博碩士論文 111223047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.143.110.165
姓名 許芮齊(Jui-Chi Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 富含氧缺陷之CoVMoS三金屬硫化物雙功能 水解電催化劑
(Bifunctional Trimetallic Sulfide Electrocatalytic CoVMoS with Abundant Oxygen Vacancies for Water Splitting)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文開發一雙功能電催化劑—CoVMoS/NF,其具備優異的催化性能、合成 步驟簡單無需使用黏著劑等優勢,同時具結構重建之特性。在經歷24小時的OER (Oxygen Evolution Reaction)活化反應後,CoVMoS/NF 於電流密度 100 mA/cm2 下的過電位僅需250 mV,顯著優於商業化的RuO?。透過利用V2O5在鹼性水溶 液中溶解析出之特性,於電催化劑創造豐富的氧缺陷,再結合Co、Ni、Mo等多 金屬間的協同作用及異質介面結構等合成策略,大幅提升其OER的催化活性。 CoVMoS/NF 同時具有OER和HER (Hydrogen Evolution Reaction)的催化性質, 應用於全電解催化水分解在電流密度100 mA/cm2之下,可以連續運作超過1000 小時,且仍保持高達97.8%之催化活性,平均電位為2.05 V,展現出優異的穩定 性。值得注意的是,CoVMoS/NF的雙功能特性,不僅提供極佳的穩定性,且能 避免於整體電催化水分解使用不同電極材料,過程中發生可能結構重建,而造成 的污染問題。此外,本文探討金屬硫化物作為預催化劑在OER過程中易發生結 構重建的現象,並分析其結構特性與催化活性之間的關係。
摘要(英) This study investigates the electrocatalyst CoVMoS/NF, which exhibits outstanding catalytic performance and a simple synthesis process that eliminates the need for binders. After a 24-hour OER (Oxygen Evolution Reaction) activation, CoVMoS/NF exhibited superior OER performance, achieving an overpotential of only 250 mV at a current density of 100 mA/cm2, surpassing that of commercial RuO?. The enhanced OER activity is attributed to the metal leaching of V?O? in an alkaline solution, which creates abundant oxygen vacancies, along with the synergistic effects of Co, Ni, and Mo multimetals and the heterointerface structure. CoVMoS/NF also exhibits bifunctional catalytic properties for both OER and HER (Hydrogen Evolution Reaction). In overall water splitting at a current density of 100 mA/cm2, the catalyst maintained 97.8% activity over 1000 hours, with an average cell voltage of 2.05 V, showing excellent stability. It is remarkable that the bifunctional catalytic CoVMoS/NF not only provides excellent stability but also prevents the potential contamination issues arising from the structural reconstruction during overall water electrolysis when using different electrode materials. Furthermore, this study investigates the phenomenon of structural reconstruction when using metal sulfides as the precatalysts during the OER process, and analyzes the correlation between the structural properties and catalytic activity.
關鍵字(中) ★ 電催化劑
★ 氧缺陷
★ 水解
關鍵字(英) ★ Electrocatalytic
★ Oxygen Vacancy
★ Water Splitting
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
附錄 xi
第一章. 緒論 1
1-1. 全球能源需求與氣候危機 1
1-2. 氫能 2
1-3. 電解水分解 (Water electrolysis) 4
1-4. OER反應機制 (OER mechanism) 6
1-5. 電催化水分解技術 8
1-6. 貴金屬應用於電解水分解 (Noble metal-based electrocatalysts, NMEs) 10
1-6-1. 釕(Ruthenium, Ru)催化劑應用於雙功能水分解 10
1-6-2. 銥(Iridium, Ir)催化劑應用於雙功能水分解 12
1-7. 過渡金屬應用於電解水分解 (Transition metal-based catalysts, TMCs) 14
1-7-1. 異質界面工程 (Heterostructures Interface Engineering) 14
1-7-2. 元素摻雜 (Element Doping) 16
1-7-3. 氧缺陷 (Oxygen Vacancy) 18
1-7-4. 三金屬複合材料 (Trimetallic Composites) 20
1-8. 研究動機 22
?
