博碩士論文 111324080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.142.94.158
姓名 許博恩(Po-En Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發一具備簡易製程之壓電水凝膠應用於自供電感測
(A Facile Piezogel Design for Self-Powered Sensing Application)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
★ 先進高熵電催化劑在水處理中的開發之氨分解和氫生產★ 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用
★ 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方★ 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-17以後開放)
摘要(中) 具有優異壓電性的功能型水凝膠在下一代自供電電子設備有極大的關注度。
然而,壓電水凝膠本身壓電性質的不確定性與傳統壓電水凝膠的電子設備輸出
性能不足限制了他們的發展性。本研究提出一種基於金屬二硫化物的奈米複合
壓電水凝膠,並探討所設計的壓電水凝膠整體的壓電特性。此外,我們將設計
好的壓電水凝膠整合到壓電奈米壓電元件中,此元件具備著 2.2 V、12 nA 的輸出表現,並具有 355 nW/m2 的瞬時功率密度,且可以對 1 μF 的電容器進行充放電。並且我們將其應用於不同重量、不同粗糙度的主動感測應用。
摘要(英) Functional hydrogels with excellent piezoelectric properties have garnered significant attention for next-generation self-powered electronic devices. However, the inherent uncertainty of the piezoelectric properties of piezoelectric hydrogels and the insufficient output performance of traditional piezoelectric hydrogels in electronic devices have limited their development potential. In this study, a piezoelectric gel (Piezogel) based on metal disulfide nanocomposites is proposed, and its overall piezoelectric characteristics are investigated. In addition, we will integrate the designed piezoelectric hydrogel into a piezoelectric nanogenerator, which exhibits an output performance of 2.2 V and 12 nA, with an instantaneous power density of 355 nW/m2, and can charge and discharge a 1 μF capactior. We will apply this device
toactive sensing applications with different weights and suface roughness.
關鍵字(中) ★ 壓電材料
★ 水凝膠
關鍵字(英)
論文目次 目錄
摘要…………………………………………………………………………………..i
Abstract………………………………………………………………………………ii
目錄…………………………………………………………………………………iv
圖目錄………………………………………………………………………………..v
表目錄……………………………………………………………………………...vii
第一章 緒論…………………………………………………………………………1
第二章 文獻回顧……………………………………………………………………2
2-1 Piezogel 簡介……………………………………………….………………..2
2-1-1 天然聚合Piezogel……………………………..……….………………3
2-1-2 合成聚合Piezogel……………………………………….……….…….4
2-2 甲基丙烯酸酐明膠…………………………………………………………5
2-3 二維材料與層狀二硫族化物………………………………………………7
2-4 研究動機及材料選擇……………………………………………………....8
第三章 實驗方法…………………………………………………………………..10
3-1 材料製備…………………………………………………………………..10
3-1-1 甲基丙烯酸酐明膠合成………………………………………………10
3-1-2奈米材料合成…………..…….………………………………………..11
3-1-3 Piezogel 製備………………………………………………….……….11
3-1-4 PENG 製備………………………………………………….…………12
3-2 材料鑑定儀器………………………………………………………………12
3-2-1 核磁共振光譜儀……………………………………………………...13
3-2-2 掃描式電子顯微鏡…………………………………………………...14
3-2-3 拉曼光譜……………………………………………………………...15
3-2-4 X 光繞射儀……………………………………….……………………16
第四章 結果與討論………………………………………………………………..17
4-1 甲基丙烯酸酐明膠鑑定與分析…………………………………………..17
4-2 材料鑑定與分析…………………………………………….…...………..18
4-2-1 表貌………………………………………………...……..…………...18
4-2-2 拉曼光譜鑑定………………………………..………………...……...18
4-2-3 晶形鑑定……………………………………..…………......................19
4-3 Piezogel 之鑑定與分析……………………………………….……………20
4-3-1 Piezogel 表貌…………………………………………….…………….20
4-3-2 Piezogel 之拉曼光譜鑑定……………………………….…………….21
4-3-3 Piezogel 之元素分析…………………………………….…………….21
4-3-4 Piezogel 交聯劑添加之機械性質………………………….………….22
4-3-5 Piezogel 奈米材料添加之機械性質……………………...………..….23
4-3-6 Piezogel 之壓電常數……………………………………….………….24
4-3-7 Piezogel 之細胞毒性……………………………………….………….24
4-4 Piezogel 輸出表現……………………………………………….…………24
4-4-1 實驗裝置架設………………………………………………………...24
4-4-2 PENG 機制探討…………………………………………….…………25
4-4-3 電性輸出表現………………………………………………………...26
4-4-4 驅動商用電子元件…………………………………………………...27
4-4-5 壓力式動作感測設計………………………………………………...29
4-4-6 文獻比較……………………………………………………………...30
第五章 結論與未來展望…………………………………………………………..32
參考文獻
參考文獻 參考文獻
[1] T. Vijayakanth, S. Shankar, G. Finkelstein-Zuta, S. Rencus-Lazar, S. Gilead, E. Gazit, “Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels,” Chemical Society Review 2023, 52, 6191-6220
[2] C. Zhang, S. H. Kwon, D. Lin, “Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications,” Small 2024, 28, 2310110
[3] D. Chouhan, T.-u. Lohe, P. .K. Samudrala, B. B. Mandal, “In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds,” Advanced Healthcare Materials, 2018. 7, 1801092
[4] X. Yang, J. Liu, Y. Pei, X. Zheng, K. Tang, “Recent Progress in Preparation and Application of Nano-Chitin Materials,” Energy Environ. Materials 2020,3, 492
[5] H. Li, M. Long, H. Su, L. Tan, X. Shi, Y. Du, Y. Luo, H. Deng, “Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y,” Carbohydrate Polymers 2022, 290, 119482
[6] M. Nair, Y. Calahorra, S. Kar-Narayan, S. M. Best, R. E. Cameron, “Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking,” Nanoscale 2019, 11, 15120
[7] J. Lu, S. Hu, W. Li, X. Wang, X. Mo, X. Gong, H. Liu, W. Luo, W. Dong, C. Sima, Y. Wang, G. Yang, J.-T. Luo, S. Jiang, Z. Shi, G. Zhang, “Wearable Pressure Sensor Using Porous Natural Polymer Hydrogel Elastomers with High Sensitivity over a Wide Sensing Range,” ACS Nano Journal 2022, 16, 3744-3755
