參考文獻 |
[1] World Energy Outlook 2019. International Energy Agency 2019. [2] Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K. Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change; The Australian National University, 2023. [3]The global risks report 2024: 19th edition. WEF 2024. [4] Global hydrogen review 2021. IEA 2021. [5] Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 11, 4926-4943. [6] Le, T. T.; Sharma, P.; Bora, B. J.; Tran, V. D.; Truong, T. H.; Le, H. C.; Nguyen, P. Q. P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791-816. [7] Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem. Rev. 2024, 124, 7, 3694-3812. [8] Smolinka, T.; Bergmann, H.; Garche, J.; Kusnezoff, M. The history of water electrolysis from its beginnings to the present. In Electrochemical power sources: fundamentals, systems, and applications, Elsevier, 2022, 83-164. [9] Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC advances 2023, 13, 6, 3843-3876. [10] Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 7, 2196-2214. [11] Shan, J.; Zheng, Y.; Shi, B.; Davey, K.; Qiao, S.-Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 11, 2719-2730. [12] Zhang, K.; Zou, R. Advanced transition metal?based OER electrocatalysts: current status, opportunities, and challenges. Small 2021, 17, 37, 2100129. [13] Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 2022, 32, 21, 2110036. [14] Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catalysis 2020, 10, 6, 3650-3657. [15] Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J.-P. M.; Guan, D.; O’Hayre, R.; Li, M.; Wang, G. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun 2020, 11, 1, 2002. [16] Ramakrishnan, S.; Mamlouk, M. Alkaline anion exchange membrane electrolysis. 2024. [17] Mandal, M. Novel electrocatalyst for alkaline membrane water electrolysis. ChemElectroChem 2020, 7, 21, 4303-4305. [18] Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 13, 11830-11895. [19] Shi, Q.; Zhu, C.; Du, D.; Lin, Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 12, 3181-3192. [20] Park, J. E.; Kang, S. Y.; Oh, S.-H.; Kim, J. K.; Lim, M. S.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. High-performance anion-exchange membrane water electrolysis. Electrochim. Acta 2019, 295, 99-106. [21] Badgett, A.; Ruth, M.; Pivovar, B. Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications, Elsevier, 2022, 327-364. [22] Aravindan, M.; Kumar, P. Hydrogen towards sustainable transition: A review of production, economic, environmental impact and scaling factors. RINENG 2023, 101456. [23] Shah, K.; Dai, R.; Mateen, M.; Hassan, Z.; Zhuang, Z.; Liu, C.; Israr, M.; Cheong, W. C.; Hu, B.; Tu, R. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. 2022, 134, 4, e202114951. [24] Ding, H.; Su, C.; Wu, J.; Lv, H.; Tan, Y.; Tai, X.; Wang, W.; Zhou, T.; Lin, Y.; Chu, W. Highly Crystalline Iridium–Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. J. Am. Chem. Soc. 2024, 146, 11, 7858-7867. [25] Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A. K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301-329. [26] Zhang, J.; Deng, W.; Weng, Y.; Li, X.; Mao, H.; Zhang, W.; Lu, T.; Long, D.; Jiang, F. Theoretical revelation and experimental verification synergistic electronic interaction of V-doped RuNi as an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng 2023, 11, 45, 16288-16299. [27] Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 11, 1702774. [28] Raghav, J.; Deepak, D.; Sinha Roy, S.; Roy, S. Hybrid nanostructure of sputter decorated nanodots of Ag2O/AgO over flower-like Mn–Co–Cu ternary metal oxide for electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 2023, 6, 4, 2286 2295. [29] Meena, A.; Thangavel, P.; Jeong, D. S.; Singh, A. N.; Jana, A.; Im, H.; Nguyen, D. A.; Kim, K. S. Crystalline-amorphous interface of mesoporous Ni2P@ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water electrolyzer. Appl. Catal. B: Environ. 