第二章. 實驗部分 23
2-1. 溶劑與藥品 23
2-1-1. 溶劑 23
2-1-2. 藥品 23
2-1-3. 電解液 23
2-2. 催化劑合成 24
2-2-1. Ni foam活化前處理 24
2-2-2. 合成CoVMoS/NF 24
2-2-3. 合成CoMoS/NF 24
2-2-4. 合成V2O5/NF 25
2-2-5. RuO2/NF 25
2-3. 實驗儀器鑑定與原理 26
2-3-1. 場發射掃描電子顯微鏡 (Scanning Electron Microscope, SEM)及能量散佈光譜儀(Energy-dispersive X-ray spectroscopy, EDX) 26
2-3-2. 高能量化學分析電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 27
2-3-3. X光粉末繞射 (X-Ray Diffraction, XRD) 29
2-3-4. 氣相層析儀 (Gas chromatography, GC) 29
2-4. 電化學分析 30
2-4-1. 電化學催化效率表現 30
2-4-2. 電化學活性表面積 (Electrochemical surface area, ECSA) 31
2-4-3. 穩定性 (Stability) 31
2-4-4. 電化學交流阻抗分析 (Electrochemical impedance spectroscopy, EIS) 32
2-4-5. 全電解催化水分解(Overall water splitting, OWS)系統量測 33
2-4-6. 法拉第效率 (Faradaic efficiency, FE) 34?
第三章. 結果與討論 35
3-1. CoVMoS/NF合成之探討 35
3-1-1. 水熱合成法前驅物比例之最佳化 35
3-1-2. 水熱合成反應之反應時間調控 40
3-1-3. 水熱合成反應之反應溫度調控 41
3-2. CoVMoS/NF材料鑑定 42
3-3. CoVMoS/NF電化學活性 48
3-3-1. OER電催化效率 48
3-3-2. HER電催化效率 51
3-3-3. 全電解催化水分解 (overall water splitting, OWS) 53
3-3-4. OER電催化後之催化劑鑑定 56
3-3-5. 產氧反應機制探討 (OER mechanism) 71
3-4. 實驗結果討論與過去文獻比較 84
第四章. 結論 86
參考文獻 87
附錄 95
參考文獻 [1] World Energy Outlook 2019. International Energy Agency 2019. [2] Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K. Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change; The Australian National University, 2023. [3]The global risks report 2024: 19th edition. WEF 2024. [4] Global hydrogen review 2021. IEA 2021. [5] Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 11, 4926-4943. [6] Le, T. T.; Sharma, P.; Bora, B. J.; Tran, V. D.; Truong, T. H.; Le, H. C.; Nguyen, P. Q. P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791-816. [7] Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem. Rev. 2024, 124, 7, 3694-3812. [8] Smolinka, T.; Bergmann, H.; Garche, J.; Kusnezoff, M. The history of water electrolysis from its beginnings to the present. In Electrochemical power sources: fundamentals, systems, and applications, Elsevier, 2022, 83-164. [9] Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC advances 2023, 13, 6, 3843-3876. [10] Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 7, 2196-2214. [11] Shan, J.; Zheng, Y.; Shi, B.; Davey, K.; Qiao, S.-Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 11, 2719-2730. [12] Zhang, K.; Zou, R. Advanced transition metal?based OER electrocatalysts: current status, opportunities, and challenges. Small 2021, 17, 37, 2100129. [13] Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 2022, 32, 21, 2110036. [14] Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catalysis 2020, 10, 6, 3650-3657. [15] Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J.-P. M.; Guan, D.; O’Hayre, R.; Li, M.; Wang, G. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun 2020, 11, 1, 2002. [16] Ramakrishnan, S.; Mamlouk, M. Alkaline anion exchange membrane electrolysis. 2024. [17] Mandal, M. Novel electrocatalyst for alkaline membrane water electrolysis. ChemElectroChem 2020, 7, 21, 4303-4305. [18] Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 13, 11830-11895. [19] Shi, Q.; Zhu, C.; Du, D.; Lin, Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 12, 3181-3192. [20] Park, J. E.; Kang, S. Y.; Oh, S.-H.; Kim, J. K.; Lim, M. S.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. High-performance anion-exchange membrane water electrolysis. Electrochim. Acta 2019, 295, 99-106. [21] Badgett, A.; Ruth, M.; Pivovar, B. Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications, Elsevier, 2022, 327-364. [22] Aravindan, M.; Kumar, P. Hydrogen towards sustainable transition: A review of production, economic, environmental impact and scaling factors. RINENG 2023, 101456. [23] Shah, K.; Dai, R.; Mateen, M.; Hassan, Z.; Zhuang, Z.; Liu, C.; Israr, M.; Cheong, W. C.; Hu, B.; Tu, R. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. 