[8] R. Fu, L. Tu, Y. Zhou, L. Fan, F. Zhang, Z. Wang, J. Xing, D. Chen, C.Deng, G. Tan, P. Yu, L. Zhou, C. Ning, “A Tough and Self-Powered Hydrogel for Artificial Skin,” Chemisrtry of Materials Journal 2019, 31, 9850
[9] M, Zhu, Y. Wang, G. Ferracci, J. Zheng, N.-J. Cho, B. H. Lee, “Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency,” Scientific Reports 2019, 9, 6863
[10] A. G. Kurian, R. K. Singh, K. D. Patel, J. -H. Lee, H. -W. Kim, “Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics,” Bioactive Materials 2022, 8, 267-295
[11] L. Roldan, C. Montoya, V. Solanki, K. Q. Cai, M. Yang, S. Correa, S. Orrego, “A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment,” ACS Applied Materials & Interface 2023, 15, 43441-43454
[12] X. Liu, X. Wan, B. Sui, Q. Hub, Z. Liu, T. Ding, J. Zhao, Y. Chen, Z. L. Wang, L. Li, “Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation,” Bioactive Materials 2024,35, 346–361
[13] G. Gu, Zi. Cui, X. Du, P. He, C. Rong, H. Tao, G. Wei, Y. Xi, “Recent Advances in Biomacromolecule-Reinforced 2D Material (2DM) Hydrogels: From Interactions, Synthesis, and Functionalization to Biomedical Applications,” Advanced Functional Materials 2024, 2408367
[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 2004, 306, 666.
[15] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Materials Today 2017, 20, 116.
[16] L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O′Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, A. Walsh, “Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst,” Journal of Materials Chemistry A 2016, 4, 1312.
[17] J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, J. Chen, “3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances,” CrystEngComm 2012, 14, 1364.
[18] I. Gerothanassis, A. Trogamis, V. Exarchou, K. Barbarossou, “NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY: BASIC PRINCIPLES AND PHENOMENA, AND THEIR APPLICATIONS TO CHEMISTRY, BIOLOGY AND MEDICINE,” Chemistry Education Research and Pract 2003, 3, 229-252
[19] M. Tare, O. Puli, S. Oros, A. Singh, “Drosophila adult eye model to teach Scanning Electron Microscopy in an undergraduate cell biology laboratory,” Population Data Information Service 2009, 92, 174.
[20] M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal, A. M. “Iron Oxide Nanoparticles,” Aisiri, Nanomaterials 2011, 3, 43.
[21] A. A. KUMAR, NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL, 2017.
[22] H. Shirahama, B. H. Lee, L. P. Tan, N.-J. Cho, “Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis,” Scientific Reports 2016, 6, 31036
[23] C. Fan, Y. Li, F. Lu, H.-X. Deng, Z. Wei, J. Li, “Wavelength dependent UV-Vis photodetectors from SnS2 flakes,” RSC advances 2016, 6, 422.
[24] X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, “Large-Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors,” Advanced Functional Materials 2016, 26, 4405.
[25] T. Duangchuen, A. Karaphun, L. Wannasen, I. Kotutha, E. Swatsitang, “Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method,” Applied Surface Science 2019, 487, 634.
[26] M. Foox, A, Raz-Pasteur, I. Berdicevsky, N. Krivoy, M. Zilberman, “In vitro microbial inhibition, bonding strength, and cellular response to novel gelatin–alginate antibiotic-releasing soft tissue adhesives,” Polymers for Advanced Technologies 2014, 25, 516-524
[27] A. Chakraborty, A. Roy, S. P. Ravi, A. Paul, “Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances,” Biomaterials Science 2021, 9, 6337-6354
[28] K. J. D. France, E. D. Cranston, T. Hoare, “Mechanically Reinforced Injectable Hydrogels,” ACS Applied Polymer Materials Journal 2020, 2, 1016-1030
[29] J. Lu, S. Hu, W. Li, X. Wang, X. Mo, X. Gong, H. Liu, W. Luo, W. Dong, C. Sima, Y. Wang, G. Yang, J.-T. Luo, S. Jiang, Z. Shi, G. Zhang, “A Biodegradable and Recyclable Pizoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel,” ACS Nano 2022, 16, 3744-3755
[30] R. Fu, X. Zhong, C. Xiao, J. Lin, Y. Guan, Y. Tian, Z. Zhou, G. Tan, H. Hu, L. Zhou, C. Ning, “A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring,” Nano Energy 2023, 144, 108617
[31] Y. Wang, Y. Xie, X. Xie, D. Wu, H. Wu, X. Luo, Q. Wu, L. Zhao, J. Wu, “Compliant and Robust Tissue-Like Hydrogels via Ferric Ion-Induced of Hierarchical Structure,” Advanced Function Materials 2023, 33, 2210224
[32] N. Gogurla, B. Roy, S. Kim, “Self-powered artificial skin made of engineered silk protein hydrogel,” Nano Energy 2020, 77, 105242
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2024-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明