博碩士論文 111324605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:52.14.205.130
姓名 阮氏金蓮(NGUYEN THI KIM LIEN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 AB3和AB5合金混合物熱處理前後儲氫性能研究
(Study on Hydrogen Storage of AB3 and AB5 Alloy Mixture Before and After Heat Treatment)
相關論文
★ High Specific Area g-C3N4 Produced by Ball Milling for On Board Hydrogen Storage★ A Study on the Relationship Between the Manufacturing Methods of Graphitic-Carbon Nitride (g-C3N4) and their Hydrogen Storage Performance
★ Research on High Entropy Alloys for Hydrogen Storage and TiZr-based Alloys with Different Microstructures★ A Study on the Hydrogen Storage of AB3-type La–Ca–Mg–Ni-based Hydrogen Storage Alloys and Composites
★ A study on the electrical and thermal dissipation properties of carbon nanotube/graphene composite papers★ Study on the Cost-Effective High-Entropy Alloys for Efficient Hydrogen Storage
★ Research on the hydrogen storage performance of g-C3N4 nanotubes after microwave irradiation★ 應用於陰離子交換膜水電解器之三元非貴金屬觸媒開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-12-31以後開放)
摘要(中) 為應對全球氣候的劇烈變化和溫室效應的影響,氫能源被認為是一種可行的解決方案,因為它被認為是一種清潔且可再生的能源。然而,氫分子的極低密度導致了運輸和儲存問題。因此,開發具有高儲氫能力的材料變得至關重要。 AB5合金是常見的儲氫材料,具有合理的儲氫能力。然而,AB5合金中包含大量的稀土金屬(Rare Earth Metals, REMs),其成本越來越高。因此,AB3合金由於使用較少的稀土金屬而更多地採用低成本金屬如Ca和Mg,在儲氫方面可能更具成本效益。與AB5合金相比,AB3合金不僅具有更大的儲氫容量,還具有較低的工作溫度和壓力。因此,AB3合金在某些應用中可以至少部分取代AB5合金。本研究的結果顯示了混合AB3和AB5對儲氫能力的影響。主要目標是研究AB3合金La0.7Ca0.7Mg1.6Ni9 在熱處裡前後的儲氫性能及其與熱處裡前後AB5的協同效應。首先,透過高頻感應加熱法製備了不同元素比例的La-Ca-Mg-Ni氫化合物。使用感應耦合等離子體(ICP)確定了合金的成分為La0.49Ca1.07Mg1.94Ni9和La0.56Ce0.38Ni5。為了研究熱處理對La-Ca-Mg-Ni/AB5氫化合物的影響,將一種AB3型La–Ca–Mg–Ni基儲氫合金在800℃的氬氣氣氛中熱處理48小時。透過電子探針顯微分析(EPMA)檢查了熱處理後樣品的局部化學成分。隨後使用X射線衍射(XRD)和透射電子顯微鏡(TEM)檢查了材料在熱處理前後的晶體結構和相變。 X射線繞射分析揭示了合金中存在兩種相,即FCC (La,Mg)Ni3相和HCP (LaNi5)相。最後,透過Sivert型設備研究了樣品的儲氫性能,並確定了樣品的壓力-組成-等溫線(PCI)曲線。結果表明,透過熱處理製備的AB3顯示出一個平坦的壓力平台,這表明合金具有很高的均勻性。純AB5和熱處理後AB5的儲氫容量在25℃、5 MPa氫充壓下分別為1.4 wt.% 和1.26 wt.%。相較之下,商業AB5型La0.6Ce0.4Ni5儲氫 合金的PCI曲線顯示出較高 的平台壓力和更大的滯後現象。在相同的氫充壓條件下,50 wt.% AB3和50 wt.% AB5合金的混合樣品的儲氫容量增加,顯示兩種合金混合的有益效果。綜上所述,本研究成功製備了AB3型La-Ca-Mg-Ni合金。透過XRD和TEM驗證了其FCC和HCP相結構。 EPMA分析顯示,經過熱處理後,AB3合金中僅鎂發生聚集,而其他元素則均勻分佈。此外,熱處理後AB3和AB5的結晶度均有所提升。測得La0.49Ca1.07Mg1.94Ni9合金的儲氫容量在25 ℃為1.34 wt.%。對於AB5,在4 ~ 5 MPa之間出現了另一個平台,其儲氫容量La0.56Ce0.38Ni5減少了0.13 wt.%。 AB3型La-Ca-Mg-Ni和AB5型La0.6Ce0.4Ni5合金混合物在熱處理前的PCI曲線顯示儲氫容量為1.36 wt.%, 0.93 wt.% 解吸容量為1.13 wt.%, 0.78 wt.% 。
摘要(英) The development of materials with high hydrogen storage capacity has thus become important. AB5 alloys are common hydrogen storage material with a reasonable hydrogen storage capacity. However, AB5 alloys consist of a significant portion of rare earth metals (REMs), which are getting more and more expensive. Therefore, AB3 alloys, which use much less REMs but more low-cost metals such as Ca and Mg, may be more cost-effective for hydrogen storage. AB3 alloys have a larger hydrogen storage capacity in addition to the lower working temperature and pressure as compared with the AB5 alloys. Therefore, it