博碩士論文 111621005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.136.23.252
姓名 李忠諺(Chung-Yen Li)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 應用統計模型解析台灣大氣汞濃度的影響機制
相關論文
★ 鹿林山大氣汞分布與乾濕沉降特徵及來源推估★ 北台灣雨水汞濃度及濕沉降量之時空分布
★ 2009-2018年台灣市區與郊區之長期大氣汞濕沉降測量★ Characterizations of atmospheric mercury concentration and deposition at a tropical mountain background site in East Asia: insight into potential driving mechanisms
★ 鹿林山大氣汞分布變化: 氣象因子影響機制分析★ 桃園大氣汞分布與沈降暨顆粒汞粒徑分布特徵
★ 鹿林山大氣汞濃度年際變化分析與可能影響因子探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 聯合國環境規劃署(United Nations Environment Programme, UNEP)於2019年發表《Global Mercury Assessment 2018》,估算2015年全球人為大氣汞排放量為2220噸,而東亞和東南亞為主要排放源區,貢獻全球排放量的38.6%(約859噸)。為了模擬大氣汞的濃度變化與探討影響因子,除了使用化學傳輸模型,近年來有許多研究運用廣義相加模型(Generalized Additive Model, GAM)模擬空氣污染物濃度的變化,並探討影響濃度變化的機制。
本研究使用 GAM 量化氣象因素和空氣污染物對我國低海拔測站(國立中央大學, NCU)和高海拔測站(鹿林大氣背景站, LABS)氣態元素汞(Gaseous Elemental Mercury, GEM)濃度的影響,並進一步探討各測站的主要影響機制。研究結果顯示,2019至2020年間在中央大學量測到的GEM平均濃度為2.18±3.95 ng m^(-3),而鹿林山大氣背景測站為1.40±0.37 ng m^(-3)。春冬季較高,夏季異常升高,顯示當地排放影響。GEM日夜變化呈現日低夜高,與交通、太陽輻射和大氣擴散條件變化相關。
GAM模型結果顯示,在高海拔測站(LABS) CO是影響GEM濃度的主要因子,兩者來自相似的排放源,當CO濃度上升時,GEM濃度隨之增加,但隨著CO濃度進一步提升,GEM增長趨緩。春季GEM濃度最高,主要與中南半島生質燃燒污染物的長程傳輸有關。相對濕度與GEM濃度呈正相關,白天的谷風將污染物輸送至高山,夜間的高層氣團沈降則導致GEM濃度下降,說明此測站主要受區域性排放影響。
在低海拔測站(中央大學),CO也是GEM變化的主要因子,與交通運輸和工業活動的排放有關。CO濃度與GEM濃度呈強正相關,且在高濃度區域出現非線性特徵。GEM濃度的日夜變化與低風速和光化學反應有關。風向對GEM濃度有顯著影響,當風向在180至225度之間時,GEM濃度上升,顯示來自南方或西南方的氣流帶來較高的汞濃度,說明此測站主要受局地性排放影響。
使用2020年觀測數據進行模型驗證,結果顯示LABS站點預測與觀測值之間有較高的相關性(R2 = 0.73),但有高估的現象,此與2020年初中國因COVID-19實施封城措施有關,封城期間,工業與交通活動減少,污染物排放顯著下降,導致GEM濃度下降。中央大學站的R2為0.49,顯示模型能捕捉GEM濃度的整體變化趨勢,但在高濃度情況下有較大誤差,特別是在污染事件期間,模型有明顯低估的情況。模型的春夏秋三季MBE均為負值,顯示低估濃度,尤其是在夏季。這一現象與西南風攜帶污染物至觀測地區有關。
摘要(英) The United Nations Environment Programme (UNEP) published the Global Mercury Assessment 2018 in 2019, estimating that global anthropogenic atmospheric mercury emissions in 2015 amounted to 2,220 tons. East and Southeast Asia were identified as the major emission source regions, contributing 38.6% of global emissions (approximately 859 tons). To simulate atmospheric mercury concentration changes and investigate influencing factors, besides chemical transport models, recent studies have increasingly employed Generalized Additive Models (GAM) to model variations in air pollutant concentrations and explore the mechanisms affecting these changes.
