參考文獻 |
[1] Zhang, Y.-H., Li, B.-W., Ren, H.-P.,Wu, Z.-W., X.-P. Dong, Wang, X., Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55? xFex (x= 0–0.4) electrode alloys, Journal of Alloy and Compounds, 460 (1-2) (2008) 414-420.
[2] Liao, B., Lei, Y., Chen, L., Lu, G., Pan, H., Wang, Q., A study on the structure and electrochemical properties of La2Mg (Ni0.95M0.05)9 (M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys, Journal of Power Sources, 376 (1-2) (2004) 186-195.
[3] Ye, H., Xia, B., Wu, W., Du, K., Zhang, H., Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys, Journal of Alloy and Compounds, 111(1) (2002) 145-151.
[4] Sakintuna, B., Lamari-Darkrim, F., Hirscher, M., Metal hydride materials for solid hydrogen storage: a review, Journal of Hydrogen Energy, 32(9) (2007) 1121-1140.
[5] Denys, R.V., Yartys, V.A., Effect of magnesium on the crystal structure and thermodynamics of the La3-x MgxNi9 hydrides, Journal of Alloys and Compounds, 509 (2011).
[6] Zhang, Si, Ti., Pang., Liu, G., Liu, N., Structural characteristics and hydrogen storage properties of Ca3.0?xMgxNi9 (x= 0.5, 1.0, 1.5 and 2.0) alloys, Journal of Alloy and Compounds, 34 (3) (2009) 1483-1488.
[7] Canton, H., The Europa Directory of International Organizations 2021, Routledge 2021, pp. 684-686.
[8] Council, Hydrogen decarbonization pathways: a life-cycle assessment, (2021).
[9] Superchi, F., Mati, A., Carcasci, C., Bianchini, A., Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking, Journal of Alloy and Compounds 342 (2023) 121198.
[10] Saha, P., Akash, F.A., Shovon, S.M., Monir, M.U., Ahmed, M.T., Khan, M.F.H., Sarkar, S.M, Vo, D.-V., Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy, 21(6) (2024) 1383-1397.
[11] Turan, G., Zapantis, A., Global Status of CCS 2021. Global CCS Institute, 2021.
[12] Reduction, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal, Internatlonal Renewable Energy Agency, (2020).
[13] Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, L., Few, S., Future cost and performance of water electrolysis: An expert elicitation study, Journal of Hydrogen Energy, 42(52) (2017) 30470-30492.
[14] Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jager-Waldau, A., management, Green hydrogen in Europe–A regional assessment: Substituting existing production with electrolysis powered by renewables, Earth and Environmental Science, 228 (2021) 113649.
[15] Lee, S.-Y., Lee, J.-H., Kim, Y.-H., Kim, J.-W., Lee, K.-J., Park, S.-J., Recent progress using solid-state materials for hydrogen storage: a short review, 10 (2) (2022) 304.
[16] Hydrogen, Storage., United States Department of Energy 2017. https://www.energy.gov/eere/fuelcells/hydrogen-storage. (Accessed November 20, 2024).
[17] Vegge, T., Sorensen, R.Z., Klerke, A., Hummelshoj, R.Z., Johannessen, T., Norskov, J.K., Christensen, C., Indirect hydrogen storage in metal ammines, Solid-State Hydrogen Storage, (2008) 533-564.
[18] Boateng, E., Chen, L., Recent advances in nanomaterial-based solid-state hydrogen storage, 6 (2020) 100022.
[19] Chalk, S.G., Miller, J.F., Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, Journal of Power Sources, 159 (1) (2006) 73-80.
[20] Katalenich, S., Jacobson, M., Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea, 254 (2022) 124355.
[21] Niaz, S., Manzoor, T., Pandith, A., Reviews, Hydrogen storage: Materials, methods and perspectives, 50 (2015) 457-469.
[22] Zuttel, A., Hydrogen storage methods, 91 (2004) 157-172.
[23] Hydrogen, The challenges of Hydrogen. Part 5. The Hydrogen tank., 2020. https://leehamnews.com/2020/08/21/bjorns-corner-the-challenges-of-hydrogen-part-5-the-hydrogen-tank/. (Accessed November 20, 2024).
