, and D. J. Jacob (2010), Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change, Atmospheric Environment, 44(32), 3976-3984.
Tu, I. C., C.-S. Yuan, Y.-L. Tseng, C.-W. Lee, and C. Lin (2024), Spatiotemporal variation and inter-transport of atmospheric speciated mercury between Kaohsiung Harbor and neighboring urban areas, Environmental Pollution, 342, 123039.
UN Environment (2019). Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
Varde, M., et al. (2022), Characterization of atmospheric total gaseous mercury at a remote high-elevation site (Col Margherita Observatory, 2543 m a.s.l.) in the Italian Alps, Atmospheric Environment, 271, 118917.
Wan, Q., X. Feng, J. Lu, W. Zheng, X. Song, S. Han, and H. Xu (2009), Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources, Environmental Research, 109(3), 201-206.
Weiss-Penzias, P., H. M. Amos, N. E. Selin, M. S. Gustin, D. A. Jaffe, D. Obrist, G. R. Sheu, and A. Giang (2015), Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites, Atmos. Chem. Phys., 15(3), 1161-1173.
Wong, P.-Y., C.-Y. Hsu, J.-Y. Wu, T.-A. Teo, J.-W. Huang, H.-R. Guo, H.-J. Su, C.-D. Wu, and J. D. Spengler (2021), Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan, Environmental Modelling & Software, 139, 104996.
Wright, L. P., and L. Zhang (2015), An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites, Journal of Advances in Modeling Earth Systems, 7(1), 35-49.
Wu, Q., Y. Tang, L. Wang, S. Wang, D. Han, D. Ouyang, Y. Jiang, P. Xu, Z. Xue, and J. Hu (2021), Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown, Science of The Total Environment, 750, 142323.
Wu, Q., Y. Tang, S. Wang, L. Li, K. Deng, G. Tang, K. Liu, D. Ding, and H. Zhang (2020), Developing a statistical model to explain the observed decline of atmospheric mercury, Atmospheric Environment, 243, 117868.
Wu, X., X. Fu, H. Zhang, K. Tang, X. Wang, H. Zhang, Q. Deng, L. Zhang, K. Liu, and Q. Wu (2023), Changes in atmospheric gaseous elemental mercury concentrations and isotopic compositions at Mt. Changbai during 2015–2021 and Mt. Ailao during 2017–2021 in China, Journal of Geophysical Research: Atmospheres, 128(10), e2022JD037749.
Xu, Z., L. Chen, Y. Zhang, G. Han, Q. Chen, Z. Chu, Y. Zhang, C. Li, Y. Yang, and X. Wang (2022), Meteorological Drivers of Atmospheric Mercury Seasonality in the Temperate Northern Hemisphere, Geophysical Research Letters, 49(20), e2022GL100120.
Yeh, M. J., C. S. Yuan, K. N. Hung, I. R. Ie, C. E. Lee, K. C. Chiang, and K. Y. Soong (2021), Temporal variation and potential origins of atmospheric speciated mercury at a remote island in South China Sea based on two-year field measurement data, Sci Rep, 11(1), 5678.
Yu, Q., Y. Luo, S. Wang, Z. Wang, J. Hao, and L. Duan (2018), Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China, Atmos. Chem. Phys., 18(1), 495-509.
Yuan, C.-S., K.-C. Chiang, P.-H. Yen, J.-H. Ceng, C.-E. Lee, I. C. Du, K.-Y. Soong, and M.-S. Jeng (2023a), Long-range transport of atmospheric speciated mercury from the eastern waters of Taiwan Island to northern South China Sea, Environmental Pollution, 318, 120899.
Yuan, T., P. Zhang, Z. Song, S. Huang, X. Wang, and Y. Zhang (2023b), Buffering effect of global vegetation on the air-land exchange of mercury: Insights from a novel terrestrial mercury model based on CESM2-CLM5, Environment International, 174, 107904.
Zhang, H., X. W. Fu, C. J. Lin, X. Wang, and X. B. Feng (2015), Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China, Atmos. Chem. Phys., 15(2), 653-665.
Zhang, L., P. Zhou, H. Zhong, Y. Zhao, L. Dai, Q. g. Wang, M. Xi, Y. Lu, and Y. Wang (2021), Quantifying the impacts of anthropogenic and natural perturbations on gaseous elemental mercury (GEM) at a suburban site in eastern China using generalized additive models, Atmospheric Environment, 247, 118181.
Zhu, J., et al. (2012), Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China, Atmos. Chem. Phys., 12(24), 12103-12118. |