This study applies GAM to quantify the impacts of meteorological factors and air pollutants on gaseous elemental mercury (GEM) concentrations at two monitoring stations in Taiwan: the low-altitude station at National Central University (NCU) and the high-altitude station at Lulin Atmospheric Background Station (LABS). The study further explores the dominant mechanisms influencing GEM concentrations at these sites. The results show that from 2019 to 2020, the average GEM concentration at NCU was 2.18 ± 3.95 ng m^(-3), while at LABS it was 1.40 ± 0.39 ng m^(-3). Concentrations were higher in the spring and winter, with an anomalous increase observed in the summer, likely due to local emissions. The diurnal variation of GEM concentrations exhibited lower values during the day and higher values at night, which were related to traffic, solar radiation, and atmospheric diffusion conditions.
The GAM results indicate that at the high-altitude station (LABS), carbon monoxide (CO) was the primary factor influencing GEM concentrations, with both pollutants originating from similar emission sources. As CO concentrations increased, GEM concentrations also rose, although GEM growth slowed with further increases in CO. The highest GEM concentrations occurred in the spring, primarily due to long range transport of pollutants from biomass burning in the Southeast Asian Peninsula. Relative humidity showed a positive correlation with GEM concentrations, and the diurnal wind patterns, such as valley winds transporting pollutants to the mountain during the day and subsiding air masses at night, contributed to the observed GEM variations, indicating a significant regional emission impact at this site.
At the low-altitude station (NCU), CO was also the major factor influencing GEM changes, related to emissions from traffic and industrial activities. A strong positive correlation was observed between CO and GEM concentrations, with a nonlinear relationship at higher concentration levels. Low wind speeds and photochemical reactions influenced the diurnal variation in GEM concentrations. The wind direction had a significant impact on GEM concentrations, with higher values observed when the wind direction was between 180° and 225°, suggesting that air masses from the south or southwest brought higher mercury concentrations, indicating that this station was primarily affected by local emissions.
Model validation using 2020 observational data showed a high correlation between predicted and observed GEM concentrations at LABS (R2 = 0.73), but overestimation was observed. This discrepancy was attributed to the COVID-19 lockdown measures in early 2020, which led to a significant reduction in industrial and traffic activities, consequently decreasing pollutant emissions and GEM concentrations. At NCU, the R2 value was 0.49, indicating that the model captured the overall trend of GEM concentration changes, but larger errors were observed during high-concentration periods, particularly during pollution events, where the model underestimated the concentrations. The model′s mean bias error (MBE) for spring, summer, and autumn was negative, indicating an underestimation of concentrations, especially during the summer. This phenomenon was related to the transport of pollutants by southwest winds to the observation site.
關鍵字(中) ★ 大氣汞
★ 鹿林山大氣背景測站
★ 中央大學
★ 廣義相加模型
關鍵字(英) ★ Atmospheric mercury
★ Lulin Atmospheric Background Station
★ National Central University
★ Generalized Additive Model
論文目次 摘要.............................................ii
Abstract.........................................iv
誌謝.............................................vi
目錄.............................................viii
圖目錄...........................................x
表目錄...........................................xii
第一章 緒論...................................1
1-1 研究動機..................................1
1-2 研究目的..................................4
第二章 文獻回顧................................6
2-1 汞的性質與介紹.............................6
2-2 全球大氣汞研究.............................7
2-3 大氣汞的季節性變化.........................10
2-4 線性模型在大氣污染物研究中的應用............11
2-5 廣義相加模型在大氣污染研究中的應用..........12
第三章 研究方法...............................14
3-1 研究地點..................................14
3-1-1 中央大學................................14
3-1-2 鹿林山大氣背景測站.......................15
3-2 大氣汞監測分析.............................16
3-3 氣象與污染物觀測資料分析....................17
3-4 後推軌跡資料分析...........................18
3-5 廣義相加模型介紹...........................19
3-6 數據處理方法...............................21
第四章 結果與討論..............................25
4-1 大氣汞濃度分布特性及影響因素................25
4-1-1 鹿林山大氣背景測站觀測....................25
4-1-2 中央大學測站觀測..........................34
4-1-3 高低海拔測站觀測數據比較...................44
4-2 機制探討與個別因子的貢獻分析..................45
4-2-1 鹿林山大氣背景測站.........................45
4-2-2 中央大學測站...............................55
4-2-3 高低海拔測站影響機制的比較..................68
4-3 模型預測結果分析.............................70
4-3-1 鹿林山大氣背景測站.........................70
4-3-2 中央大學測站...............................76
4-3-3 高低海拔測站模型預測結果的比較...............80
第五章 結論與建議.................................82
5-1 結論.........................................82
5-2 未來建議.....................................84
參考文獻............................................85
參考文獻 林華毅,2021:鹿林山大氣汞分布變化:氣象因子影響機制分析。國立中央大學大氣物理研究所碩士論文,中壢。
Briz-Redon, A., C. Belenguer-Sapina, and A. Serrano-Aroca (2021), Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study, Journal of Environmental Sciences, 101, 16-26.