2022, 306, 121127. [30] Muthukumar, P.; Nantheeswaran, P.; Mariappan, M.; Pannipara, M.; Al-Sehemi, A. G.; Anthony, S. P. F and rare V 4+ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Trans. 2023, 52, 14, 4606 4615. [31] Karmakar, A.; Karthick, K.; Sankar, S. S.; Kumaravel, S.; Ragunath, M.; Kundu, S. Oxygen vacancy enriched NiMoO 4 nanorods via microwave heating: a promising highly stable electrocatalyst for total water splitting. J. Mater. Chem. A 2021, 9, 19, 11691-11704. [32] Qin, F.; Zhao, Z.; Alam, M. K.; Ni, Y.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z.; Wang, Z.; Bao, J. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 3, 546-554. [33] Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R. Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. In Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, 2003, 1-20. [34] Hodoroaba, V.-D. Energy-dispersive X-ray spectroscopy (EDS). Characterization of Nanoparticles, Elsevier, 2020, 397-417. [35] Aziz, M.; Ismail, A. X-ray photoelectron spectroscopy (XPS). Membrane Characterization, Elsevier, 2017, 81-93. [36] Krishna, D. N. G.; Philip, J. Review on surface-characterization applications of X ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv 2022, 12, 100332. [37] Lamas, D. G.; de Oliveira Neto, M.; Kellermann, G.; Craievich, A. F. X-ray diffraction and scattering by nanomaterials. In Nanocharacterization techniques, Elsevier, 2017, 111-182. [38] Ding, P.; Song, H.; Chang, J.; Lu, S. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 8, 7063-7070. [39] Appel, A. M.; Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 2014, 4, 2, 630–633 [40] Shang, X.; Liu, Z.-Z.; Zhang, J.-Q.; Dong, B.; Zhou, Y.-L.; Qin, J.-F.; Wang, L.; Chai, Y.-M.; Liu, C.-G. Electrochemical corrosion engineering for Ni–Fe oxides with superior activity toward water oxidation. ACS Appl. Mater. Interfaces. 2018, 10, 49, 42217-42224. [41] Magar, H. S.; Hassan, R. Y.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 19, 6578. [42] Liu, Y.; Chen, Y.; Tian, Y.; Sakthivel, T.; Liu, H.; Guo, S.; Zeng, H.; Dai, Z. Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 2022, 34, 37, 2203615. [43] Okolie, J. A.; Epelle, E. I.; Nanda, S.; Castello, D.; Dalai, A. K.; Kozinski, J. A. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. J. Supercrit. Fluids 2021, 173, 105199. [44] Xiansheng, N.; Zhenggan, Z.; Xiongwei, W.; Luming, L. The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator. Opt. Lasers Eng. 2011, 49, 3, 297-304. [45] Mondal, A.; Ganguli, S.; Inta, H. R.; Mahalingam, V. Influence of vanadate structure on electrochemical surface reconstruction and OER performance of CoV2O6 and Co3V2O8. ACS Appl. Energy Mater. 2021, 4, 6, 5381-5387. [46] Zhou, G.; Wu, X.; Zhao, M.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. Interfacial engineering?triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high?efficiency overall water splitting. ChemSusChem 2021, 14, 2, 699-708. [47] Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen?doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 12, 1600116. [48] Lu, C.; Yan, Y.; Zhai, T.; Fan, Y.; Zhou, W. 2?nm?Thick NiCo LDH@ NiSe single crystal nanorods grown on Ni foam as integrated electrode with enhanced areal capacity for supercapacitors. Batter. Supercaps 2020, 3, 6, 534-540. [49] Salleh, N. A.; Kheawhom, S.; Mohamad, A. A. Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab J. Chem. 2020, 13, 8, 6838-6846. [50] Yu, D.; Li, Z.; Zhao, G.; Zhang, H.; Aslan, H.; Li, J.; Sun, F.; Zhu, L.; Du, B.; Yang, B. Porous ultrathin NiSe nanosheet networks on nickel foam for high?performance hybrid supercapacitors. ChemSusChem 2020, 13, 1, 260-266. [51] Ghosh, D. C.; Biswas, R. Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int. J. Mol. Sci. 2002, 3, 2, 87-113. [52] Venezia, A.; Bertoncello, R.; Deganello, G. X?ray photoelectron spectroscopy investigation of pumice?supported nickel catalysts. Surf. Interface Anal. 1995, 23, 4, 239-247. [53] Loh, A.; Li, X.; Taiwo, O. O.; Tariq, F.; Brandon, N. P.; Wang, P.; Xu, K.; Wang, B. Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 46, 24232-24247. [54] Sarfraz, B.; Bashir, I.; Rauf, A. CuS/NiFe-LDH/NF as a bifunctional electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER). Fuel 2023, 337, 127253. [55] Schenck, C.; Dillard, J.; Murray, J. Surface analysis and the adsorption of Co (II) on goethite. J. Colloid Interface Sci. 1983, 95, 2, 398-409. [56] Jena, A.; Penki, T. R.; Munichandraiah, N.; Shivashankar, S. Flower-like porous cobalt (II) monoxide nanostructures as anode material for Li-ion batteries. J. Electroanal. Chem. 2016, 761, 21-27. [57] Fang, L.; Jiang, Z.; Xu, H.; Liu, L.; Gu, X.; Wang, Y. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting. J. Catal. 2018, 357, 238-246. [58] Sun, Y. Y.; Zhang, X. Y.; Tang, J.; Li, X.; Fu, H. Q.; Xu, H. G.; Mao, F.; Liu, P.; Yang, H. G. Amorphous oxysulfide reconstructed from spinel NiCo2S4 for efficient water oxidation. Small 2023, 19, 27, 2207965. [59] Zhou, W.; Wu, X.-J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 10, 2921-2924. [60] Lee, Y.-J.; Barrera, D.; Luo, K.; Hsu, J. W. In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions. J. Nanotechnol. 2012, 2012, 1, 195761. [61] Chen, Y.; Yu, Z.; Jiang, R.; Huang, J.; Hou, Y.; Chen, J.; Zhang, Y.; Zhu, H.; Wang, B.; Wang, M. 3D?Stretched Film Ni3S2 Nanosheet/Macromolecule Anthraquinone Derivative Polymers for Electrocatalytic Overall Water Splitting. Small 2021, 17, 28, 2101003. [62] Du, C.; Men, Y.; Hei, X.; Yu, J.; Cheng, G.; Luo, W. Mo?Doped Ni3S2 Nanowires as High?Performance Electrocatalysts for Overall Water Splitting. ChemElectroChem 2018, 5, 18, 2564-2570. [63] Yang, W.; He, H.; Ma, Q.; Ma, J.; Liu, Y.; Liu, P.; Mu, Y. Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Phys. Chem. Chem. Phys. 2016, 18, 2, 956-964. [64] Nguyen, H. T. T.; Jung, D.; Park, C.-Y.; Kang, D. J. Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method. Mater. Chem. Phys. 2015, 165, 19-24. [65] Patil, S. A.; Cho, S.; Jo, Y.; Shrestha, N. K.; Kim, H.; Im, H. Bimetallic Ni-Co@ hexacyano nano-frameworks anchored on carbon nanotubes for highly efficient overall water splitting and urea decontamination. Chem. Eng. J. 2021, 426, 130773. [66] Lu, Y.; Weng, W.; Lu, Y.; Pang, X.; Hu, N.; Peng, B. Preparation of V doped Co2N/CoN and its superior HER and OER performance. J. Solid State Chem. 2024, 335, 124701. [67] Li, R.; Hu, B.; Yu, T.; Chen, H.; Wang, Y.; Song, S. Insights into correlation among surface?structure?activity of cobalt?derived pre?catalyst for oxygen evolution reaction. Adv. Sci 2020, 7, 5, 1902830. [68] Xu, J.; Li, L.; Tang, J.; Dai, L.; Li, X.; Ye, Z.; Luo, J. Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction. J. Alloys Compd. 