is proposed that AB3 alloys can at least partially replace AB5 alloy in some applications. The results in this study show the effect of mixing AB3 and AB5 on the ability to store hydrogen. The main focus of this research is to study the hydrogen storage properties of an AB3 alloy La0.7Ca0.7Mg1.6Ni9 before and after mixing with an AB5 alloy La0.56Ce0.38Ni5; and the effect of heat treatment on these alloys and their composites. Initially, La-Ca-Mg-Ni hydrogen alloy with different elemental ratios was prepared by high-frequency induction heating method, La0.56Ce0.38Ni5 was directly purchased from a Chinese company. Inductively Coupled Plasma (ICP) was used to determine the alloy composition as La0.49Ca1.07Mg1.94Ni9 and La0.56Ce0.38Ni5. To study the effect of heat-treatment on the La-Ca-Mg-Ni/AB5 hydrogen composites, a of AB3 type La–Ca–Mg–Ni-based hydrogen storage alloys have been heat-treated at 800 ℃ for 48 hours under an argon atmosphere. Electron probe microanalysis (EPMA) was used to examine the localized chemical compositions in the samples before and after heat treatment. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to examine the crystal structure and phase changes of the. The X-ray diffraction analysis reveals the presence of two phases in the alloy, namely the FCC (La,Mg)Ni3 phase and the HCP (LaNi5) phase. Finally, the hydrogen storage properties of the samples were studied by a Sivert’s type equipment, and the Pressure-Composition-Isotherms (PCI) curves of the samples were determined. It was found that AB3 obtained shows a flat pressure plateau, thus suggesting a high homogeneity of the alloy prepared using the heat treatment. The hydrogen capacity of pure AB5 and AB5 after heat treatment was found to be 1.4 wt.% and 1.26 wt.% at 25℃, under a hydrogen charging pressure of 5 MPa. In contrast, the PCI curve of the commercial AB5-type La0.6Ce0.4Ni5 hydrogen storage alloy was found to have a higher plateau pressure, with a bigger hysteresis. The hydrogen storage capacity of the sample with 50 wt.% AB3 and 50 wt.% AB5 alloy was found to increased under the same hydrogen charging conditions, indicating the beneficial effect of the blending of the two alloys.
In conclusion, AB3-type La-Ca-Mg-Ni alloy was successfully fabricated in this study. The phase structure of FCC & HCP have been verified by XRD and TEM. The result EPMA of AB3 alloy after heat treatment only magnesium aggregated, while the rest of the elements distributed evenly. Besides, the crystallinity of AB3 and AB5 increased after heat treatment. The hydrogen storage capacities of La0.49Ca1.07Mg1.94Ni9 alloy were measured to be 1.34 wt.% at 25 ℃. The hydrogen storage capacities of AB5 before and after heaat treatment La0.6Ce0.4Ni5 1.4 wt. % and 1.26 wt. %. PCI curve of AB3 type La-Ca-Mg-Ni and AB5 type La0.56Ce0.38Ni5 alloy mixture before and after heat treatment rearch 1.36 wt.% and 0.93 wt. %, desorption capacity was 1.13 wt.% and 0.78 wt. %.?