Chen, L., M. Liu, Z. Xu, R. Fan, J. Tao, D. Chen, D. Zhang, D. Xie, and J. Sun (2013), Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta—A highly industrialised region in South China influenced by seasonal monsoons, Atmospheric Environment, 77, 757-766.
Chen, T.-C., M.-C. Yen, and S.-Y. Wang (2006), Variations of Atmospheric Pressure Viewed from the Yu-Shan Meteorological Station, Atmospheric Sciences, 34(4), 291-307.
Cheng, B., Y. Ma, F. Feng, Y. Zhang, J. Shen, H. Wang, Y. Guo, and Y. Cheng (2021), Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine, Atmospheric Environment, 255, 118437.
Cho, I.-G., D.-W. Hwang, S. Y. Kwon, and S.-D. Choi (2023), Optimization and application of passive air sampling method for gaseous elemental mercury in Ulsan, South Korea, Environmental Science and Pollution Research, 30(7), 17257-17267.
Denzler, B., C. Bogdal, S. Henne, D. Obrist, M. Steinbacher, and K. Hungerbuhler (2017), Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m), Environmental Science & Technology, 51(5), 2846-2853.
Draxler, R., and G. Hess (1998), An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition, Australian Meteorological Magazine, 47, 295-308.
Duan, L., X. Wang, D. Wang, Y. Duan, N. Cheng, and G. Xiu (2017), Atmospheric mercury speciation in Shanghai, China, Science of The Total Environment, 578, 460-468.
Ebinghaus, R., et al. (1999), International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland, Atmospheric Environment, 33(18), 3063-3073.
Fu, X., X. Feng, P. Liang, Deliger, H. Zhang, J. Ji, and P. Liu (2012), Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmos. Chem. Phys., 12(4), 1951-1964.
Fu, X., H. Zhang, C.-J. Lin, X. Feng, L. Zhou, and S. Fang (2014), Correlation slopes of GEM/CO, GEM/CO 2, and GEM/CH 4 and estimated mercury emissions in China, South Asia, Indochinese Peninsula, and Central Asia derived from observations in northwest and southwest China, Atmospheric Chemistry & Physics Discussions, 14(17), 24985-25026.
Fu, X., H. Zhang, B. Yu, X. Wang, C.-J. Lin, and X. Feng (2015), Observations of atmospheric mercury in China: a critical review, Atmospheric Chemistry and Physics, 15(16), 9455-9476.
Gay, D. A., D. Schmeltz, E. Prestbo, M. Olson, T. Sharac, and R. Tordon (2013), The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America, Atmos. Chem. Phys., 13(22), 11339-11349.
Gong, X., S. Hong, and D. A. Jaffe (2018), Ozone in China: Spatial Distribution and Leading Meteorological Factors Controlling O3 in 16 Chinese Cities, Aerosol and Air Quality Research, 18(9), 2287-2300.
Gong, X., A. Kaulfus, U. Nair, and D. A. Jaffe (2017), Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model, Environmental Science & Technology, 51(22), 13216-13223.
Han, Y.-J., T. M. Holsen, S.-O. Lai, P. K. Hopke, S.-M. Yi, W. Liu, J. Pagano, L. Falanga, M. Milligan, and C. Andolina (2004), Atmospheric gaseous mercury concentrations in New York State: relationships with meteorological data and other pollutants, Atmospheric Environment, 38(37), 6431-6446.
Horowitz, H. M., D. J. Jacob, Y. Zhang, T. S. Dibble, F. Slemr, H. M. Amos, J. A. Schmidt, E. S. Corbitt, E. A. Marais, and E. M. Sunderland (2017), A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17(10), 6353-6371.
Huang, J., C.-K. Liu, C.-S. Huang, and G.-C. Fang (2012), Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level, Chemosphere, 87(5), 579-585.
Jiskra, M., et al. (2018), A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nature Geoscience, 11(4), 244-250.
Karthik, R., A. Paneerselvam, D. Ganguly, G. Hariharan, S. Srinivasalu, R. Purvaja, and R. Ramesh (2017), Temporal variability of atmospheric Total Gaseous Mercury and its correlation with meteorological parameters at a high-altitude station of the South India, Atmospheric Pollution Research, 8(1), 164-173.
Kim, K. H., R. J. C. Brown, E. Kwon, I.-S. Kim, and J.-R. Sohn (2016), Atmospheric mercury at an urban station in Korea across three decades, Atmospheric Environment, 131, 124-132.