[24] Travis, J., Piccioni Koch, D., Mechanics, GASFLOW simulations for Cryogenic Tank Loss of Vacuum Scenarios, 2 (2015) 1-9.
[25] McWhorter, S., Read, C., Ordaz, G., Stetson, N., Science, Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells, Solid State and Materials, 15 (2) (2011) 29-38.
[26] Liu, J., Sun, L., Yang, J., Guo, D., Chen, D., Yang, L., Xiao, P., Ti–Mn hydrogen storage alloys: from properties to applications, Journal of Alloy and Compounds,12 (55) (2022) 35744-35755.
[27] DeLand, F., CRC Handbook of Chemistry and Physics: RC West, MJ Astle, WH Beyer, Eds. Boca Raton, Florida, CRC Press, Inc., 1983, 2386 pp, Soc Nuclear Med, 1984.
[28] Liu, H., Zhang, J., Sun, P., Zhou, C., Liu, Y., Fang, Z., An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications, Journal of Alloy and Compounds, 68 (2023) 107772.
[29] David, E., An overview of advanced materials for hydrogen storage, Journal of Alloy and Compounds, 162 (2005) 169-177.
[30] Ley, M.B., Jepsen, L.H., Cho, Y.W., Dornheim, ., Rokni, M., Jensen, J.O., Sloth, M., Filinchuk, Y., Complex hydrides for hydrogen storage–new perspectives, Journal of Alloy and Compounds, 17 (3) (2014) 122-128.
[31] Zuttel, A., Materials for hydrogen storage, 6 (9) (2003) 24-33.
[32] Bogdanovic, P., Schwickardi, M., compounds, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, 253 (1997) 1-9.
[33] Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K., Interaction of hydrogen with metal nitrides and imides, 420(6913) (2002) 302-304.
[34] Zuttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, C., Emmenegger, Compounds, Hydrogen storage properties of LiBH4, Journal of Alloys and Compounds, 356 (2003) 515-520.
[35] Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M., Kanda, compounds, Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14, Journal of Alloy and Compounds, 311(2) (2000) L5-L7.
[36] Jiang, W., Mo, X., Guo, J., Wei, Y., Effect of annealing on the structure and electrochemical properties of La1.8Ti0.2MgNi8.9Al0.1 hydrogen storage alloy, Journal of Power Sources, 221 (2013) 84-89.
[37] Liao, B., Lei, Y., Chen, L., Lu, G., Pan, H., Wang, Q., The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg (Ni1-xAlx) 9 (x= 0-0.05) alloys, Journal of Power Sources, 404 (2005) 665-668.
[38] Wu, R. Li, J., Zhou, S., Qian, J., Effects of cobalt content and preparation on electrochemical capacity of AB5-type hydrogen storage alloys at different temperature, Materials for Renewable and Sustainable Energy, 24 (3) (2006) 341-345.
[39] Zhang, X., Sun, D., Yin, W., Chai Y., Zhao, M., Effect of La/Ce ratio on the structure and electrochemical characteristics of La0.7-xCexMg0. 3Ni2.8Co0.5 (x= 0.1-0.5) hydrogen storage alloys, Journal of Alloy and Compounds, 50 (9) (2005) 1957-1964.
[40] Kadir, K., Sakai, T., Uehara, I., Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R= La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers, Journal of Alloy and Compounds, 257(1-2) (1997) 115-121.
[41] Srivastava, S., Upadhyaya, R., Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity, Journal of Hydrogen Energy, 36 (12) (2011) 7114-7121.
[42] Singh, R.K., Gupta, B.K., Lototsky, M., Srivastava, O., On the synthesis and hydrogenation behaviour of MmNi5-xFex alloys and computer simulation of their P–C–T curves, Journal of Alloy and Compounds, 373 (1-2) (2004) 208-213.
[43] Joubert, G., Paul-Boncour, G., Cuevas, F., Zhang, J., Latroche, M., Compounds, LaNi5 related AB5 compounds: Structure, properties and applications, Journal of Alloy and Compounds, 862 (2021) 158163.
[44] Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloy and Compounds, 293 (1999) 877-888.
[45] Edwards, P.P., Kuznetsov, V.L., David, W.I., Brandon, N.P., Hydrogen and fuel cells: towards a sustainable energy future, Portal Hydrogen Energy Compounds, 36 (12) (2008) 4356-4362. |