關鍵字(中) ★ 氫氣儲存
★ AB3 合金
關鍵字(英) ★ Hydrogen storage
★ AB3 alloy
論文目次 Include page numbers
摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures x
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Classification of Hydrogen 2
1.3 Objectives of This Thesis 5
1.4 Thesis Structure 5
Chapter 2 Literature Survey 6
2.1 Development of hydrogen storage 6
2.2 Hydrogen Storage Technology 7
2.2.1 Liquified Hydrogen 9
2.2.2 Compressed Hydrogen Storage 10
2.2.3 Solid-state Hydrogen Storage 11
2.2.4 Metal hydride 12
2.2.5 Comple hydride 15
2.2.6 Chemical compound 16
2.3 Survey of AB3 type alloy 16
2.4 Survey of AB5 alloy 21
2.5 Characterization of Hydrogen Storage in Materials 23
2.5.1 Sieverts Apparatus 23
2.5.2 Pressure-Composition-Isotherm (PCI) 25
2.5.3 Calculation of Hydrogen Gas Density in Alloy Metal 26
2.5.4 Pressure-Composition-Isotherm (PCI) Curve 28
Chapter 3 Experimental Materials and Methods 29
3.1 Experimental Materials 29
3.2 Experimental Equipment 29
3.2.1 High - Frequency Induction Heating 29
3.2.2 High -Temperture Tube Furnace 30
3.2.3 PCI System 31
3.3 Characterization 33
3.3.1 Inductively Coupled Plasma (ICP-OES) 33
3.3.2 Field Emission Electron Probe Micro-Analyzer (FE-EPMA) 33
3.3.3 Field Emission Scanning Electron Microscopy (FE-SEM) 33
3.3.4 X-ray Diffraction (XRD) 34
3.3.5 Transmission Electron Microscopy analyses (TEM) 34
3.4 Experimental Procedure 34
3.4.1 Fabrication of La-Ca-Mg-Ni 34
3.4.2 Heat treament 36
3.5 Hydrogenation Kinetics 37
3.5.1 Activation 37
3.5.2 Leakage test for PCI 37
3.6 Pressure-Composition-Isotherm PCI Test 38
Chapter 4 Results and Discussion 39
4.1 Basic property analysis 39
4.1.1 Composition Analysis Inductively coupled plasma (ICP) 39
4.1.2 SEM Analysis of the Surface Topography 40
4.1.3 Homogenization Analysis 42
4.1.4 XRD Structure Analysis 46
4.1.5 TEM image of homogenized AB3 La0.49Ca1.07Mg1.94Ni9 51
4.1.6 TEM image of homogenized AB5 52
4.2 Hydrogen Storage Performence Analysis 54
4.2.1 Pressure-Composition-Isotherm AB3 La0.49Ca1.07Mg1.94Ni9 before heat treatment 54
4.2.2 PCI AB5 (La0.5Ce0.4Ni5) before and after heat treatment 56
4.2.3 Pressure-Composition-Isotherm mixture before and after heat treatment 58
Chapter 5 Conclusion 60
References 61
參考文獻 [1] Zhang, Y.-H., Li, B.-W., Ren, H.-P.,Wu, Z.-W., X.-P. Dong, Wang, X., Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55? xFex (x= 0–0.4) electrode alloys, Journal of Alloy and Compounds, 460 (1-2) (2008) 414-420.
[2] Liao, B., Lei, Y., Chen, L., Lu, G., Pan, H., Wang, Q., A study on the structure and electrochemical properties of La2Mg (Ni0.95M0.05)9 (M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys, Journal of Power Sources, 376 (1-2) (2004) 186-195.