2022, 134, 4, e202114951. [24] Ding, H.; Su, C.; Wu, J.; Lv, H.; Tan, Y.; Tai, X.; Wang, W.; Zhou, T.; Lin, Y.; Chu, W. Highly Crystalline Iridium–Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. J. Am. Chem. Soc. 2024, 146, 11, 7858-7867. [25] Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301-329. [26] Zhang, J.; Deng, W.; Weng, Y.; Li, X.; Mao, H.; Zhang, W.; Lu, T.; Long, D.; Jiang, F. Theoretical revelation and experimental verification synergistic electronic interaction of V-doped RuNi as an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng 2023, 11, 45, 16288-16299. [27] Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 11, 1702774. [28] Raghav, J.; Deepak, D.; Sinha Roy, S.; Roy, S. Hybrid nanostructure of sputter decorated nanodots of Ag2O/AgO over flower-like Mn–Co–Cu ternary metal oxide for electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 2023, 6, 4, 2286 2295. [29] Meena, A.; Thangavel, P.; Jeong, D. S.; Singh, A. N.; Jana, A.; Im, H.; Nguyen, D. A.; Kim, K. S. Crystalline-amorphous interface of mesoporous Ni2P@ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water electrolyzer. Appl. Catal. B: Environ. 2022, 306, 121127. [30] Muthukumar, P.; Nantheeswaran, P.; Mariappan, M.; Pannipara, M.; Al-Sehemi, A. G.; Anthony, S. P. F and rare V 4+ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Trans. 2023, 52, 14, 4606 4615. [31] Karmakar, A.; Karthick, K.; Sankar, S. S.; Kumaravel, S.; Ragunath, M.; Kundu, S. Oxygen vacancy enriched NiMoO 4 nanorods via microwave heating: a promising highly stable electrocatalyst for total water splitting. J. Mater. Chem. A 2021, 9, 19, 11691-11704. [32] Qin, F.; Zhao, Z.; Alam, M. K.; Ni, Y.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z.; Wang, Z.; Bao, J. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 3, 546-554. [33] Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R. Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. In Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, 2003, 1-20. [34] Hodoroaba, V.-D. Energy-dispersive X-ray spectroscopy (EDS). Characterization of Nanoparticles, Elsevier, 2020, 397-417. [35] Aziz, M.; Ismail, A. X-ray photoelectron spectroscopy (XPS). Membrane Characterization, Elsevier, 2017, 81-93. [36] Krishna, D. N. G.; Philip, J. Review on surface-characterization applications of X ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv 2022, 12, 100332. [37] Lamas, D. G.; de Oliveira Neto, M.; Kellermann, G.; Craievich, A. F. X-ray diffraction and scattering by nanomaterials. In Nanocharacterization techniques, Elsevier, 2017, 111-182. [38] Ding, P.; Song, H.; Chang, J.; Lu, S. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 8, 7063-7070. [39] Appel, A. M.; Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 2014, 4, 2, 630–633 [40] Shang, X.; Liu, Z.-Z.; Zhang, J.-Q.; Dong, B.; Zhou, Y.-L.; Qin, J.-F.; Wang, L.; Chai, Y.-M.; Liu, C.-G. Electrochemical corrosion engineering for Ni–Fe oxides with superior activity toward water oxidation. ACS Appl. Mater. Interfaces. 2018, 10, 49, 42217-42224. [41] Magar, H. S.; Hassan, R. Y.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 19, 6578. [42] Liu, Y.; Chen, Y.; Tian, Y.; Sakthivel, T.; Liu, H.; Guo, S.; Zeng, H.; Dai, Z. Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 2022, 34, 37, 2203615. [43] Okolie, J. A.; Epelle, E. I.; Nanda, S.; Castello, D.; Dalai, A. K.; Kozinski, J. A. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. J. Supercrit. Fluids 2021, 173, 105199. [44] Xiansheng, N.; Zhenggan, Z.; Xiongwei, W.; Luming, L. The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator. Opt. Lasers Eng. 2011, 49, 3, 297-304. [45] Mondal, A.; Ganguli, S.; Inta, H. R.; Mahalingam, V. Influence of vanadate structure on electrochemical surface reconstruction and OER performance of CoV2O6 and Co3V2O8. ACS Appl. Energy Mater. 2021, 4, 6, 5381-5387. [46] Zhou, G.; Wu, X.; Zhao, M.