2021, 865, 158901. [69] Chen, H.; Qiao, S.; Yang, J.; Du, X. NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. Mol. Catal. 2022, 518, 112086. [70] Zhang, Y.; Feng, B.; Yan, M.; Shen, Z.; Chen, Y.; Tian, J.; Xu, F.; Chen, G.; Wang, X.; Yang, L. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 2024, 17, 5, 3769-3776. [71] Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 8, 1937–1938 [72] Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.; Qu, L.; Zhao, Y.; Cheng, Z.; Lu, Y. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 2017, 7, 1, 11182. [73] Zhao, Y.; Zhang, J.; Xie, Y.; Sun, B.; Jiang, J.; Jiang, W.-J.; Xi, S.; Yang, H. Y.; Yan, K.; Wang, S. Constructing atomic heterometallic sites in ultrathin nickel incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021, 21, 1, 823-832. [74] Cao, X.; He, Q.; Liu, C.; Liu, L.; Li, C. Lowered sintering temperature and improved microwave dielectric properties in a vanadium tantalate via in-situ adjusting V 5+/Ta 5+ molar ratio. J. Mater. Sci.: Mater. Electron. 2022, 1-9. [75] Li, H.; Wu, J.; Li, M.; Wang, Y. Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts 2024, 14, 6, 368. [76] Li, A.; Tang, X.; Cao, R.; Song, D.; Wang, F.; Yan, H.; Chen, H.; Wei, Z. Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self?Terminating Surface Deterioration. Adv. Mater. 2024, 2401818. [77] Yuan, C.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition?metal oxides: design, synthesis, and energy?related applications. Angew. Chem. Int. Ed. 2014, 53, 6, 1488 1504. [78] Islam, S. E.; Hang, D.-R.; Liang, C.-T.; Sharma, K. H.; Huang, H.-C.; Chou, M. M. Trimetallic Ni–Co–Mo nanoparticles supported on N-doped carbon as a promising electrocatalyst for the methanol-assisted hydrogen evolution reaction. ACS Appl. Energy Mater. 2023, 6, 18, 9543-9555. [79] Bao, J.; Wang, Z.; Xie, J.; Xu, L.; Lei, F.; Guan, M.; Zhao, Y.; Huang, Y.; Li, H. A ternary cobalt–molybdenum–vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 24, 3521-3524. [80] Shi, H.; Liang, H.; Ming, F.; Wang, Z. Efficient overall water?splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem. 2017, 129, 2, 588-592. [81] Fan, K.; Ji, Y.; Zou, H.; Zhang, J.; Zhu, B.; Chen, H.; Daniel, Q.; Luo, Y.; Yu, J.; Sun, L. Hollow Iron–vanadium composite spheres: a highly efficient iron?based water oxidation electrocatalyst without the need for nickel or cobalt. Angew. Chem. Int. Ed. 2017, 56, 12, 3289-3293. [82] Niu, Y.; Huang, X.; Wu, X.; Zhao, L.; Hu, W.; Li, C. M. One-pot synthesis of Co/N doped mesoporous graphene with embedded Co/CoOx nanoparticles for efficient oxygen reduction reaction. Nanoscale 2017, 9, 29, 10233-10239. [83] Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 nanoparticles/NiFe layered double hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl. Mater. Interfaces. 2018, 10, 31, 26283-26292. [84] Wang, X.; Wu, H.; Xi, S.; Lee, W.; Zhang, J.; Wu, Z.; Wang, J.; Hu, T.; Liu, L.; Han, Y. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 1, 229-237. [85] Wang, P.; Han, X.; Bai, P.; Mu, J.; Zhao, Y.; He, J.; Su, Y. Utilizing an electron redistribution strategy to inhibit the leaching of sulfur from CeO2/NiCo2S4 heterostructure for high-efficiency oxygen evolution. Appl. Catal. B: Environ. 2024, 344, 123659. [86] Feng, Z.; Ren, L.; Liu, Y.; Gao, B. Efficient OER electrocatalyst based on Co0. 85Se/rGO nanocomposite. Ionics 2023, 29, 4, 1515-1521. [87] Roh, H.; Jung, H.; Choi, H.; Han, J. W.; Park, T.; Kim, S.; Yong, K. Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Appl. Catal. B: Environ. 2021, 297, 120434. |