[3] Ye, H., Xia, B., Wu, W., Du, K., Zhang, H., Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys, Journal of Alloy and Compounds, 111(1) (2002) 145-151.
[4] Sakintuna, B., Lamari-Darkrim, F., Hirscher, M., Metal hydride materials for solid hydrogen storage: a review, Journal of Hydrogen Energy, 32(9) (2007) 1121-1140.
[5] Denys, R.V., Yartys, V.A., Effect of magnesium on the crystal structure and thermodynamics of the La3-x MgxNi9 hydrides, Journal of Alloys and Compounds, 509 (2011).
[6] Zhang, Si, Ti., Pang., Liu, G., Liu, N., Structural characteristics and hydrogen storage properties of Ca3.0?xMgxNi9 (x= 0.5, 1.0, 1.5 and 2.0) alloys, Journal of Alloy and Compounds, 34 (3) (2009) 1483-1488.
[7] Canton, H., The Europa Directory of International Organizations 2021, Routledge 2021, pp. 684-686.
[8] Council, Hydrogen decarbonization pathways: a life-cycle assessment, (2021).
[9] Superchi, F., Mati, A., Carcasci, C., Bianchini, A., Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking, Journal of Alloy and Compounds 342 (2023) 121198.
[10] Saha, P., Akash, F.A., Shovon, S.M., Monir, M.U., Ahmed, M.T., Khan, M.F.H., Sarkar, S.M, Vo, D.-V., Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy, 21(6) (2024) 1383-1397.
[11] Turan, G., Zapantis, A., Global Status of CCS 2021. Global CCS Institute, 2021.
[12] Reduction, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal, Internatlonal Renewable Energy Agency, (2020).
[13] Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, L., Few, S., Future cost and performance of water electrolysis: An expert elicitation study, Journal of Hydrogen Energy, 42(52) (2017) 30470-30492.
[14] Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jager-Waldau, A., management, Green hydrogen in Europe–A regional assessment: Substituting existing production with electrolysis powered by renewables, Earth and Environmental Science, 228 (2021) 113649.
[15] Lee, S.-Y., Lee, J.-H., Kim, Y.-H., Kim, J.-W., Lee, K.-J., Park, S.-J., Recent progress using solid-state materials for hydrogen storage: a short review, 10 (2) (2022) 304.
[16] Hydrogen, Storage., United States Department of Energy 2017. https://www.energy.gov/eere/fuelcells/hydrogen-storage. (Accessed November 20, 2024).
[17] Vegge, T., Sorensen, R.Z., Klerke, A., Hummelshoj, R.Z., Johannessen, T., Norskov, J.K., Christensen, C., Indirect hydrogen storage in metal ammines, Solid-State Hydrogen Storage, (2008) 533-564.
[18] Boateng, E., Chen, L., Recent advances in nanomaterial-based solid-state hydrogen storage, 6 (2020) 100022.
[19] Chalk, S.G., Miller, J.F., Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, Journal of Power Sources, 159 (1) (2006) 73-80.
[20] Katalenich, S., Jacobson, M., Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea, 254 (2022) 124355.
[21] Niaz, S., Manzoor, T., Pandith, A., Reviews, Hydrogen storage: Materials, methods and perspectives, 50 (2015) 457-469.
[22] Zuttel, A., Hydrogen storage methods, 91 (2004) 157-172.
[23] Hydrogen, The challenges of Hydrogen. Part 5. The Hydrogen tank., 2020. https://leehamnews.com/2020/08/21/bjorns-corner-the-challenges-of-hydrogen-part-5-the-hydrogen-tank/. (Accessed November 20, 2024).
[24] Travis, J., Piccioni Koch, D., Mechanics, GASFLOW simulations for Cryogenic Tank Loss of Vacuum Scenarios, 2 (2015) 1-9.
[25] McWhorter, S., Read, C., Ordaz, G., Stetson, N., Science, Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells, Solid State and Materials, 15 (2) (2011) 29-38.