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. Interfacial engineering?triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high?efficiency overall water splitting. ChemSusChem 2021, 14, 2, 699-708. [47] Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen?doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 12, 1600116. [48] Lu, C.; Yan, Y.; Zhai, T.; Fan, Y.; Zhou, W. 2?nm?Thick NiCo LDH@ NiSe single crystal nanorods grown on Ni foam as integrated electrode with enhanced areal capacity for supercapacitors. Batter. Supercaps 2020, 3, 6, 534-540. [49] Salleh, N. A.; Kheawhom, S.; Mohamad, A. A. Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab J. Chem. 2020, 13, 8, 6838-6846. [50] Yu, D.; Li, Z.; Zhao, G.; Zhang, H.; Aslan, H.; Li, J.; Sun, F.; Zhu, L.; Du, B.; Yang, B. Porous ultrathin NiSe nanosheet networks on nickel foam for high?performance hybrid supercapacitors. ChemSusChem 2020, 13, 1, 260-266. [51] Ghosh, D. C.; Biswas, R. Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int. J. Mol. Sci. 2002, 3, 2, 87-113. [52] Venezia, A.; Bertoncello, R.; Deganello, G. X?ray photoelectron spectroscopy investigation of pumice?supported nickel catalysts. Surf. Interface Anal. 1995, 23, 4, 239-247. [53] Loh, A.; Li, X.; Taiwo, O. O.; Tariq, F.; Brandon, N. P.; Wang, P.; Xu, K.; Wang, B. Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 46, 24232-24247. [54] Sarfraz, B.; Bashir, I.; Rauf, A. CuS/NiFe-LDH/NF as a bifunctional electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER). Fuel 2023, 337, 127253. [55] Schenck, C.; Dillard, J.; Murray, J. Surface analysis and the adsorption of Co (II) on goethite. J. Colloid Interface Sci. 1983, 95, 2, 398-409. [56] Jena, A.; Penki, T. R.; Munichandraiah, N.; Shivashankar, S. Flower-like porous cobalt (II) monoxide nanostructures as anode material for Li-ion batteries. J. Electroanal. Chem. 2016, 761, 21-27. [57] Fang, L.; Jiang, Z.; Xu, H.; Liu, L.; Gu, X.; Wang, Y. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting. J. Catal. 2018, 357, 238-246. [58] Sun, Y. Y.; Zhang, X. Y.; Tang, J.; Li, X.; Fu, H. Q.; Xu, H. G.; Mao, F.; Liu, P.; Yang, H. G. Amorphous oxysulfide reconstructed from spinel NiCo2S4 for efficient water oxidation. Small 2023, 19, 27, 2207965. [59] Zhou, W.; Wu, X.-J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 10, 2921-2924. [60] Lee, Y.-J.; Barrera, D.; Luo, K.; Hsu, J. W. In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions. J. Nanotechnol. 2012, 2012, 1, 195761. [61] Chen, Y.; Yu, Z.; Jiang, R.; Huang, J.; Hou, Y.; Chen, J.; Zhang, Y.; Zhu, H.; Wang, B.; Wang, M. 3D?Stretched Film Ni3S2 Nanosheet/Macromolecule Anthraquinone Derivative Polymers for Electrocatalytic Overall Water Splitting. Small 2021, 17, 28, 2101003. [62] Du, C.; Men, Y.; Hei, X.; Yu, J.; Cheng, G.; Luo, W. Mo?Doped Ni3S2 Nanowires as High?Performance Electrocatalysts for Overall Water Splitting. ChemElectroChem 2018, 5, 18, 2564-2570. [63] Yang, W.; He, H.; Ma, Q.; Ma, J.; Liu, Y.; Liu, P.; Mu, Y. Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Phys. Chem. Chem. Phys. 2016, 18, 2, 956-964. [64] Nguyen, H. T. T.; Jung, D.; Park, C.-Y.; Kang, D. J. Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method. Mater. Chem. Phys. 2015, 165, 19-24. [65] Patil, S. A.; Cho, S.; Jo, Y.; Shrestha, N. K.; Kim, H.; Im, H. Bimetallic Ni-Co@ hexacyano nano-frameworks anchored on carbon nanotubes for highly efficient overall water splitting and urea decontamination. Chem. Eng. J. 2021, 426, 130773. [66] Lu, Y.; Weng, W.; Lu, Y.; Pang, X.; Hu, N.; Peng, B. Preparation of V doped Co2N/CoN and its superior HER and OER performance. J. Solid State Chem. 2024, 335, 124701. [67] Li, R.; Hu, B.; Yu, T.; Chen, H.; Wang, Y.; Song, S. Insights into correlation among surface?structure?activity of cobalt?derived pre?catalyst for oxygen evolution reaction. Adv. Sci 2020, 7, 5, 1902830. [68] Xu, J.; Li, L.; Tang, J.; Dai, L.; Li, X.; Ye, Z.; Luo, J. Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction. J. Alloys Compd. 2021, 865, 158901. [69] Chen, H.; Qiao, S.; Yang, J.; Du, X. NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. Mol. Catal. 2022, 518, 112086. [70] Zhang, Y.; Feng, B.; Yan, M.; Shen, Z.; Chen, Y.; Tian, J.; Xu, F.; Chen, G.; Wang, X.; Yang, L. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 2024, 17, 5, 3769-3776. [71] Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 8, 1937–1938 [72] Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.; Qu, L.; Zhao, Y.; Cheng, Z.; Lu, Y. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 2017, 7, 1, 11182. [73] Zhao, Y.; Zhang, J.; Xie, Y.; Sun, B.; Jiang, J.; Jiang, W.-J.; Xi, S.; Yang, H. Y.; Yan, K.; Wang, S. Constructing atomic heterometallic sites in ultrathin nickel incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021, 21, 1, 823-832. [74] Cao, X.; He, Q.; Liu, C.; Liu, L.; Li, C. Lowered sintering temperature and improved microwave dielectric properties in a vanadium tantalate via in-situ adjusting V 5+/Ta 5+ molar ratio. J. Mater. Sci.: Mater. Electron. 2022, 1-9. [75] Li, H.; Wu, J.; Li, M.; Wang, Y. Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts 2024, 14, 6, 368. [76] Li, A.; Tang, X.; Cao, R.; Song, D.; Wang, F.; Yan, H.; Chen, H.; Wei, Z. Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self?Terminating Surface Deterioration. Adv. Mater. 2024, 2401818. [77] Yuan, C.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition?metal oxides: design, synthesis, and energy?related applications. Angew. Chem. Int. Ed. 2014, 53, 6, 1488 1504. [78] Islam, S. E.; Hang, D.-R.; Liang, C.-T.; Sharma, K. H.; Huang, H.-C.; Chou, M. M. Trimetallic Ni–Co–Mo nanoparticles supported on N-doped carbon as a promising electrocatalyst for the methanol-assisted hydrogen evolution reaction. ACS Appl. Energy Mater. 2023, 6, 18, 9543-9555. [79] Bao, J.; Wang, Z.; Xie, J.; Xu, L.; Lei, F.; Guan, M.; Zhao, Y.; Huang, Y.; Li, H. A ternary cobalt–molybdenum–vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 24, 3521-3524. [80] Shi, H.; Liang, H.; Ming, F.; Wang, Z. Efficient overall water?splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem. 2017, 129, 2, 588-592. [81] Fan, K.; Ji, Y.; Zou, H.; Zhang, J.; Zhu, B.; Chen, H.; Daniel, Q.; Luo, Y.; Yu, J.; Sun, L. Hollow Iron–vanadium composite spheres: a highly efficient iron?based water oxidation electrocatalyst without the need for nickel or cobalt. Angew. Chem. Int. Ed. 2017, 56, 12, 3289-3293. [82] Niu, Y.; Huang, X.; Wu, X.; Zhao, L.; Hu, W.; Li, C. M. One-pot synthesis of Co/N doped mesoporous graphene with embedded Co/CoOx nanoparticles for efficient oxygen reduction reaction. Nanoscale 2017, 9, 29, 10233-10239. [83] Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 nanoparticles/NiFe layered double hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl. Mater. Interfaces. 2018, 10, 31, 26283-26292. [84] Wang, X.; Wu, H.; Xi, S.; Lee, W.; Zhang, J.; Wu, Z.; Wang, J.; Hu, T.; Liu, L.; Han, Y. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 1, 229-237. [85] Wang, P.; Han, X.; Bai, P.; Mu, J.; Zhao, Y.; He, J.; Su, Y. Utilizing an electron redistribution strategy to inhibit the leaching of sulfur from CeO2/NiCo2S4 heterostructure for high-efficiency oxygen evolution. Appl. Catal. B: Environ. 2024, 344, 123659. [86] Feng, Z.; Ren, L.; Liu, Y.; Gao, B. Efficient OER electrocatalyst based on Co0. 85Se/rGO nanocomposite. Ionics 2023, 29, 4, 1515-1521. [87] Roh, H.; Jung, H.; Choi, H.; Han, J. W.; Park, T.; Kim, S.; Yong, K. Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Appl. Catal. B: Environ. 2021, 297, 120434.
指導教授 陳銘洲 江明錫(Ming-Chou Chen Ming-Hsi Chiang) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明