Kim, S. H., Y. J. Han, and T. M. H. S. M. Yi (2009), Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, Atmospheric Environment, 43(20), 3267-3274.
Koenig, A. M., et al. (2022), Mercury in the Free Troposphere and Bidirectional Atmosphere-Vegetation Exchanges – Insights from Maido Mountain Observatory in the Southern Hemisphere Tropics.
Kuo, T.-H., C.-F. Chang, A. Urba, and K. Kvietkus (2006), Atmospheric gaseous mercury in Northern Taiwan, Science of The Total Environment, 368(1), 10-18.
Kwok, L. K., Y. F. Lam, and C. Y. Tam (2017), Developing a statistical based approach for predicting local air quality in complex terrain area, Atmospheric Pollution Research, 8(1), 114-126.
Liu, S., F. Nadim, C. Perkins, R. J. Carley, G. E. Hoag, Y. Lin, and L. Chen (2002), Atmospheric mercury monitoring survey in Beijing, China, Chemosphere, 48(1), 97-107.
Marumoto, K., M. Hayashi, and A. Takami (2015), Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia, Atmospheric Environment, 117, 147-155.
Marumoto, K., et al. (2019), Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan, Atmosphere, 10(7), 362.
Mason, R. P., and G. R. Sheu (2002), Role of the ocean in the global mercury cycle, Global Biogeochemical Cycles, 16.
Nguyen, L. S. P., H.-Y. Huang, T. L. Lei, T. T. Bui, S.-H. Wang, K. H. Chi, G.-R. Sheu, C.-T. Lee, C.-F. Ou-Yang, and N.-H. Lin (2020), Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport, Atmospheric Environment, 241, 117766.
Nguyen, L. S. P., T. D. H. Pham, M. T. Truong, and A. N. Tran (2023), Characteristics of total gaseous mercury at a tropical megacity in Vietnam and influence of tropical cyclones, Atmospheric Pollution Research, 14(8), 101813.
Nguyen, L. S. P., G.-R. Sheu, S.-C. Chang, and N.-H. Lin (2021), Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan, Atmospheric Environment, 261, 118572.
Nguyen, L. S. P., G.-R. Sheu, D.-W. Lin, and N.-H. Lin (2019), Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016, Science of The Total Environment, 686, 1049-1056.
Obrist, D., Y. Agnan, M. Jiskra, C. L. Olson, D. P. Colegrove, J. Hueber, C. W. Moore, J. E. Sonke, and D. Helmig (2017), Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution, Nature, 547(7662), 201-204.
Pacyna, E. G., J. M. Pacyna, F. Steenhuisen, and S. Wilson (2006), Global anthropogenic mercury emission inventory for 2000, Atmospheric Environment, 40(22), 4048-4063.
Ren, X., et al. (2016), Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships, Atmospheric Environment, 146, 141-152.
Selin, N. E., D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode, L. Jaegle, and D. Jaffe (2007), Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research: Atmospheres, 112(D2).
Shah, V., et al. (2016), Origin of oxidized mercury in the summertime free troposphere over the southeastern US, Atmos. Chem. Phys., 16(3), 1511-1530.
Sheu, G.-R., N.-H. Lin, C.-T. Lee, J.-L. Wang, M.-T. Chuang, S.-H. Wang, K. H. Chi, and C.-F. Ou-Yang (2013), Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment, Atmospheric Environment, 78, 174-183.
Sheu, G.-R., N.-H. Lin, J.-L. Wang, C.-T. Lee, C.-F. Ou Yang, and S.-H. Wang (2010), Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmospheric Environment, 44(20), 2393-2400.
Sheu, G.-R., L. S. Phu Nguyen, M. T. Truong, and D.-W. Lin (2019), Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events, Atmospheric Environment, 214, 116827.
Shi, J., et al. (2022), Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors, Atmos. Chem. Phys., 22(17), 11187-11202.
Slemr, F., et al. (2015), Comparison of mercury concentrations measured at several sites in the Southern Hemisphere, Atmos. Chem. Phys., 15(6), 3125-3133.
Sprovieri, F., et al. (2016), Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmospheric Chemistry and Physics, 16(18), 11915-11935.
Sun, P., Z. Song, Y. Qin, Z. Xu, Y. Zhang, S. Zhong, and J. Yu (2024), Declines of gaseous element mercury concentrations at an urban site in eastern China caused by reductions of anthropogenic emission, Atmospheric Environment, 317, 120199.
Tai, A. P. K., L. J. Mickley, and D. J. Jacob (2010), Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change, Atmospheric Environment, 44(32), 3976-3984.