[26] Liu, J., Sun, L., Yang, J., Guo, D., Chen, D., Yang, L., Xiao, P., Ti–Mn hydrogen storage alloys: from properties to applications, Journal of Alloy and Compounds,12 (55) (2022) 35744-35755.
[27] DeLand, F., CRC Handbook of Chemistry and Physics: RC West, MJ Astle, WH Beyer, Eds. Boca Raton, Florida, CRC Press, Inc., 1983, 2386 pp, Soc Nuclear Med, 1984.
[28] Liu, H., Zhang, J., Sun, P., Zhou, C., Liu, Y., Fang, Z., An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications, Journal of Alloy and Compounds, 68 (2023) 107772.
[29] David, E., An overview of advanced materials for hydrogen storage, Journal of Alloy and Compounds, 162 (2005) 169-177.
[30] Ley, M.B., Jepsen, L.H., Cho, Y.W., Dornheim, ., Rokni, M., Jensen, J.O., Sloth, M., Filinchuk, Y., Complex hydrides for hydrogen storage–new perspectives, Journal of Alloy and Compounds, 17 (3) (2014) 122-128.
[31] Zuttel, A., Materials for hydrogen storage, 6 (9) (2003) 24-33.
[32] Bogdanovic, P., Schwickardi, M., compounds, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, 253 (1997) 1-9.
[33] Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K., Interaction of hydrogen with metal nitrides and imides, 420(6913) (2002) 302-304.
[34] Zuttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, C., Emmenegger, Compounds, Hydrogen storage properties of LiBH4, Journal of Alloys and Compounds, 356 (2003) 515-520.
[35] Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M., Kanda, compounds, Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14, Journal of Alloy and Compounds, 311(2) (2000) L5-L7.
[36] Jiang, W., Mo, X., Guo, J., Wei, Y., Effect of annealing on the structure and electrochemical properties of La1.8Ti0.2MgNi8.9Al0.1 hydrogen storage alloy, Journal of Power Sources, 221 (2013) 84-89.
[37] Liao, B., Lei, Y., Chen, L., Lu, G., Pan, H., Wang, Q., The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg (Ni1-xAlx) 9 (x= 0-0.05) alloys, Journal of Power Sources, 404 (2005) 665-668.
[38] Wu, R. Li, J., Zhou, S., Qian, J., Effects of cobalt content and preparation on electrochemical capacity of AB5-type hydrogen storage alloys at different temperature, Materials for Renewable and Sustainable Energy, 24 (3) (2006) 341-345.
[39] Zhang, X., Sun, D., Yin, W., Chai Y., Zhao, M., Effect of La/Ce ratio on the structure and electrochemical characteristics of La0.7-xCexMg0. 3Ni2.8Co0.5 (x= 0.1-0.5) hydrogen storage alloys, Journal of Alloy and Compounds, 50 (9) (2005) 1957-1964.
[40] Kadir, K., Sakai, T., Uehara, I., Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R= La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers, Journal of Alloy and Compounds, 257(1-2) (1997) 115-121.
[41] Srivastava, S., Upadhyaya, R., Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity, Journal of Hydrogen Energy, 36 (12) (2011) 7114-7121.
[42] Singh, R.K., Gupta, B.K., Lototsky, M., Srivastava, O., On the synthesis and hydrogenation behaviour of MmNi5-xFex alloys and computer simulation of their P–C–T curves, Journal of Alloy and Compounds, 373 (1-2) (2004) 208-213.
[43] Joubert, G., Paul-Boncour, G., Cuevas, F., Zhang, J., Latroche, M., Compounds, LaNi5 related AB5 compounds: Structure, properties and applications, Journal of Alloy and Compounds, 862 (2021) 158163.
[44] Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloy and Compounds, 293 (1999) 877-888.
[45] Edwards, P.P., Kuznetsov, V.L., David, W.I., Brandon, N.P., Hydrogen and fuel cells: towards a sustainable energy future, Portal Hydrogen Energy Compounds, 36 (12) (2008) 4356-4362.
指導教授 陳立業(Sammy Lap Ip Chan) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明