Tu, I. C., C.-S. Yuan, Y.-L. Tseng, C.-W. Lee, and C. Lin (2024), Spatiotemporal variation and inter-transport of atmospheric speciated mercury between Kaohsiung Harbor and neighboring urban areas, Environmental Pollution, 342, 123039.
UN Environment (2019). Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
Varde, M., et al. (2022), Characterization of atmospheric total gaseous mercury at a remote high-elevation site (Col Margherita Observatory, 2543 m a.s.l.) in the Italian Alps, Atmospheric Environment, 271, 118917.
Wan, Q., X. Feng, J. Lu, W. Zheng, X. Song, S. Han, and H. Xu (2009), Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources, Environmental Research, 109(3), 201-206.
Weiss-Penzias, P., H. M. Amos, N. E. Selin, M. S. Gustin, D. A. Jaffe, D. Obrist, G. R. Sheu, and A. Giang (2015), Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites, Atmos. Chem. Phys., 15(3), 1161-1173.
Wong, P.-Y., C.-Y. Hsu, J.-Y. Wu, T.-A. Teo, J.-W. Huang, H.-R. Guo, H.-J. Su, C.-D. Wu, and J. D. Spengler (2021), Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan, Environmental Modelling & Software, 139, 104996.
Wright, L. P., and L. Zhang (2015), An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites, Journal of Advances in Modeling Earth Systems, 7(1), 35-49.
Wu, Q., Y. Tang, L. Wang, S. Wang, D. Han, D. Ouyang, Y. Jiang, P. Xu, Z. Xue, and J. Hu (2021), Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown, Science of The Total Environment, 750, 142323.
Wu, Q., Y. Tang, S. Wang, L. Li, K. Deng, G. Tang, K. Liu, D. Ding, and H. Zhang (2020), Developing a statistical model to explain the observed decline of atmospheric mercury, Atmospheric Environment, 243, 117868.
Wu, X., X. Fu, H. Zhang, K. Tang, X. Wang, H. Zhang, Q. Deng, L. Zhang, K. Liu, and Q. Wu (2023), Changes in atmospheric gaseous elemental mercury concentrations and isotopic compositions at Mt. Changbai during 2015–2021 and Mt. Ailao during 2017–2021 in China, Journal of Geophysical Research: Atmospheres, 128(10), e2022JD037749.
Xu, Z., L. Chen, Y. Zhang, G. Han, Q. Chen, Z. Chu, Y. Zhang, C. Li, Y. Yang, and X. Wang (2022), Meteorological Drivers of Atmospheric Mercury Seasonality in the Temperate Northern Hemisphere, Geophysical Research Letters, 49(20), e2022GL100120.
Yeh, M. J., C. S. Yuan, K. N. Hung, I. R. Ie, C. E. Lee, K. C. Chiang, and K. Y. Soong (2021), Temporal variation and potential origins of atmospheric speciated mercury at a remote island in South China Sea based on two-year field measurement data, Sci Rep, 11(1), 5678.
Yu, Q., Y. Luo, S. Wang, Z. Wang, J. Hao, and L. Duan (2018), Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China, Atmos. Chem. Phys., 18(1), 495-509.
Yuan, C.-S., K.-C. Chiang, P.-H. Yen, J.-H. Ceng, C.-E. Lee, I. C. Du, K.-Y. Soong, and M.-S. Jeng (2023a), Long-range transport of atmospheric speciated mercury from the eastern waters of Taiwan Island to northern South China Sea, Environmental Pollution, 318, 120899.
Yuan, T., P. Zhang, Z. Song, S. Huang, X. Wang, and Y. Zhang (2023b), Buffering effect of global vegetation on the air-land exchange of mercury: Insights from a novel terrestrial mercury model based on CESM2-CLM5, Environment International, 174, 107904.
Zhang, H., X. W. Fu, C. J. Lin, X. Wang, and X. B. Feng (2015), Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China, Atmos. Chem. Phys., 15(2), 653-665.
Zhang, L., P. Zhou, H. Zhong, Y. Zhao, L. Dai, Q. g. Wang, M. Xi, Y. Lu, and Y. Wang (2021), Quantifying the impacts of anthropogenic and natural perturbations on gaseous elemental mercury (GEM) at a suburban site in eastern China using generalized additive models, Atmospheric Environment, 247, 118181.
Zhu, J., et al. (2012), Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China, Atmos. Chem. Phys., 12(24), 12103-12118.
指導教授 許桂榮(Guey-Rong Sheu) 審核日期 2025-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明